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Abstract. In this paper, with the help of some new atomic decomposition theorems, several  -
moment Banach space valued martingale inequalities associated with concave functions in the
context of Lorentz spaces are deduced. Our results are closely related with the geometrical
properties of the underlying Banach spaces.

1. Introduction

Martingale inequalities are essential in the development of harmonic analysis,
probability and other aspects of analysis. Many classical scalar-valued martingale in-
equalities have been extended to the Banach space valued (B-valued) martingale set-
ting. We refer the reader to [3, 4, 10, 19, 21, 28, 29] and the references therein for
more information on B-valued martingales. The main topic we shall discuss here is the
-moment B-valued martingale inequalities associated with concave functions in the
framework of Lorentz spaces.

In 1970, Burkholder and Gundy [6] firstly discussed the -moment inequalities
for martingales. Later, the well known -moment version of the Burkholder-Davis-
Gundy inequality was discovered by Burkholder et al. in [5]. To better explain our
motivation and results, let us briefly recall the main inequality they achieved there. Sup-
pose that  is a strictly convex Orlicz function on [0,) satisfying the 2 -condition.
Then for any L -bounded martingale f = ( fn)n�0 ,

E((S( f ))) � E((M( f ))) � E((S( f ))), (1)

where M( f ) = supm�0 | fm| denotes the maximal function of martingale f and S( f ) =(


m=0 |d fm|2
)1/2

means the square function of martingale f . Using the techniques of
Doob’s decomposition and the averaging operators, Kikuchi [15, Theorem 3] obtained
an extension of (1) amid rearrangement invariant Banach function spaces. Recently,
several -moment inequalities related to concave functions have been studied. This
was initiated by Jiao and Yu [14]. Subsequently, Peng and Li [27] generalized their
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results to the framework of Lorentz spaces. One of their results reads as follows: let 
be a concave Orlicz function, 0 < p < 2 and 0 < q �  . Then for every martingale
f = ( fn)n�0 ,

‖(M( f ))‖p,q � ‖(s( f ))‖p,q, (2)

where s( f ) =
(


m=0 Em−1(|d fm|)2
)1/2

is the conditional square function of martingale
f . Clearly, martingales in the articles mentioned above are scalar-valued martingales.
Motivated by these various results, one natural question arises, that is, does the type of
(2) also hold for B-valued martingales? In this paper, we give an affirmative answer.
We should also mention that martingale inequalities in the B-valued case are closely
connected with the geometrical properties of the underlying Banach spaces. For in-
stance, one of our main results which should be compared to (2) states as follows (see
Section 2 for any unexplained terminology; the proof can be found in Theorem 4): let B
be a Banach space, ∈ G be a concave function, 1 < r � 2, 0 < p < r and 0 < q � .
Then the following statements are equivalent:

(i) B is isomorphic to a r -uniformly smooth space;
(ii) If the B-valued martingale f = ( fn)n�0 satisfies ‖(sr( f ))‖p,q <  , then

‖(M( f ))‖p,q � ‖(sr( f ))‖p,q. (3)

We note that if r = 2 and B = R , then (3) recovers (2). Moreover, if we take (t) = t
in item (ii) , then we recover [18, Theorem 5.4 (ii)] while item (ii) gives [20, Theorem
5 (ii)] when (t) = t and p = q .

Our main approach is based on new atomic decompositions. Recall that atomic
decompositions were introduced by Herz [9] and Bernard and Maisonneuve [2] for
scalar-valued martingales. After that, this method was generalized by Weisz [30, 31]
and developed by many other authors (see e.g. [8, 11, 12, 13, 22, 26]). As for B-
valued martingales, Liu and Hou [20] firstly investigated the atomic decomposition of
B-valued martingale Hardy spaces. Recently, Liu et al. [18] obtained some martingale
inequalities in the setting of B-valued martingale Hardy-Lorentz spaces with the help
of atomic decompositions. For more details of atomic decompositions of various B-
valued martingale spaces see [16, 17, 19, 21, 24, 25, 32] and the references therein. It
should be noticed that the atomic decomposition theorems of this paper improve those
in [18, 20].

The paper is structured as follows. In Section 2, some preliminary lemmas and ba-
sic knowledge will be introduced. Some atomic decompositions of the B-valued mar-
tingale Hardy-Lorentz spaces are established in Section 3. These theorems are closely
connected with the geometrical properties of the underlyingBanach space B . In the last
section, with the help of atomic decompositions, we deduce some -moment B-valued
martingale inequalities in frame of Lorentz spaces.

Throughout this paper, the set of nonnegative integers, the set of integers, the real
number field and the complex number field are denoted by N , Z , R and C , respec-
tively. The letter C denotes a positive real number, not necessarily the same number
from line to line. f � g means there exists a positive constant C such that f � Cg . If
f � g � f , then we write f ≈ g .
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2. Preliminaries

Let (,F ,P) be a complete probability space and (B,‖ · ‖) be a Banach space.
For a scalar-valued function f :→ R (or C) , let

‖ f‖p =

(∫

| f |pdP

) 1
p

(0 < p < ) and ‖ f‖ = ess sup| f |.

For a B-valued function f :→ B , let

‖ f‖Lp(B) =

(∫

‖ f‖pdP

) 1
p

(0 < p < ) and ‖ f‖L(B) = ess sup‖ f‖.

2.1. Lorentz spaces

In this subsection, we start with the following definition of Lorentz spaces. For
basic properties of Lorentz spaces, see [1, 7, 23].

DEFINITION 1. Given a measurable function f on a measure space (,F ,P) ,
0 < p <  and 0 < q �  , define

∥∥ f
∥∥

p,q =

⎧⎨
⎩
(

p
∫ 
0

(
tP(| f | > t)

1
p
)q dt

t

) 1
q
, if 0 < q < ;

supt>0 tP(| f | > t)
1
p , if q = .

The set of all f with ‖ f‖p,q <  is denoted by Lp,q and is called the Lorentz space
with indices p and q .

REMARK 1. ([7]) (i) It is well known that if p , q are bigger than 1, then Lp,q

is a Banach space. However, for other values of p and q , Lp,q is only a quasi-Banach
space.

(ii) If p = q for 0 < p <  , then Lp,q is the usual Lp space. In this case, we
denote ‖ · ‖p,q by ‖ · ‖p .

(iii) Observe that for all 0 < p,r < and 0 < q� we have ‖| f |r‖p,q = ‖ f‖r
pr,qr .

2.2. Orlicz functions

Recall that a function  : [0,) → [0,) is called an Orlicz function if it is non-
decreasing, (t) > 0 for all t > 0, (0) = 0 and (t) →  as t →  . Let G be the
set of all Orlicz functions. We have the following simple but useful lemmas.

LEMMA 1. Let  ∈ G be concave. Then it follows from [26, 27] that:
(i) If 0 < s � 1 and t � 0 , then s(t) � (st);
(ii) If s � 1 and t � 0 , then (st) � s(t) .
Moreover, one can prove that  is subadditive, continuous and bijective from

[0,) to [0,) .
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LEMMA 2. ([27]) Let  ∈ G be concave, 0 < p < , 0 < q � and p,q < r �
 . For f ∈ Lr , if there exists A ∈ F with P(A) �= 0 such that { f �= 0} ⊂ A, then

‖(| f |)‖p,q � P(A)
1
p
( ‖ f‖r

P(A)
1
r

)
.

2.3. B-valued martingales

Let {Fn}n�0 be a nondecreasing sequence of sub- -algebras of F such that
F = 

(⋃
n�0 Fn

)
. The expectation operator and the conditional expectation operator

related to Fn are denoted by E and En , respectively. A sequence f = ( fn)n�0 in L1(B)
is called a B-valued martingale if fn is Fn -measurable and satisfies En( fn+1) = fn for
each n � 0.

Let
(
[0,1),F ,

)
be a probability space,  be Lebesgue measure and filtration

{Fn}n�0 be generated by:

Fn =
{
 -algebra generated by atoms

[
i
2n ,

i+1
2n

)
: i = 0, . . . ,2n −1

}
.

Remind that all martingales with respect to the above filtration {Fn}n�0 are called
dyadic martingales.

Denote by M the set of all B-valued martingales f = ( fn)n�0 relative to {Fn}n�0

such that f0 = 0. For f = ( fn)n�0 ∈ M , we define the martingale difference by d fn =
fn − fn−1 (n � 0, with convention f−1 = 0 and F−1 = { /0,} ). The B-valued mar-
tingale f = ( fn)n�0 ∈ M is said to be Lp(B)-bounded if fn ∈ Lp(B) for all n � 0
and

‖ f‖Lp(B) := supn�0 ‖ fn‖Lp(B) < .

Let V be the set of all stopping times relative to {Fn}n�0 . For f ∈ M and  ∈ V ,
the stopped martingale f  = ( f n )n�0 is defined by

f n :=n
m=1 {m�}d fm.

The maximal function, the r -variation and the conditional r -variation (1 � r <)
of a B-valued martingale f = ( fn)n�0 are respectively defined by

Mn( f )() := sup0�m�n‖ fm()‖, M( f )() := supm�0 ‖ fm()‖;

Sr
n( f )() :=

(
n

m=0 ‖d fm()‖r
) 1

r
, Sr( f )() :=

(


m=0 ‖d fm()‖r
) 1

r
;

sr
n( f )():=

(
n

m=0Em−1
(‖d fm‖r)()

) 1
r
, sr( f )():=

(


m=0Em−1
(‖d fm‖r)()

) 1
r
.

Let  be the collection of all sequences (n)n�0 of nondecreasing, nonnegative and
adapted functions with respect to {Fn}n�0 . Set  := limn→n . For f ∈M , ∈G ,
0 < p < ,0 < q �  and 1 � r <  , we define

[QSr

p,q,( f )](B) :=
{
(n)n�0 ∈  : Sr

n( f ) � n−1 (n � 1),() ∈ Lp,q

}
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and

[Dp,q,( f )](B) :=
{

(n)n�0 ∈  : ‖ fn‖ � n−1 (n � 1),() ∈ Lp,q

}
.

Set
‖( f )‖QSr

p,q(B) := inf
{
‖()‖p,q : (n)n�0 ∈ [QSr

p,q,( f )](B)
}

and
‖( f )‖Dp,q(B) := inf

{
‖()‖p,q : (n)n�0 ∈ [Dp,q,( f )](B)

}
.

One should note that the inequalities of B-valued martingales are closely related with
the geometrical properties of Banach spaces. We now consider definitions of p -uni-
formly smooth, q -uniformly convex and Radon-Nikodým property (in short RNP ) of
Banach spaces.

DEFINITION 2. ([29]) Let B be a Banach space and t > 0. The modulus of
uniform smoothness B(t) is defined as

B(t) := sup

{‖x+ ty‖+‖x− ty‖
2

−1 : x,y ∈ B, ‖x‖ = ‖y‖ = 1

}
.

We shall say that B is p -uniformly smooth if there is a constant C > 0 such that
B(t) � Ct p for all t > 0.

DEFINITION 3. ([29]) Let B be a Banach space and 0 <  � 2. The modulus of
uniform convexity B( ) is defined as

B( ) := inf

{
1−
∥∥∥∥x+ y

2

∥∥∥∥ : x,y ∈ B, ‖x‖ � 1, ‖y‖ � 1, ‖x− y‖� 
}

.

We shall say that B is q -uniformly convex if there is a constant C > 0 such that
B( ) � C q for all 0 <  � 2.

DEFINITION 4. ([29]) A Banach space B is said to have the RNP with respect to
(,F ,P) if for each P-continuous vector measure F : F → B of bounded variation
there exists g∈ L1(B) such that F(E) =

∫
E gdP for all E ∈F . A Banach space B has

the RNP if B has the RNP with respect to every finite measure space.

REMARK 2. ([19]) If B is isomorphic to a p -uniformly smooth (q -uniformly
convex) space, then B has the RNP .

We end this subsection by recording the following lemmas which will be fre-
quently used in the sequel.

LEMMA 3. Let 1 < r � 2 . Then the following properties of a Banach space B
are equivalent:

(i) B is isomorphic to a r -uniformly smooth space;
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(ii) For any B-valued martingale f = ( fn)n�0 with E

(


m=0 ‖d fm‖r
)

<  , f =
( fn)n�0 converges in probability;

(iii) There is a positive constant C such that all B-valued martingales f =
( fn)n�0 in Lp(B) (1 � p < ) satisfy

‖M( f )‖p � C‖Sr( f )‖p;

(iv) There is a positive constant C such that all B-valued martingales f = ( fn)n�0

in Lr(B) satisfy
supn�0 E

(‖ fn‖r)� Cr
n=0 E

(‖d fn‖r);
(v) Same as (iv) for all B-valued dyadic martingales.

For Lemma 3, the proof of (i) ⇔ (ii) comes from [19] and the proof of (i) ⇔
(iii) ⇔ (iv) ⇔ (v) were showed in [29].

LEMMA 4. Let 2 � r <  . Then the following properties of a Banach space B
are equivalent:

(i) B is isomorphic to a r -uniformly convex space;
(ii) There is a positive constant C such that all B-valued martingales f = ( fn)n�0

in Lp(B) (1 � p < ) satisfy

‖Sr( f )‖p � C‖M( f )‖p;

(iii) For every B-valued martingale f = ( fn)n�0 with supn�0 ‖ fn‖L(B) <  ,
Sr( f ) <  a.e.;

(iv) There is a positive constant C such that all B-valued martingales f = ( fn)n�0

in Lr(B) satisfy


n=0 E

(‖d fn‖r)� Cr supn�0 E
(‖ fn‖r);

(v) Same as (iv) for all B-valued dyadic martingales.

For Lemma 4, the proof of (i)⇔ (iii) was showed in [19] and (i)⇔ (ii)⇔ (iv)⇔
(v) can be found in [29].

LEMMA 5. Let B be a Banach space. Then the following properties of B are
equivalent:

(i) B has the RNP ;
(ii) Fixing p ∈ (1,) , every B-valued martingale bounded in Lp(B) converges

almost surely (a.s.) and in Lp(B) ;
(iii) If there exists a positive constant C such that supn�0 ‖ fn‖L(B) � C for any

B-valued martingale f = ( fn)n�0 , then fn converges a.e.

For Lemma 5, we refer to [29] for the proof of (i) ⇔ (ii) ; the proof of (i) ⇔ (iii)
can be seen in [19].
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3. Atomic decompositions

In this section, we shall construct some new atomic decomposition theorems.
Firstly, let us review the definitions for atoms.

DEFINITION 5. Let  ∈ G be a concave function, 1 � r <  , 0 < p <  and
0 <  �  . A B-valued measurable function a is called a (, p,)sr -atom

(
resp.

(, p,)Sr
-atom,(, p,)M-atom

)
, if there exists a stopping time  ∈ V such that

(1) an = En(a) = 0, if n �  ;

(2) ‖sr(a)‖
(
resp. ‖Sr(a)‖ ,‖M(a)‖

)
� P( < )

1
 −1

(
P( < )−

1
p

)
.

For 0 < q �  , let A sr(, p,q,)
(
resp. A Sr

(, p,q,), A M(, p,q,)
)

be

the set of all sequences of triples (k,ak,k) , where

k =
−1(2k+1)

−1
(

P(k < )−
1
p

) ,

ak is a (, p,)sr -atom
(
resp. (, p,)Sr

-atom, (, p,)M-atom
)

and k is the stop-

ping time corresponding to ak , satisfying{
P(k < )

1
p
(
k−1

(
P(k < )−

1
p

))}
k∈Z

∈ lq.

Now we can present the atomic decompositions for B-valued martingale Hardy-
Lorenz spaces.

THEOREM 1. Let B be a Banach space, ∈ G be a concave function, 1 < r � 2 ,
0< p� r , 0< q� and max{1, p}< � . The following assertions are equivalent:

(i) B is isomorphic to a r -uniformly smooth space;
(ii) If the B-valued martingale f = ( fn)n�0 satisfies ‖(sr( f ))‖p,q <  , then

there exists a sequence of triples (k,ak,k) ∈ A sr(, p,q,) such that for n � 0 ,

fn =k∈Z
k

En(ak) a.e., (4)

supk∈Z

∥∥∥M(ak)
∥∥∥

p
<  (5)

and

‖(sr( f ))‖p,q≈ inf
∥∥∥{P(k < )

1
p
(
k−1

(
P(k < )−

1
p

))}
k∈Z

∥∥∥
lq

, (6)

where the infimum is taken over all the decompositions of the form (4) .
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Proof. (i)⇒ (ii). Given an arbitrary B-valued martingale f = ( fn)n�0 such that
‖(sr( f ))‖p,q <  . For k ∈ Z , the stopping time k is defined as:

k := inf
{
n ∈ N : sr

n+1( f ) > −1(2k)
}

(inf /0 = ).

Indeed, k � k+1. For k ∈ Z and n ∈ N , set

k :=
−1(2k+1)

−1
(
P(k < )−

1
p
) and ak

n :=
f 

k+1

n − f 
k

n

k (if k = 0 then let ak
n = 0).

Note that for any fixed k ∈ Z ,

dak
n =

d f 
k+1

n −d f 
k

n

k
=

d fn{k<n�k+1}
k

, ∀n ∈ N.

Then

En−1
(
dak

n

)
=

En−1
(
d fn
)
{k<n�k+1}
k = 0.

Hence, (ak
n)n�0 is a B-valued martingale. From the definition of ak

n , we have sr
(
(ak

n)n�0
)

= 0 on {k = } . Moreover, sr( f 
k
) = sr

k ( f ) � −1(2k) . Therefore,

sr
(
(ak

n)n�0

)
=
(


m=0 Em−1
(‖dak

m‖r)) 1
r {k<} (7)

�
sr
k+1( f )
k {k<}

= −1
(
P(k < )−

1
p

)
{k<}.

Then by Lemma 3 (iii) , we get∥∥∥M((ak
n)n�0

)∥∥∥
r
� C

∥∥∥Sr((ak
n)n�0

)∥∥∥
r
= C

∥∥∥sr((ak
n)n�0

)∥∥∥
r

(8)

� CP(k < )
1
r −1

(
P(k < )−

1
p

)
< .

Thus, (ak
n)n�0 is Lr(B)-bounded martingale. Since condition ( i) implies B has the

RNP (see Remark 2), then ak
n converges a.s. to a limit ak in Lr(B) by Lemma 5.

Therefore, ak
n = En(ak) (see [19, p. 27]). Combining this with (7), we obtain∥∥∥sr(ak)

∥∥∥


� P(k < )
1
 −1

(
P(k < )−

1
p

)
. (9)

For n � k ,

En(ak) = ak
n =

f 
k+1

n − f 
k

n

k =
fn − fn
k = 0. (10)
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According to (9) and (10), we conclude that ak is a (, p,)sr -atom. Furthermore,

k∈Z
k

En(ak) =n
m=1

(
k∈Z

d fm{k<m�k+1}
)

= fn,

which implies that f has a decompositon of the form (4). Since 0 < p � r , by applying
(8) and Hölder’s inequality, then (5) holds. It is easy to check that


(
k−1

(
P(k < )−

1
p

))
= 2k+1 (11)

and
{k < } =

{

(
sr( f )

)
> 2k

}
.

Then we get the following inequality for 0 < q <  :∥∥∥{P(k < )
1
p
(
k−1

(
P(k < )−

1
p

))}
k∈Z

∥∥∥
lq

=
∥∥∥∥
{

P
(

(
sr( f )

)
> 2k) 1

p 2k+1
}

k∈Z

∥∥∥∥
lq

=
(
k∈Z

P
(

(
sr( f )

)
> 2k) q

p 2(k+1)q
) 1

q

�
(
k∈Z

p
∫ 2k

2k−1
P
(

(
sr( f )

)
> t
) q

p tq−1dt

) 1
q

= ‖(sr( f )
)‖p,q.

This also shows that (k,ak,k) ∈ A sr(, p,q,) . Standard modifications can be
made for q =  . Consequently,∥∥∥{P(k < )

1
p
(
k−1

(
P(k <)−

1
p

))}
k∈Z

∥∥∥
lq

� ‖(sr( f )
)‖p,q. (12)

On the other hand, it follows from the sublinearity of the conditional r -variation
sr and the subadditivity of  that


(
sr( f )

)
� 

(
k∈Z

ksr(ak)
)

�k∈Z

(
ksr(ak)

)
.

For an arbitrary integer k0 , we define

k∈Z

(
ksr(ak)

)
=k0−1

k=−
(
ksr(ak)

)
+

k=k0

(
ksr(ak)

)
:= T1 +T2.

Then
(sr( f )) � T1 +T2

and

‖{(sr( f ))>2k0+1}‖p � ‖{T1>2k0}‖p +‖{T2>2k0}‖p. (13)
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Estimation for k0∈Z 2k0q‖{T1>2k0}‖q
p .

Let 0 <  < min{p,q,1} . Choose  such that 1 <  < min{ 1
 , p} . By Cheby-

shev’s inequality, Remark 1 (iii) and Lemma 2, we obtain

‖{T1>2k0}‖p � 1

2k0

∥∥∥∥[k0−1
k=−

(
ksr(ak)

)]∥∥∥∥
p

=
1

2k0

∥∥∥∥[k0−1
k=−

(
ksr(ak)

)]∥∥∥∥
1


p


� 1

2k0

∥∥∥∥k0−1
k=−

(
ksr(ak)

)∥∥∥∥
1


p


� 1

2k0

{
k0−1

k=−

∥∥∥∥(ksr(ak)
)∥∥∥∥ p



} 1


=
1

2k0

{
k0−1

k=−
∥∥∥(ksr(ak)

)∥∥∥
 p

} 1


� 1

2k0

{
k0−1

k=−P(k < )

p
(
k‖sr(ak)‖
P(k < )

1


)
} 1



.

By the definition of (, p,)sr -atom, it is easy to see that


(
k‖sr(ak)‖
P(k < )

1


)
� 2k+1. (14)

Next we divide the proof into two cases according to the value of q .

Case 1 : 0 < q <  . Set 1 <  <  , then one can further deduce that

‖{T1>2k0}‖p (15)

� 1

2k0

{
k0−1

k=−P(k < )

p 2k

} 1


=
1

2k0

{
k0−1

k=−P(k < )

p 2k2k(−)

} 1


� 1

2k0

{
k0−1

k=−P(k < )
q
p 2kq

} 1
q
{
k0−1

k=− 2k(−) q
q−
} q−

q

=
2−

2k0
(
1−2

q (−)
q−

) q−
q

{
k0−1

k=−P(k < )
q
p 2kq

} 1
q
,



 -MOMENT B -VALUED MARTINGALE 445

where the first “�” is due to Hölder’s inequality and 
q + q−

q = 1. By using (15), the
Abel transformation and (11), we get

k0∈Z
2k0q‖{T1>2k0}‖q

p (16)

� 
k0∈Z

2k0q(1−)k0−1
k=−P(k < )

q
p 2kq

=k∈Z
P(k < )

q
p 2kq

k0=k+1 2k0q(1−)

=
1

2q −2qk∈Z
P(k < )

q
p 2(k+1)q

=
1

2q −2qk∈Z
P(k < )

q
p
(
k−1

(
P(k < )−

1
p

))q
.

Estimation for k0∈Z 2k0q‖{T2>2k0}‖q
p .

For the above symbol  , let 0 <  < 1. It follows from Chebyshev’s inequality,
Remark 1 (iii) and Lemma 2 that

‖{T2>2k0}‖p � 1

2k0

∥∥∥∥[
k=k0


(
ksr(ak)

)]∥∥∥∥
p

=
1

2k0

∥∥∥∥[
k=k0


(
ksr(ak)

)]∥∥∥∥
1


p


� 1

2k0

∥∥∥∥
k=k0


(
ksr(ak)

)∥∥∥∥
1


p


� 1

2k0

{


k=k0

∥∥∥∥(ksr(ak)
)∥∥∥∥ p



} 1


=
1

2k0

{


k=k0

∥∥∥(ksr(ak)
)∥∥∥

 p

} 1


� 1

2k0

{


k=k0
P(k < )


p
(
k‖sr(ak)‖
P(k < )

1


)
} 1



.

Choose  such that  <  < 1. Taking the same argument as in (14), we have

‖{T2>2k0}‖p � 1

2k0

{


k=k0
P(k < )


p 2k

} 1


(17)

=
1

2k0

{


k=k0
P(k < )


p 2k2k(− )

} 1


� 1

2k0

{


k=k0
P(k < )

q
p 2kq

} 1
q
{


k=k0
2k(− ) q

q−
} q−

q

=
1

2k0
(
1−2

q (− )
q−

) q−
q

{


k=k0
P(k < )

q
p 2kq

} 1
q
,
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which implies

k0∈Z
2k0q‖{T2>2k0}‖q

p (18)

�k0∈Z
2k0q(1− )

k=k0
P(k < )

q
p 2kq

=k∈Z
P(k < )

q
p 2kqk

k0=−2k0q(1− )

=
1

2q−2q k∈Z
P(k < )

q
p 2(k+1)q

=
1

2q−2q k∈Z
P(k < )

q
p
(
k−1

(
P(k < )−

1
p

))q
.

As a consequence of (13), (16) and (18), we get

‖(sr( f ))‖q
p,q (19)

≈k0∈Z
2(k0+1)q

∥∥∥{(sr( f ))>2k0+1}
∥∥∥q

p

�k0∈Z
2k0q

∥∥∥{T1>2k0}
∥∥∥q

p
+k0∈Z

2k0q
∥∥∥{T2>2k0}

∥∥∥q

p

�
∥∥∥∥
{

P(k < )
1
p
(
k−1

(
P
(
k < 

)− 1
p
))}

k∈Z

∥∥∥∥
q

lq

.

Case 2 : q =  . Firstly, by (15), we find that

‖{T1>2k0}‖p � 1

2k0

{
k0−1

k=−P(k < )

p 2k

} 1


� 1

2k0
supk∈Z P(k < )

1
p 2k
{
k0−1

k=− 2k(−1)
} 1



� 1
2k0

supk∈Z P(k < )
1
p
(
k−1

(
P(k < )−

1
p

))
.

Thus we get that

supk0∈Z 2k0‖{T1>2k0}‖p � supk∈Z P(k < )
1
p
(
k−1

(
P(k < )−

1
p

))
.

Secondly, by using (17), we have

‖{T2>2k0}‖p � 1

2k0

{


k=k0
P(k < )


p 2k

} 1


� 1

2k0
supk∈Z P(k < )

1
p 2k
{


k=k0
2k(−1)

} 1


� 1
2k0

supk∈Z P(k < )
1
p
(
k−1

(
P(k < )−

1
p

))
,

which means

supk0∈Z 2k0‖{T2>2k0}‖p � supk∈Z P(k < )
1
p
(
k−1

(
P(k < )−

1
p

))
.
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Consequently, we have

‖(sr( f ))‖p, ≈ supk0∈Z 2k0+1‖{(sr( f ))>2k0+1}‖p (20)

� supk0∈Z 2k0‖{T1>2k0}‖p + supk0∈Z 2k0‖{T2>2k0}‖p

�
∥∥∥{P(k < )

1
p
(
k−1

(
P(k < )−

1
p

))}
k∈Z

∥∥∥
l

.

Combining with (19) and (20), we obtain that

‖(sr( f ))‖p,q �
∥∥∥{P(k < )

1
p
(
k−1

(
P(k < )−

1
p

))}
k∈Z

∥∥∥
lq

. (21)

Taking the infimum over all decompositions of the form (4), we get (6).
(ii) ⇒ (i). Let f = ( fn)n�0 be a B-valued martingale and satisfy

E

(


m=0 ‖d fm‖r
)

< .

For 1 < r � 2, we have

‖sr( f )‖1 � ‖sr( f )‖r =
(
E

(


m=0 ‖d fm‖r
)) 1

r
< .

Choose (t) = t , then ‖(sr( f ))‖1 = ‖sr( f )‖1 <  and −1(t) = t. We know f =
( fn)n�0 has a decomposition as (4). Therefore,∥∥∥{P(k < )

(
k−1

(
P(k < )−1

))}
k∈Z

∥∥∥
l1

=
∥∥∥{k}

k∈Z

∥∥∥
l1

< 

and

supk∈Z ‖M(ak)‖1 < .

Furthermore, for any  > 0, there exists a k0 ∈ Z such that

|k|>k0
k < .

Notice that ak
n = En(ak) converges to the function ak as n →  in L1(B) for each

k ∈ Z (see [19, p. 27]). Thus, there exists Mk ∈ N such that

E

(∥∥∥ak
m−ak

n

∥∥∥)< 

when m,n > Mk . Set N = max|k|�k0
{Mk} . Then for m,n > N , we can state that

‖ fm − fn‖L1(B) = E

(∥∥∥k∈Z
kak

m −k∈Z
kak

n

∥∥∥)
�k∈Z

k
E
(‖ak

m−ak
n‖
)
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=|k|>k0
k

E
(‖ak

m−ak
n‖
)
+|k|�k0

k
E
(‖ak

m−ak
n‖
)

� 2supk∈Z ‖M(ak)‖1|k|>k0
k + |k|�k0

k � .

This implies that ( fn)n�0 is a Cauchy sequence in L1(B) and thus converges in L1(B) .
Hence, ( fn)n�0 converges in probability (see [19, p. 14]). Therefore, by Lemma 3, B
is isomorphic to a r -uniformly smooth space. The proof is completed. �

It is observed that the proof of (21) in Theorem 1 is mainly related to the subaddi-
tivity of  and the sublinearity of sr . Namely, for ‖(Sr( f ))‖p,q

(
resp. ‖(M( f ))‖p,q ,

‖(sr( f ))‖p,q
)

we have:

COROLLARY 1. Let B be a Banach space and  ∈ G be a concave function. If
1 � r <  , 0 < p <  , 0 < q �  , max{1, p} <  �  and the B-valued martin-
gale f = ( fn)n�0 has a decomposition of type (4) with (k,ak,k) ∈ A Sr

(, p,q,)(
resp. (k,ak,k) ∈ A M(, p,q,),(k,ak,k) ∈ A sr(, p,q,)

)
, then

‖(Sr( f ))‖p,q � inf
∥∥∥{P(k < )

1
p
(
k−1

(
P(k < )−

1
p

))}
k∈Z

∥∥∥
lq(

resp. ‖(M( f ))‖p,q � inf
∥∥∥{P(k < )

1
p
(
k−1

(
P(k < )−

1
p

))}
k∈Z

∥∥∥
lq
,

‖(sr( f ))‖p,q � inf
∥∥∥{P(k < )

1
p
(
k−1

(
P(k < )−

1
p

))}
k∈Z

∥∥∥
lq

)
,

where the infimum is taken over all the decompositions of the form (4) .

Next we will establish the atomic decompositions for ( f ) in QSr

p,q(B) and Dp,q(B) .

THEOREM 2. Let B be a Banach space, ∈ G be a concave function, 1 < r � 2 ,
0 < p � r and 0 < q �  . The following assertions are equivalent:

(i) B is isomorphic to a r -uniformly smooth space;
(ii) If the B-valued martingale f = ( fn)n�0 satisfies ‖( f )‖QSr

p,q(B) <  , then

there exists a sequence of triples (k,ak,k) ∈ A Sr
(, p,q,) such that for n � 0 ,

(4) , (5) hold and

‖( f )‖QSr
p,q(B) ≈ inf

∥∥∥{P(k < )
1
p
(
k−1

(
P(k < )−

1
p

))}
k∈Z

∥∥∥
lq

, (22)

where the infimum is taken over all the decompositions of the form (4) .

Proof. (i) ⇒ (ii). The proof is similar to the one of Theorem 1, so we omit
some details. Let f = ( fn)n�0 be a B-valued martingale with ‖( f )‖QSr

p,q(B) <  .

Fix (n)n�0 ∈ [QSr

p,q,( f )](B) . For every k ∈ Z , we define stopping time

k := inf{n ∈ N : n > −1(2k)} (inf /0 = ).
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Let k and ak
n be defined as in the proof of Theorem 1. Then (ak

n)n�0 is a B-valued
martingale with Sr

k( f ) � k−1 � −1(2k). Analogously to the proof of (7) , we get

Sr
(
(ak

n)n�0

)
� {k<}

−1
(

P(k < )−
1
p

)
.

Hence, by Lemma 3 (iii), we obtain∥∥∥M((ak
n)n�0

)∥∥∥
r
� C

∥∥∥Sr
(
(ak

n)n�0

)∥∥∥
r
� CP(k < )

1
r −1

(
P(k < )−

1
p

)
< .

A similar verification of Theorem 1 shows that there exists a function ak in Lr(B) such
that ak

n = En(ak) (n∈N). Furthermore, ak is a (, p,)Sr
-atom with supk∈Z ‖M(ak)‖p

<  and (4) holds. For the case of 0 < q <  , by using the facts that {k < } =
{() > 2k} and (11) , we have

k∈Z
P(k < )

q
p
(
k−1

(
P(k <)−

1
p

))q

=k∈Z
P
(
() > 2k) q

p 2(k+1)q

�k∈Z
p
∫ 2k

2k−1
P
(
() > t

) q
p tq−1dt

= ‖()‖q
p,q.

The case q =  is obvious. Taking the infimum over all (n)n�0 ∈ [QSr

p,q,( f )](B) ,
we obtain that∥∥∥{P(k <)

1
p
(
k−1

(
P(k < )−

1
p

))}
k∈Z

∥∥∥
lq

� ‖( f )‖QSr
p,q(B).

On the other hand, it follows from the definition of (, p,)Sr
-atom that

{Sr(ak) > 0} ⊂ {k < }.

Additionally, for all n ∈ N , let

n :=k∈Z
k‖Sr(ak)‖{k�n}.

Then (n)n�0 ∈  and Sr
n+1( f ) � n . Fix an integer k0 and set

 (1)
 :=k0−1

k=−
(
k‖Sr(ak)‖{k<}

)
,  (2)

 :=
k=k0


(
k‖Sr(ak)‖{k<}

)
.

Then
() �  (1)

 + (2)


and ∥∥∥{()>2k0+1
}∥∥∥

p
�
∥∥∥{(1)

 >2k0
}∥∥∥

p
+
∥∥∥{(2)

 >2k0
}∥∥∥

p
.
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Replacing T1 and T2 by  (1)
 and  (2)

 in Theorem 1, respectively. Then we have

‖( f )‖QSr
p,q(B) ≈ inf

∥∥∥{P(k < )
1
p
(
k−1

(
P(k < )−

1
p

))}
k∈Z

∥∥∥
lq
,

where the infimum is taken over all decompositions of f of the form (4).
(ii) ⇒ (i). Suppose that f = ( fn)n�0 is a B-valued martingale with Sr( f ) ∈ L .

Let (t) = t and n = ‖Sr
n+1( f )‖ for n∈N . Clearly, (n)n�0 ∈ and Sr

n+1( f ) � n .
Consequently,

‖( f )‖QSr
1 (B) � ‖()‖1 = ‖Sr( f )‖ < .

Therefore, ( fn)n�0 has a decomposition as (4). The rest of the proof is similar to the
one in Theorem 1. �

THEOREM 3. Let B be a Banach space, ∈ G be a concave function, 0 < p <
and 0 < q �  . The following assertions are equivalent:

(i) B has the RNP ;
(ii) If the B-valued martingale f = ( fn)n�0 satisfies ‖( f )‖Dp,q(B) <  , then

there exists a sequence of triples (k,ak,k) ∈ A M(, p,q,) such that for n � 0 ,
(4) , (5) hold and

‖( f )‖Dp,q(B) ≈ inf
∥∥∥{P(k < )

1
p
(
k−1

(
P(k < )−

1
p

))}
k∈Z

∥∥∥
lq
, (23)

where the infimum is taken over all the decompositions of the form (4) .

Proof. (i)⇒ (ii). The proof follows the ideas in Theorem2, so we only outline the
major steps. Suppose that f = ( fn)n�0 is a B-valued martingale with ‖( f )‖Dp,q(B) <

 . For every k ∈ Z , define stopping time k as follows

k := inf
{
n ∈ N : n > −1(2k)

}
(inf /0 = ),

where (n)n�0 ∈ [Dp,q,( f )](B) . Define k and ak
n as Theorem 1. Thus it is suffi-

cient to prove that

‖ak
n‖ =

‖ f 
k+1

n − f 
k

n ‖
k

� ‖ f 
k+1

n ‖+‖ f 
k

n ‖
k {k<}

�
k+1−1 +k−1

k {k<}

� −1(2k+1)+−1(2k)
k {k<}

� 2−1(
P(k < )−

1
p
)
{k<}.
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Therefore, ∥∥∥M((ak
n)n�0

)∥∥∥


� −1
(
P(k < )−

1
p

)
.

This shows that there exists a B-valued integrable function ak such that ak
n = En(ak)

(n ∈ N). Then ak is a (, p,)M -atom and (4) holds. Referring to the proof of Theo-
rem 2, we can easily get (5) and∥∥∥{P(k < )

1
p
(
k−1

(
P(k < )−

1
p

))}
k∈Z

∥∥∥
lq

� ‖( f )‖Dp,q(B).

On the other hand, set

n :=k∈Z
k‖M(ak)‖{k�n}.

Then (n)n�0 ∈  and ‖ fn+1‖ � n . For a fixed integer k0 , let

 (1)
 :=k0−1

k=−
(
k‖M(ak)‖{k<}

)
,

 (2)
 :=

k=k0

(
k‖M(ak)‖{k<}

)
.

Consequently,
() �  (1)

 + (2)


and ∥∥∥{()>2k0+1
}∥∥∥

p
�
∥∥∥{(1)

 >2k0
}∥∥∥

p
+
∥∥∥{(2)

 >2k0
}∥∥∥

p
.

If we replace T1 and T2 by  (1)
 and  (2)

 in Theorem 1, respectively, then we obtain

‖( f )‖Dp,q(B) ≈ inf
∥∥∥{P(k < )

1
p
(
k−1

(
P(k < )−

1
p

))}
k∈Z

∥∥∥
lq
,

where the infimum is taken over all decompositions of f of the form (4).
(ii)⇒ (i). Choose B-valued martingale f =( fn)n�0 such that supn�0‖ fn‖L(B) <

 . Let (t) = t and n = ‖Mn+1( f )‖ for all n ∈ N . Obviously, (n)n�0 ∈  and
‖ fn+1‖ � n . Hence,

‖( f )‖D1(B) � ‖()‖1 � supn�0 ‖ fn‖L(B) < .

It is similar to that of (ii) ⇒ (i) in Theorem 1, we can prove that ( fn)n�0 converges in
L1(B) . More precisely, ( fn)n�0 converges a.e. According to Lemma 5, we know that
B has the RNP . �

REMARK 3. If (t) = t and  = , then Theorem 1 reduces to the corresponding
result in [18]; If (t) = t , then Theorems 2 and 3 recover the corresponding results in
[18].

REMARK 4. If we consider the special case r = 2, (t) = t and B = R in Theo-
rems 1, 2 and 3, we get the atomic decomposition of Hardy-Lorentz martingale spaces
Hs

p,q , Qp,q and Dp,q , respectively.
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4. -moment B-valued martingale inequalities

In what follows, with the help of atomic decomposition theorems achieved above,
we deduce some fundamental -moment B-valued martingale inequalities on Lorentz
spaces. Our conclusions strongly depend on the smoothness or convexity of Banach
spaces.

THEOREM 4. Let B be a Banach space, ∈ G be a concave function, 1 < r � 2 ,
0 < p < r and 0 < q �  . The following assertions are equivalent:

(i) B is isomorphic to a r -uniformly smooth space;
(ii) If the B-valued martingale f = ( fn)n�0 satisfies ‖(sr( f ))‖p,q <  , then

‖(M( f ))‖p,q � ‖(sr( f ))‖p,q; (24)

(iii) If the B-valued martingale f = ( fn)n�0 satisfies ‖( f )‖QSr
p,q(B) <  , then

‖(M( f ))‖p,q � ‖( f )‖QSr
p,q(B). (25)

Proof. (i) ⇒ (ii). Suppose that f = ( fn)n�0 is a B-valued martingale satisfies
‖(sr( f ))‖p,q <  . By Theorem 1, there exists a sequence of triples (k,ak,k) ∈
A sr(, p,q,r) such that

1
C

fn =k∈Z
k

En

(
1
C

ak
)

a.e.

and

‖(sr( f ))‖p,q≈
∥∥∥{P(k <)

1
p
(
k−1

(
P(k < )−

1
p

))}
k∈Z

∥∥∥
lq

.

Recall that, by Lemma 3 (iii) , for any B-valued martingale g ,

‖M(g)‖r � C‖Sr(g)‖r = C‖sr(g)‖r,

where C > 1. Obviously, ak = (ak
n)n�0 is a B-valued martingale. Hence,

∥∥∥∥M
(

1
C

ak
)∥∥∥∥

r
� ‖sr(ak)‖r � P(k < )

1
r −1

(
P(k < )−

1
p

)
.

Therefore, it is clear that
(
k, 1

Cak,k
) ∈A M(, p,q,r) . Additionally, by Corollary 1,

we find that∥∥∥∥
(

M

(
1
C

f

))∥∥∥∥
p,q

�
∥∥∥{P(k < )

1
p
(
k−1

(
P(k < )−

1
p

))}
k∈Z

∥∥∥
lq
.
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Further on, we conclude by Lemma 1 (i) that

1
C
‖(M( f ))‖p,q �

∥∥∥∥
(

M

(
1
C

f

))∥∥∥∥
p,q

�
∥∥∥{P(k < )

1
p
(
k−1

(
P(k < )−

1
p

))}
k∈Z

∥∥∥
lq

≈ ‖(sr( f ))‖p,q.

Thus, ‖(M( f ))‖p,q � ‖(sr( f ))‖p,q .

(ii) ⇒ (i). Assume that f = ( fn)n�0 is an arbitrary B-valued martingale with

E

(


m=0 ‖d fm‖r
)

= ‖Sr( f )‖r
r < .

Let (t) = t . For n ∈ N , define B-valued martingale gn = (gn
m)m�0 by gn

m := fm+n −
fn . Actually, [sr(gn)]r = [sr( f )]r − [sr

n−1( f )]r → 0 as n →  and sr(gn) � sr( f ) . By
the Lebesgue dominated convergence theorem, we have ‖sr(gn)‖r → 0 as n →  . Ap-
plying (24) to gn , we have

‖ fm+n− fn‖L1(B) � ‖(M(gn))‖1 � ‖(sr(gn))‖1 → 0, (n → ).

Now we claim that ( fn)n�0 is a Cauchy sequence in L1(B) . Then ( fn)n�0 converges
in probability (see [19, p. 14]). Using Lemma 3, we obtain that B is isomorphic to a
r -uniformly smooth space.

(i) ⇒ (iii). Let f = ( fn)n�0 be a B-valued martingale and satisfy ‖( f )‖QSr
p,q(B)

<  . According to Theorem 2, there exists a sequence of triples (k,ak,k) ∈
A Sr

(, p,q,) such that

1
C

fn =k∈Z
k

En

(
1
C

ak
)

a.e.

and

‖( f )‖QSr
p,q(B) ≈

∥∥∥{P(k < )
1
p
(
k−1

(
P(k < )−

1
p

))}
k∈Z

∥∥∥
lq

.

Moreover, it follows from the definition of (, p,)Sr
-atom that {Sr(ak) > 0}⊂ {k <

} . Therefore, we obtain

‖Sr(ak)‖r � ‖Sr(ak)‖P(k < )
1
r .

Using Lemma 4 (ii) , we see that

‖M(ak)‖r � C‖Sr(ak)‖r (C > 1).

Since ak is a (, p,)Sr
-atom, then we can conclude that∥∥∥∥M

(
1
C

ak
)∥∥∥∥

r
� P(k < )

1
r −1

(
P(k < )−

1
p

)
.



454 L. LI, K. LIU, L. WANG AND L. YU

It is easy to check that
(
k, 1

C ak,k
) ∈A M(, p,q,r) . It follows from Corollary 1 and

Lemma 1 (i) that

‖(M( f ))‖p,q �
∥∥∥{P(k < )

1
p
(
k−1

(
P(k < )−

1
p

))}
k∈Z

∥∥∥
lq
.

Hence, ‖(M( f ))‖p,q � ‖( f )‖QSr
p,q(B) .

(iii)⇒ (i). Suppose that f = ( fn)n�0 is a B-valued dyadic martingalewith Sr( f )∈
L and (t) = t . For every n ∈ N , set n = Csr

n+1( f ) . Obviously, (n)n�0 ∈  .
Clearly, since f is a B-valued dyadic martingale, we have Sr

n( f ) � Csr
n( f ) for each

n ∈ N . Additionally, Sr
n+1( f ) � n . As a consequence, we may infer that

‖( f )‖QSr
1 (B) � ‖()‖1 = C‖sr( f )‖1 < . (26)

Let us denote gn = (gn
m)m�0 as (ii) ⇒ (i) . According to (25) and (26), we get

‖ fm+n− fn‖L1(B) � ‖(M(gn))‖1 � ‖(gn)‖QSr
1 (B) � ‖sr(gn)‖1 → 0, (n → ).

Similarly to (ii)⇒ (i) , we obtain B is isomorphic to a r -uniformly smooth space. �

THEOREM 5. Let B be a Banach space, ∈G be a concave function, 2 � r < ,
0 < p < r and 0 < q �  . The following assertions are equivalent:

(i) B is isomorphic to a r -uniformly convex space;
(ii) If the B-valued martingale f = ( fn)n�0 satisfies ‖( f )‖Dp,q(B) <  , then

‖(Sr( f ))‖p,q � ‖( f )‖Dp,q(B); (27)

(iii) If the B-valued martingale f = ( fn)n�0 satisfies ‖( f )‖Dp,q(B) <  , then

‖(sr( f ))‖p,q � ‖( f )‖Dp,q(B). (28)

Proof. (i)⇒ (ii). Let f = ( fn)n�0 be a B-valued martingalewith ‖( f )‖Dp,q(B) <
 . Since B is isomorphic to a r -uniformly convex space implies that B has the RNP
(see Remark 2). Then by Theorem 3, there exists a sequence of triples (k,ak,k) ∈
A M(, p,q,) such that

1
C

fn =k∈Z
k

En

(
1
C

ak
)

a.e.

and ∥∥∥{P(k < )
1
p
(
k−1

(
P(k < )−

1
p

))}
k∈Z

∥∥∥
lq
≈ ‖( f )‖Dp,q(B).

According to Lemma 4 (ii) , we know that for any B-valued martingale g ,

‖sr(g)‖r = ‖Sr(g)‖r � C‖M(g)‖r, (C > 1).
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Apparently, ak = (ak
n)n�0 is a B-valued martingale. Therefore, a proof similar to (i)⇒

(iii) in Theorem 4, we can get∥∥∥∥Sr
(

1
C

ak
)∥∥∥∥

r
� P(k < )

1
r −1

(
P(k < )−

1
p

)
.

This shows that 1
Cak is a (, p,r)Sr

-atom and
(
k, 1

Cak,k
) ∈ A Sr

(, p,q,r) . Conse-
quently, by Corollary 1 and Lemma 1 (i) , we obtain

‖(Sr( f ))‖p,q �
∥∥∥{P(k < )

1
p
(
k−1

(
P(k < )−

1
p

))}
k∈Z

∥∥∥
lq
.

Therefore,

‖(Sr( f ))‖p,q � ‖( f )‖Dp,q(B).

(i) ⇒ (iii). We can prove (i) ⇒ (iii) similarly as above.

(ii),(iii) ⇒ (i). Assume that f = ( fn)n�0 is an arbitrary B-valued dyadic martin-
gale satisfying supn�0 ‖ fn‖L(B) <  . Set (t) = t and n = ‖Mn+1( f )‖ . It is clear
that (n)n�0 ∈  and ‖ fn+1‖ � n . Thus, we have

‖( f )‖D1(B) � ‖()‖1 � supn�0 ‖ fn‖L(B) < .

Then, Sr( f ) <  a.e. by (27) and sr( f ) < a.e. by (28) . In the latter case, because
f is a B-valued dyadic martingale, we have Sr( f ) �Csr( f ) < . Applying Lemma 4,
we obtain that B is isomorphic to a r -uniformly convex space. �

REMARK 5. Let (t) = t and 0 < p = q � 1 in Theorems 4 and 5. Then we
obtain Theorems 5 and 6 in [20], respectively.

REMARK 6. Let (t) = t in Theorems 4 and 5. Then we get Theorems 5.4 and
5.6 in [18], respectively.
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