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SUCCESSIVE COEFFICIENTS AND TOEPLITZ

DETERMINANT FOR CONCAVE UNIVALENT FUNCTIONS

BAPPADITYA BHOWMIK ∗ , ALANA JOHN AND FIRDOSHI PARVEEN

Abstract. Let Co(p) be the class of all functions f defined in the unit disc D having a simple
pole at z = p where 0 < p < 1 and analytic in D \ {p} with f (0) = 0 = f ′(0)− 1 such that
f maps D onto a domain whose complement with respect to the extended complex plane is a
bounded convex set. These functions are called concave univalent functions. Each f ∈ Co(p)
has the following Taylor expansion:

f (z) = z+



n=2

anz
n, |z| < p.

In this article, we first determine the regions of variability of the difference of successive coeffi-
cients (an+1 −an) for n � 3 . We also find sharp upper bounds of the Toeplitz determinants, the
entries of which are the Taylor coefficients of functions in Co(p) .
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