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CONE PROPERTY AND MEASURE DENSITY CONDITION

PRZEMYSŁAW GÓRKA AND PAWEŁ LEFELBAJN

(Communicated by J. Pečarić)

Abstract. We prove the existence of open set  in the Euclidean space, satisfying the measure
density condition, such that the boundary  is a graph and  does not satisfy the cone condi-
tion. In this way we give an answer to the conjecture formulated by V. Burenkov. Some of the
results are formulated in the setting of metric and metric-measure spaces. In particular, for  ,
which is a subset of a metric space, we study the relationships between the measure density con-
dition of  and the growth of the measure (∩B(x,r)) , where x is taken from the boundary
 . Moreover, similar issue is studied for cone condition.

1. Introduction

Let  be a domain in Rn . It is well known (see e.g., [1]) that if  satisfies the
cone condition,1 then for 1 < p < n the Sobolev embedding

W 1,p() ↪→ Lp∗()

holds with p∗ = np/(n− p) . On the other hand, (see e.g., [6]) if  is such that the
above embedding holds, then  satisfies the measure density condition. It is easy to
see that every domain satisfying the cone condition, satisfies also the measure density
condition. Moreover, the class of domains satisfying the measure density condition is
strictly bigger than the class of domains satisfying the cone condition [4]. Recently,
Burenkov [3, 5] conjectured that every open set ⊂Rn , satisfying the n -measure den-
sity condition, such that the boundary  is a graph has to satisfy the cone condition.
The main aim of this paper is to give an answer to Burenkov’s conjecture.

The remainder of the paper is structured as follows. In Section 2 we formulate
and prove two topological results which will play a crucial role in the subsequent sec-
tions. In Section 3 we recall the notion of the measure density condition and the cone
condition. Furthermore, for  ⊂ X , where X is a metric space, we shall study the re-
lationships between the measure density condition of  and the growth of the measure
(∩B(x,r)) , where x is taken from the boundary  (see Theorem 3.1 and Theorem
3.2). Moreover, similar issue is studied for cone condition (see Theorem 3.3). In the
last section we prove Theorem 4.1 which will give an answer to Burenkov’s conjecture.

Mathematics subject classification (2020): 30L99, 51F99, 54E35.
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1We refer to Section 3 for appropriate definitions.
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2. Preliminaries

In this work a metric-measure space (X ,d,) is a metric space (X ,d) equipped
with a Borel measure  . We assume throughout the paper that the measure of every
open non empty set is positive and the measure of every bounded set is finite. Let us note
to construct the example we only need to consider the Euclidean setting. Nevertheless,
the metric setting will be needed in Section 3. Moreover, we hope that the general
results presented in the present section will be of interest to readers interested in the
analysis and geometry of metric spaces.

LEMMA 2.1. Let (X ,d) be a metric space such that open balls are path-connected.
If ⊂ X is non-empty, open and  �= X , then for every x ∈

dist (x,) � dist
(
x,X \) .

Proof. Let us note that since every ball is path-connected, we have in particular
that X is connected. Therefore, every non-empty subset D of X , such that D �= X
has non-empty boundary. Let us take y �∈  and  > 0. We denote by r the distance
between x and y . Since y ∈ B(x,r+ ) and balls are path connected, there exists a
continuous function

 : [0,1]→ B(x,r+ )

such that (0) = x and  (1) = y . Openness of  and continuity of  imply that the
quantity

 : = inf
{

p ∈ [0,1] : (p) �∈
}

is positive and ( ) ∈ . We shall prove that ( ) ∈  . Suppose that  ( )∈ .
Thus  < 1 and since  is open and  continuous, there exist  > 0 and  ∈ (0,1−
) such that


((
 −  , + 

))⊂ B
(
 ( ),

)⊂.

Combining those facts

 = inf
{
p ∈ [0,1] :  (p) �∈

}
�  + /2.

This contradiction shows that

 ( ) ∈\= .

Therefore, we have proved that for every  > 0 there exists z ∈ ∩ B(x,r + ) .
Hence,

d(x,y)+  � d(x,z ) � dist(x,) .

Finally, since y �∈ and  > 0 are arbitrary, we easily get

dist
(
x,X \)� dist(x,) . �
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For the convenience of the reader, we recall the notion of the Hausdorff distance.
Let (X ,d) be a metric space, by C(X) we denote the family of all compact and non-
empty subsets of X . For A,B ∈ C(X) we define the Hausdorff distance between A and
B as follows

dH(A,B) = inf{ > 0 : A ⊂ (B) ,B ⊂ (A)},
where

(A) =
⋃
a∈A

B(a,).

It is well known that (C(X),dH) is a metric space. Moreover, (C(X),dH) inherits some
properties from (X ,d) , e.g., compactness and completness (see e.g., [2]). Now, we are
in position to formulate and prove the result which will play a crucial role in the next
section.

THEOREM 2.2. Let (X ,d) be a metric space, C ∈ C(X) and k :C → k(C) ⊂ X
be a sequence of isometries such that k(C) → D in (C(X),dH) . Then:

a) D is isometric to C;

b) If k(x)
k→→ y for some x ∈ C, y ∈ D, then there exists an isometry f : C → D

such that f (x) = y;

c) If (X ,d) is such that every open ball is path-connected and every isometry defined
on subsets of X is the restriction of an isometry defined on the whole space
X , C �= X , then for every set  ⊂ X such that

⋃
k=1 Int

(
k(C)

) ⊂  we have
Int(D) ⊂ .

Proof. We shall construct an isometry from C onto D . For this purpose we fix
l ∈ N , then from the very definition of the Hausdorff distance there exists kl ∈ N such
that

kl (C) ⊂ (D) 1
l
, (2.1)

D ⊂ (
kl (C)

)
1
l
. (2.2)

Therefore, from (2.1) for every x ∈C there exists fl(x) ∈ D such that

d(kl (x), fl(x)) � 1/l. (2.3)

Hence, taking into account the above inequality, we have for every x1,x2 ∈C

d( fl(x1), fl(x2)) � d( fl(x1),kl (x1))+d(kl(x1),kl (x2))+d(kl(x2), fl(x2))
� 1/l +d(kl (x1),kl (x2))+1/l

= 2/l +d(x,y),

and in the same fashion we get

d(x1,x2) = d(kl (x1),kl (x2))
� d(kl (x1), fl(x1))+d( fl(x1), fl(x2))+d( fl(x2),kl (x2))
� d( fl(x1), fl(x2))+2/l.
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So, finally we have

d(x,y)−2/l � d( fl(x), fl(y)) � d(x,y)+2/l. (2.4)

Next, we shall pass to the limit in the above inequalities. For this purpose we fix
{xk}k=1 a countable and dense subset2 of C . Hence, by compactness of D and the
Tychonoff Theorem, there exists a subsequence

{
flm
}

m=1 such that for every k ∈ N{
flm(xk)

}
m=1 converges. (2.5)

Now, we shall show that for x ∈C{
flm(x)

}
m=1 converges. (2.6)

Indeed, let x ∈C and  > 0, then from the density of {xk}k=1 there exists k ∈ N such
that

d(x,xk) � /3. (2.7)

Therefore,

d( flm(x), fln(x)) � d( flm(x), flm (xk))+d( flm(xk), fln(xk))+d( fln(xk), fln(x))
(2.4)
� d(x,xk)+2/lm +d( flm(xk), fln (xk))+d(x,xk)+2/ln

(2.7)
� 2/3+2/ln +2/lm +d( flm(xk), fln(xk)).

Hence, gathering the above inequality with (2.5), we get for m and n big enough

d( flm(x), fln(x)) � ,

and this shows that
{

flm(x)
}

m=1 is a Cauchy sequence in D . Thus, compactness of
D yields that

{
flm(x)

}
m=1 converges and (2.6) follows. Let us denote by f (x) the

quantity lim
m→

flm(x). Hence, we pass to the limit in (2.4) and we obtain

d( f (x), f (y)) = d(x,y).

In other words, we proved the existence of a distance preserving transformation f :
C → D . We shall need to show that f is surjective. By (2.2), for every x ∈ D there
exists hl(x) ∈ kl (C) such that

d(x,hl(x)) < 1/l.

This leads us to the following inequalities

d(x,y)−2/l � d(hl(x),hl(y)) � d(x,y)+2/l.

2Separability of C follows from compactness of C .
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Therefore, if we define gl : D →C as gl(x) : =
(
−1

kl
◦ hl

)
(x) , then using the fact that

−1
kl

is an isometry we can rewrite the above inequality in the following manner

d(x,y)−2/l � d(gl(x),gl(y)) � d(x,y)+2/l. (2.8)

As before, we can prove that from (2.8) follows the existence of a subsequence of
gl , which converges to g : D → C . Moreover, using inequality (2.8) we obtain that g
preserves the distance. Thus, the map f ◦ g : D → D preserves the distance. Finally,
since D is compact, from the Freudenthal-Hurewicz Theorem (see [7, Theorem 3.3.3])
we get that f ◦ g is an isometry. Therefore, f is surjective and this shows that f is
isometry.

Now, we shall prove the second part of the theorem. Let f be defined as a point-
wise limit of flm , where fl was defined in the first part of the proof. We have proved
that f is an isometry between C and D . By (2.3) we have

d( flm(x),y) � d( flm(x),klm
(x))+d(klm

(x),y)

� 1/lm +d(klm
(x),y).

Therefore, since klm
(x)→ y as m→ , we can pass to the limit in the above inequality

and we get f (x) = y .
Finally, we will prove the last part of the theorem. Since the case Int(D) = /0

is trivial, we assume Int(D) �= /0 and let z ∈ Int(D) . Combining connectedness with
compactness one can show that  Int(D) �= /0 . We define the isometry l : X → X by
the formula l = ̂kl ◦ f̂−1 , where ̂kl , f̂ : X → X are isometries such that ̂kl |C =
kl , f̂ |C = f . Subsequently, we put zl = l(z) . Henc, by (2.3), we have

d(zl,z) � 1/l +d( fl ◦ f−1(z),z) l→−→ d(z,z) = 0.

Let  = dist
(
z, Int(D)

)
/2 > 0, then there exists k such that z ∈ B(zk,) . Moreover,

since k is a homeomorphism, we have

dist
(
z, Int(D)

)
= dist

(
zk, Int

(
k(D)

))
.

Therefore, we get
z ∈ B(zk,) ⊂ Int

(
k(D)

)⊂.

Indeed, if we suppose that some w ∈ B(zk,) does not belong to Int
(
k(D)

)
, then by

Lemma 2.1 we get

dist
(
zk,X \ Int

(
k(D)

))
� d(zk,w) <  = dist

(
zk, Int

(
k(D)

))
/2

� dist
(
zk,X \ Int

(
k(D)

))
/2,

which is a contradiction. �
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3. Measure density condition and cone property

3.1. Measure density condition

Let (X ,d,) be a metric-measure space and s > 0. We shall say that the measure
 is lower Ahlfors s-regular if there is a constant D > 0 such that

(B(z,r)) � Drs for r ∈ (0,1], z ∈ X .

Let (X ,d,) be a metric-measure space and  > 0, we say that a measurable set ⊂X
is  -regular if there is a constant C such that

(B(x,r)∩) � Cr for r ∈ (0,1], x ∈.

In the case of (Rn,‖.‖,n) , we shall say that a n -measurable subset  of Rn satisfies
the  -measure density condition if  is  -regular.

THEOREM 3.1. Let (X ,d,) be a metric-measure space and ⊂ X . Then:

(i) If  is  -regular, where  > 0 , then there exists C such that

(B(x,r)∩) � Cr for r ∈ (0,1], x ∈ . (3.1)

(ii) If (X ,d,) is a metric-measure space such that open balls are path-connected
and the measure  is lower Ahlfors s-regular, s �  and  ⊂ X is open, non-
empty and there exists C such that (3.1) holds, then  is  -regular.

Proof. (i) Let r ∈ (0,1] , y ∈  and {yn}n=1 ⊂  be a sequence converging to
y . For sufficiently large n we have that d(yn,y) < r . Therefore, for such n we have

B
(
yn,r−d(yn,y)

)⊂ B(y,r) .

Hence,


(
B(y,r)∩) � 

(
B
(
yn,r−d(yn,y)

)∩)
� C(r−d(yn,y)) ,

where the last inequality follows from the assumption on  . Finally, since n is arbi-
trary, we can pass to the limit and we get


(
B(y,r)∩) � lim

n→
C(r−d(yn,y)) = Cr .

(ii) Since  is lower Ahlfors s-regular, there exists D such that

(B(z,r)) � Drs for r ∈ (0,1], z ∈ X .

Let x ∈ and r ∈ (0,1] . We shall consider two cases.



CONE PROPERTY AND MEASURE DENSITY CONDITION 317

1. dist(x,) > r/2. In this case, by Lemma 2.1, we obtain that B
(
x,r/2

) ⊂  .
Therefore, since the measure  is lower Ahlfors s-regular, we have


(
B(x,r)∩) � 

(
B
(
x,r/2

)∩)
= 

(
B
(
x,r/2

))
� D

2
rs.

2. dist(x,) � r/2. Let us take y∈  such that d(x,y) < 2r/3. Then, gathering
the inclusion

B
(
y,r−d(x,y)

)⊂ B(x,r) ,

with (3.1), we obtain


(
B(x,r)∩) � 

(
B
(
y,r−d(x,y)

)∩)
� C

(
r−d(x,y)

)
� C

3
r .

Therefore, we proved that  is  -regular with constant C̃ = min
{
C/3 ,D/2

}
. �

As a corollary we get.

THEOREM 3.2. Let  ⊂ Rn be an open set and  � n. Then  satisfies the
 -measure density condition if and only if there exists C such that

n(B(x,r)∩) � Cr for r ∈ (0,1], x ∈ .

In particular, if  satisfies the n-measure density condition, then  satisfies the n-
measure density condition as well.

EXAMPLE 1. Let {i}i=1 = Qn and  =
⋃

i=1 B
(
i,1/2i

)
. Then,  satisfies

n–measure density condition, but  does not.

3.2. Cone property

Now we recall the definition of cone condition [1]. Let v be a vector in Rn with
‖v‖ = 1, y ∈ Rn ,  > 0 and  satisfying 0 <  <  , the set

Cy(v, ,) = y+
{
x ∈ Rn : x = 0 or 0 < ‖x‖ �  , ∠(x,v) � /2

}
is called a finite cone of height  , axis direction v and aperture angle  with vertex at
y .3

Furthermore,we shall say that cones Cx1 :=Cx1(v1,1,1) and Cx2 :=Cx2(v2,2,2)
are congruent if there exists an isometry  : Cx1 →Cx2 , such that (x1) = x2 . One can

3For x �= 0 and z �= 0 we denote by ∠(x,z) the angle between vectors x and z .
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easily convince oneself that cones Cx1(v1,1,1) , Cx2(v2,2,2) are congruent if and
only if 1 = 2 and 1 = 2 .

Let us observe that if C ⊂ Rn is a finite cone with axis direction v and vertex at
y , and  : C → (C) ⊂ Rn is some isometry, then (C) is a finite cone with vertex at
(y) , axis direction (v+ y)−(y) and the same height and aperture angle as C .4 In
other words

(C) = (y)+
{
x ∈ Rn : x = 0 or 0 < ‖x‖ �  , ∠(x,(v+ y)−(y)) � /2

}
.

Let us remark that since we deal with the Euclidean space, every isometry defined
on subsets of Rn is the restriction of an isometry defined on the whole Rn (see [8,
Theorem 11.4]).

Finally, we shall say that ⊂Rn satisfies the cone condition if there exists a finite
cone C such that each x ∈ is the vertex of a finite cone Cx ⊂ congruent to C .

THEOREM 3.3. Let  be an open subset of Rn . If  satisfies the cone condition,
then  also satisfies the cone condition. Moreover, there exists a finite cone C such that
for every x∈ there exists a cone Cx with vertex at x congruent to C and Int(Cx)⊂ .

Proof. By assumption there exists a finite cone C =Cy(v, ,) such that for every
x ∈  there exists a finite cone Cx ⊂  with vertex at x and Cx is congruent to C . It
is sufficient to show that the cone condition is satisfied for x ∈  . Let {xk}k=1 be a
sequence of elements from  , converging to x . Therefore, there exists a sequence of
finite cones Cxk ⊂  with vertex at xk , which are congruent to C . In other words, for
every k ∈ N there exists an isometry k : C →Cxk such that k(y) = xk . Without loss
of generality we can assume that C ⊂  . Let us take R > 0 such that cones C,Cxk are
containd in the ball B(x,R) . Then,

Cxk ⊂∩B(x,R) ⊂∩B(x,R) := X .

Since X is compact and Cxk ∈ C(X) , by the Blaschke compactness theorem (see [2,
Theorem 7.3.8]) there exists a subsequence Cxkl

and D ∈ C(X) such that Cxkl
→ D in

(C(X),dH) . Finally, since kl (y) → x , Theorem 2.2 yields the existence of isometry
 : C → D such that (y) = x . Therefore, we get D⊂ is a finite cone with vertex at
x which is congruent to C . Moreover, since Int

(
Cxk

)⊂ ∩B(x,R) , by Theorem 2.2,
we get that Int(D) ⊂∩B(x,R) ⊂ . �

EXAMPLE 2. Let  =
⋃

i=1 B
(
i,1/2i

)
, where {i}i=1 = Qn . Then  satisfies

the cone condition, but  does not.

EXAMPLE 3. Let = R2 \ , where

 :=
{
(x1,x2) ∈ [0,)×R : |x2| = x2

1

}
.

4 It easily follows from the fact that the map x 
→ (x+ y)−(y) preserves distances and angles.
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Then, there exists a finite cone C such that for every x∈  there exists a cone Cx with
vertex at x congruent to C and Int(Cx)⊂ , but  does not satisfy the cone condition.
Therefore, we can not expect that for the cone property the analog of Theorem 3.2
holds.

4. Burenkov’s question

It is easy to see that if n -measurable set ⊂Rn satisfies the cone condition, then
 satisfies the n -measure density condition. On the other hand Burenkov conjectured
[3] that every open set  ⊂ Rn , satisfying the n -measure density condition, such that
the boundary  is a graph has to satisfy the cone condition. In the next theorem we
give an answer to Burenkov’s conjecture.

THEOREM 4.1. Let n � 2 , then there exists an open set  ⊂ Rn , satisfying the
n-measure density condition, such that  is a graph and  does not satisfy the cone
condition.

Proof. For k � 1, let dk = cd(n)/5k , rk = cr(n)/3k , hk = ch(n)/2k , where cd(n)=
(n) , cr(n) = ch(n) = 2n and (n) denotes the n -dimensional Lebesgue measure of
the unit ball. For k � 2 let us define the following sequences:

B1
k =

k−1


i=1

2 ·di + ri, B2
k = B1

k +dk, B3
k = B2

k +dk.

Note that Bj
k

k→→ cd(n)+cr(n)
2 = : C(n) , for j = 1,2,3. Next, for k � 1, we define maps

fk : R → R as follows

fk(x) = Lk(x) · [B1
k ,B

2
k ]
(x)+Rk(x) · (B2

k ,B
3
k ]
(x),

where Lk,Rk : R → R are linear functions such that Lk(B1
k) = 0, Lk(B2

k) = hk and
Rk(B2

k) = hk , Rk(B3
k) = 0. Finally, we define g : R → R and h : Rn−1 → R in the

following manner

g(x) =



k=1

fk(x)

and
h(x1,x2, . . . ,xn−1) = g(x1).

It is obvious that g and h are continuous maps. Let

=
{
(x1,x2, . . . ,xn) ∈ Rn : xn > h(x1, . . . ,xn−1)

}
.

We shall show that  satisfies the n -measure density condition, and  does not satisfy
the cone condition. We divide the proof into two steps.
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Step 1:  satisfies the n -measure density condition.
We shall prove that there exists C > 0 such that

n(B(x,r)∩) � Crn

for r ∈ (0,1] and x = (x1,x2, . . . ,xn) ∈ . Having in mind Theorem 3.2, we need only
to consider x ∈  .

Let

G =
{

(x1,x2, . . . ,xn−1,g(x1)) : (x1, . . . ,xn−1) ∈
[
B2

2,C(n)
)
×Rn−2

}
, for n > 2

and

G =
{

(x1,g(x1)) : x1 ∈
[
B2

2,C(2)
)}

for n = 2.

Case 1. If x ∈ \G and r ∈ (0,1] , then at least quarter of B(x,r) is contained
in  . Therefore, for x ∈ \G and r ∈ (0,1] we have

n(B(x,r)∩) � (n)
4

rn.

Case 2. If x ∈ G and r ∈ (0,1] , then there exists m such that x1 ∈
[
B2

m,B2
m+1

]
.

We shall consider two subcases.

Case 2a . If r � rm/2, then at least quarter of B(x,r) is contained in  . Indeed,
if x1 ∈ [B2

m,B3
m + rm/2] , then B(x,r)∩{y ∈ Rn : y1 > x1 ∧ yn > xn} ⊂  , and if x1 ∈

(B3
m + rm/2,B2

m+1] , then B(x,r)∩{y ∈ Rn : y1 < x1∧ yn > xn} ⊂ . Therefore,

n(B(x,r)∩) � (n)
4

rn.

Case 2b . r > rm/2. Let us denote

Tk =
{

(y1, . . . ,yn) ∈ Rn : y1 ∈
[
B1

k,B
3
k

]
∧g(y1) � yn � 0

}
.

Then, by the Fubini Theorem we have

n
(
Tk ∩B(x,r)

)
� n

({
y ∈ Rn : y1 ∈

[
B1

k ,B
3
k

]
∧g(y1) � yn � 0∧∀2�l�n−1 yl ∈ [xl − r,xl + r]

})

= (2r)n−2
∫ B3

k

B1
k

∫ g(x1)

0
dxndx1 =

2n−2cd(n)ch(n)
10k rn−2. (4.1)
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Since

= {y ∈ Rn : yn > 0}\
⋃

k=2

Tk

and

m⋃
k=2

Tk ∩
{
y ∈ B(x,r) : y1 > x1∧ yn > xn

}
= /0,

we have {
y ∈ B(x,r) : y1 > x1∧ yn > xn

}∩
=
{
y ∈ B(x,r) : y1 > x1 ∧ yn > xn

}\ ⋃
k=m+1

Tk ∩B(x,r) . (4.2)

Therefore, using (4.1) with (4.2), we obtain the following string of inequalities

n(B(x,r)∩) � n

⎛⎝{
y ∈ B(x,r) : y1 > x1 ∧ yn > xn

}\ ⋃
k=m+1

Tk ∩B(x,r)

⎞⎠
� n

({
y ∈ B(x,r) : y1 > x1∧ yn > xn

})− 


k=m+1

n
(
Tk ∩B(x,r)

)
� (n)rn

4
−2n−2cd(n)ch(n)rn−2




k=m+1

1
10k

� (n)rn

(
1
4
− 4 ·2n−2cd(n)ch(n)

(n)r2
m

· 1
9 ·10m

)

= (n)rn

(
1
4
− 4 ·2n−2cd(n)ch(n)

9cr(n)2(n)
·
(

9
10

)m
)

� (n)rn

10
.

Step 2:  does not satisfy the cone condition.

Let e1, . . . ,en be a canonical basis of Rn . Denote by k =
B3

k+B1
k+1

2 and xk = ke1 ∈
Rn . By the definition xk ∈  .

Let us suppose that  satisfies the cone condition. Then, by Proposition 3.3 there
exists a finite cone C of height  and aperture angle  such that for every x ∈  ,
there exists a cone Cx ⊂  with vertex at x congruent with C . In particular for every
k ∈ N , there exists a cone Ck ⊂  with vertex at xk congruent to C . For k ∈ N we

denote by vk = n
s=1 vk

ses ∈ Rn a direction of cone Ck , such that
∥∥∥vk

∥∥∥ = 1. Therefore,

we can write
Ck = Cxk

(
vk, ,

)
.
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Since Ck ⊂⊂ Rn
+ , for every z ∈Ck we have zn = 〈z,en〉 � 0. Let us observe

vk
n � sin

(
/2

)
. (4.3)

Indeed, let us suppose that vk
n < sin

(
/2

)
, and let  = xk + 

2‖uk‖uk , where uk = vk −
sin

(
/2

)
en . Then, using the fact that for every A ∈ (0,1) the map

[0,A] � x 
→ 1−Ax√
1+A2−2Ax

is non-increasing we get

∠
(
− xk,v

k
)

= ∠
(
uk,v

k
)

= arccos

⎛⎜⎝
〈
uk,vk

〉
‖uk‖

∥∥vk
∥∥
⎞⎟⎠

= arccos

⎛⎜⎝ 1− sin
(
/2

)
vk
n√

1+ sin2 (/2
)−2vk

n sin
(
/2

)
⎞⎟⎠

� arccos

⎛⎜⎝ 1− sin2 (/2
)√

1+ sin2 (/2
)−2sin2 (/2

)
⎞⎟⎠

= arccos
(
cos

(
/2

))
= /2,

and

‖− xk‖ =
∥∥∥∥ 

2‖uk‖uk

∥∥∥∥ = /2 ∈ (0, ] .

This implies  ∈Ck . Therefore,

0 � 〈 ,en〉 =


2‖uk‖ 〈uk,en〉 =


2‖uk‖
(
vk
n − sin

(
/2

))
< 0,

and this contradiction finishes the proof of (4.3).
Let Ak : Rn → Rn be an orthogonal transformation5, such that

Ak(e1) = e1

Ak

([
0,vk

2,...,v
k
n

]T
)

=

⎛⎝√
n


i=2

(
vk
i

)2

⎞⎠en =

(√
1−

(
vk
1

)2
)

en

and let  : Rn → R2 be a projection given by the formula (x1, . . . ,xn) = (x1,xn) .

5The existence of such map follows from the basic linear algebra.
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Denote by k = span
(
e1,vk

)
, then we see that

∩k =

{[
t,hvk

2,...,hvk
n

]T

∈ Rn : t ∈ R∧h � g(t)
vk
n

}
,

and (
Ck \ {xk}

)∩k

=

{
y ∈ Rn : ∃h,t∈R y =

[
t,hvk

2,...,hvk
n

]T

∧0 <‖y− xk‖ �  ∧∠
(
y− xk,v

k
)

� /2

}
.

Moreover, let ̃k : = Ak

(
∩k

)
and ̃k : = Ak (Ck ∩k) . Then,

̃k =

{
te1 +hen ∈ Rn : t ∈ R∧h � g(t)

vk
n

√
1−

(
vk
1

)2
}

,

and

̃k = {ke1}

∪
⎧⎨⎩y ∈ Rn : ∃t,h∈R y = te1 +hen∧0 <

∥∥∥∥∥
[

t−k ,h
]T
∥∥∥∥∥�  ∧∠

([
t−k ,h

]T

,vk

)
� /2

⎫⎬⎭ ,

where vk =
[

vk
1,
√

1−(vk
1)

2

]T

. Let

k : = 
(
̃k

)
=

{
(t,h) ∈ R2 : t ∈ R∧h � g(t)

vk
n

√
1−

(
vk
1

)2
}

,

and
k : = 

(
̃k

)
= C(k,0)

(
vk, ,

)
,

where the second equality means, that k is a 2-D cone of height  , axis direction vk

and aperture angle  with vertex at (k,0) . Since Ck ⊂ , we have k ⊂k .

Let Mk :=

√(
rk/2+dk

)2 +
(

1−
(
vk
1

)2
)

h2
k

(vk
n)

2 . Since rk,hk,dk
k→→ 0 and

√
1−(vk

1)
2

vk
n

� 1
vk
n

� 1
sin/2 , for k ∈ N large enough, we have Mk <  . For such k ∈ N , by

an elementary geometry (see Figure 1) we see that

k + k + �  , (4.4)
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where

k = arctan

⎛⎜⎜⎜⎝
√

1−
(
vk
1

)2

vk
n

· hk

rk/2+dk

⎞⎟⎟⎟⎠
and

k = arctan

⎛⎜⎜⎜⎝
√

1−
(
vk
1

)2

vk
n

· hk+1

rk/2+dk+1

⎞⎟⎟⎟⎠ .

Figure 1: Possible position of the cone k .

Using the following inequalities√
1−

(
vk
1

)2

vk
n

� 1
vk
n

� 1
sin/2

,

√
1−

(
vk
1

)2

vk
n

�
√

(vk
n)2

vk
n

= 1,

we get

arctan

(
hk

rk/2+dk

)
� k � arctan

(
1

sin/2
· hk

rk/2+dk

)
,

arctan

(
hk+1

rk/2+dk+1

)
� k � arctan

(
1

sin/2
· hk+1

rk/2+dk+1

)
.

Therefore, since

hk+1

rk/2+dk+1

k→−→  and
hk

rk/2+dk

k→−→ ,
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we have k → /2 and k → /2. Finally, exploring the above converges in (4.4) we
get  � 0. This is an obvious contradiction with assumption  > 0. �
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[4] P. GÓRKA, N. KARAK, D. J. PONS, Variable exponent Sobolev spaces and regularity of domains, J.

Geom. Anal. (2021), 31 (7): 7304–7319.
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