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Abstract. Let Co(p) be the class of all functions f defined in the unit disc D having a simple
pole at z = p where 0 < p < 1 and analytic in D \ {p} with f (0) = 0 = f ′(0)− 1 such that
f maps D onto a domain whose complement with respect to the extended complex plane is a
bounded convex set. These functions are called concave univalent functions. Each f ∈ Co(p)
has the following Taylor expansion:

f (z) = z+



n=2

anz
n, |z| < p.

In this article, we first determine the regions of variability of the difference of successive coeffi-
cients (an+1 −an) for n � 3 . We also find sharp upper bounds of the Toeplitz determinants, the
entries of which are the Taylor coefficients of functions in Co(p) .

1. Introduction

Throughout this article, we will use the following notations. Let C be the finite
complex plane, C := C∪{} and D := {z ∈ C : |z| < 1} . Let A denote the class of
all analytic functions f defined in D with the normalization f (0) = 0 = f ′(0)−1 and
S = { f ∈ A : f is univalent} . Each f ∈ S has the Taylor expansion shown below.

f (z) = z+



n=2

anz
n, z ∈ D. (1.1)

Geometric function theory generated numerous interesting and exciting results over the
previous century. The Bieberbach conjecture, introduced in 1916, was one of the major
challenges in this field. According to this conjecture, each f ∈ S with the expansion
(1.1) must meet the inequality |an| � n for all n � 2. L. de Branges ([5]) proved this
conjecture in 1985. In order to settle the Bieberbach conjecture prior to de Branges’
effort, various geometric subclasses of S were established, and the claim was proved
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for these subclasses. The classes of convex functions, starlike functions, and close-to-
convex functions were among the particular subclasses of S for which this conjecture
was resolved (c.f. [6]). We remark here that, a function f ∈ S is convex if f transfers
the unit disc onto a convex set, i.e. f (D) is convex, and a function f ∈ S is starlike if
f (D) is starlike with respect to the origin. S ∗ and K are commonly used to designate
the classes of starlike and convex functions in S . More information on the convex and
starlike classes can be found in Duren’s book [6]. To prove the Bieberbach conjecture,
another approach was to investigate the expression |an+1−an| , that is, difference of the
successive coefficients. It is known that for f ∈ S , |an+1−an| is bounded. In fact, in
1963, Hayman ( see f.i. [8]) obtained that, for f ∈ S ,

||an+1|− |an|| � A, (1.2)

where, A � 1 is an absolute constant. Here, finding the minimal value of the constant
A is still open. The best result till date is A < 3.61 which was proved by Grinspan (see
[7]). We mention here that the following sharp bound is known (see [6, Theorem 3.11])
only for n = 2,

−1 � |a3|− |a2| � 1.029 . . . .

In [14], the author conjectured that |an+1−an| � 1 for the class S ∗ which was solved
in the article [9] by Leung in 1978. Leung proved that, if f ∈ S ∗ , then for n � 1,

−1 � |an+1|− |an| � 1,

i.e A = 1 in the inequality (1.2) and both the inequalities are sharp. From Leung’s
result, it is clear that the following quantities for the class S ∗

sup
f∈S ∗

(|an+1( f )|− |an( f )|) and sup
f∈S ∗

(|an( f )|− |an+1( f )|)

are the same, that is 1 . But, these quantities are not same for the class of convex
univalent functions K which prompted Li and Sugawa (compare [10]) to consider the
quantities like

D+
n := sup

f∈K
(|an+1( f )|− |an( f )|) and D−

n := sup
f∈K

(|an( f )|− |an+1( f )|).

Indeed, it is easy to see that D+
1 = 0 and D−

1 = 1. In the same article, they deter-
mined that D+

n = 1/(n+1) , for n � 2, and D−
n = 1/n , for n = 1,2,3. In addition, Li

and Sugawa obtained the estimate (1/n) < D−
n < 2/(n+ 1) for each n � 4. A recent

article of Arora, et. al. (see [1]) and references therein show that there is still consider-
able amount of interest in obtaining the bounds for successive coefficients for various
subclasses of S .

To the best of our knowledge, estimates for the successive coefficients of mero-
morphic univalent functions has not been found so far. Motivated by this and the recent
results obtained by Li and Sugawa in [10], in the first part of the paper, we wish to
explore this problem for concave univalent functions which can be thought as mero-
morphic analogs of convex univalent functions. To this end, let A (p) be the class
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that is defined as the collection of functions in D having a simple pole at z = p where
p ∈ (0,1) and analytic in D \ {p} satisfying the normalization f (0) = 0 = f ′(0)− 1.
We define (p) := { f ∈A (p) : f is univalent} . In this article, we will consider mainly
Co(p) , the class of concave univalent functions which can be seen as a meromorphic
analogs of the class of convex univalent functions in the analytic set up. Here, note that
Co(p) := { f ∈ (p) : Ĉ\ f (D) is a compact convex set} . It is well-known that

kp(z) =
−pz

(z− p)(1− pz)
, z ∈ D, (1.3)

belongs to Co(p) and kp(D) = C\ [−p/(1− p)2,−p/(1+ p)2] . For more information
about the class Co(p) , we refer to the articles [2, 3, 11] and references therein. Each
f ∈Co(p) is analytic in the disc Dp := {z : |z| < p} , and has the Taylor expansion of
the form (1.1) valid in Dp . For n � 2 and f ∈ Co(p) having the Taylor expansion
(1.1), one has (see [2]) ∣∣∣∣an− 1− p2n+2

pn−1(1− p4)

∣∣∣∣� p2(1− p2n−2)
pn−1(1− p4)

. (1.4)

Equality is attained in the above inequality for the function (1.3). In particular, we get
from (1.4) that

|an| � 1− p2n

pn−1(1− p2)
. (1.5)

Though the exact regions of variability of an , n � 2 for functions in the class Co(p)
have already been found, but, it is always interesting to determine sharp estimates of the
difference of the successive coefficients for functions in this class. In [4], the first author
of the present article obtained the exact set of variability of the linear combination of
the Taylor coefficients a2−a3 ,  ∈ C for functions in Co(p) .

THEOREM A. Let p ∈ (0,1) and f ∈Co(p) have the expansion (1.1) . Set  :=
(1+ p2)/p. Then the domain of variability of a2 − a3 ,  ∈ C is determined by the
inequality ∣∣∣∣a2−a3−

((
2 −1


)
+(2−2)

)∣∣∣∣
�
{

1


[
1
3 + 3|− |2

4

]
for |−| < 2/3;∣∣1− 


∣∣ for |−| � 2/3.

Substituting  = 1 in the above theorem, we get∣∣∣∣(a3−a2)− (1− p)(1+ p7)
p2(1− p4)

∣∣∣∣� (1− p)(1+ p3)
(1− p4)

, (1.6)

and the equality holds in the above inequality for the function kp . In Theorem 1 of
this article, we obtain the exact region of variability of (an+1 − an) , n � 3, whenever
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f ∈ Co(p) and p ∈ (0,1) . Our obtained results answer the open problem (see [4,
Remark 2]) raised by the first author of the present article. Next, we consider the
following two quantities for n � 1:

+
n = sup

f∈Co(p)
(|an+1( f )|− |an( f )|) and −

n = sup
f∈Co(p)

(|an( f )|− |an+1( f )|).

Using Theorem 1, we estimate the above quantities in Theorem 2 of this article. As
another application of Theorem 1, we estimate the second and the third order Toeplitz
determinant whose entries are the Taylor coefficients of f ∈ Co(p) . We wish to elab-
orate this problem in order to be little more precise. For n � 1, q � 1, the symmetric
Toeplitz determinant Tq(n) for analytic functions f of the form (1.1) , is defined as

Tq(n) =

∣∣∣∣∣∣∣∣∣
an an+1 . . . an+q−1

an+1 an . . . an+q−2
...

...
...

an+q−1 an+q−2 . . . an,

∣∣∣∣∣∣∣∣∣
where, a1 = 1. In particular,

T2(1) =
∣∣∣∣a1 a2

a2 a1

∣∣∣∣ , T2(2) =
∣∣∣∣a2 a3

a3 a2

∣∣∣∣ , T2(3) =
∣∣∣∣a3 a4

a4 a3

∣∣∣∣ , T2(4) =
∣∣∣∣a4 a5

a5 a4

∣∣∣∣ , (1.7)

and

T3(1) =

∣∣∣∣∣∣
1 a2 a3

a2 1 a2

a3 a2 1

∣∣∣∣∣∣ , T3(2) =

∣∣∣∣∣∣
a2 a3 a4

a3 a2 a3

a4 a3 a2

∣∣∣∣∣∣ .
We refer to the article [20] for various applications of Toeplitz matrices in the field
of pure and applied mathematics. In this paper, we wish to investigate the Toeplitz
determinant T2(n) , n � 1 and T3(1) for the functions in the class Co(p) and obtain the
sharp upper bounds of above determinants.

2. Main results

In the following theorem, we obtain the regions of variability of (an+1− an) , for
n � 3 and p ∈ (0,1) whenever f ∈Co(p) with the Taylor expansion (1.1) in Dp .

THEOREM 1. Let f ∈Co(p) be of the form (1.1) in Dp . Then∣∣∣∣(an+1−an)− (1− p)(1+ p2n+3)
pn(1− p4)

∣∣∣∣� (1− p)(1+ p2n−1)
pn−2(1− p4)

,

for all n � 3 and p ∈ (0,1) . In particular, we have

|an+1−an| � 1+ p2n+1

pn(1+ p)
.

Equality holds in all the above inequalities for the function kp which is defined in (1.3) .
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Proof. From [19], we have that for any f ∈ Co(p) , there exists a function
w-holomorphic in D such that |w(z)| � 1 and

f (z) =
z− p

1+p2 (1+w(z))z2(
1− z

p

)
(1− pz)

, z ∈ D. (2.1)

Let each w have the following Taylor expansion in D :

w(z) =



k=0

ckz
k.

Now inserting the above expression for w and the series expansion (1.1) for f in the
representation formula (2.1), we get

f (z) =
z−
(

p
1+p2

)
z2(

1− z
p

)
(1− pz)

−
(

p
1+p2

)
z2w(z)(

1− z
p

)
(1− pz)

=



n=1

1− p2n+2

pn−1(1− p4)
zn +




n=2

bnz
n,

where

bn = −
n−2


k=0

ck
p2(1− p2(n−k)−2)
pn−k−1(1− p4)

.

Next, comparing the coefficients of zn , n � 1 in the above equality, we get

an =
1− p2n+2

pn−1(1− p4)
+bn, n � 2, (2.2)

which gives

an+1−an =
1− p2n+4

pn(1− p4)
+bn+1− 1− p2n+2

pn−1(1− p4)
−bn

=
(1− p)(1+ p2n+3)

pn(1− p4)
+bn+1−bn.

Now, we compute

bn+1−bn = −
n−1


k=0

ck
p2(1− p2(n−k))
pn−k(1− p4)

+
n−2


k=0

ck
p2(1− p2(n−k)−2)
pn−k−1(1− p4)

= − p2(1− p)
1− p4

[
n−1


k=0

ck
1+ p2(n−k)−1

pn−k

]
,

and hence∣∣∣∣(an+1−an)− (1− p)(1+ p2n+3)
pn(1− p4)

∣∣∣∣= p2(1− p)
1− p4

∣∣∣∣∣n−1


k=0

ck
1+ p2(n−k)−1

pn−k

∣∣∣∣∣ . (2.3)
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From (2.3) and the statement of the theorem it is clear that we need to prove for n � 3
and p ∈ (0,1) , ∣∣∣∣∣n−1


k=0

ck
1+ p2(n−k)−1

pn−k

∣∣∣∣∣� 1+ p2n−1

pn ,

or, equivalently, ∣∣∣∣∣n−1


k=0

pk 1+ p2(n−k)−1

1+ p2n−1 ck

∣∣∣∣∣� 1. (2.4)

For p ∈ (0,1) , let us consider the function

g(z) :=
n−1


k=0

kz
k, z ∈ D,

where

k =

(
1+ p2(n−k)−1

1+ p2n−1

)
pk,

and 0 � k � (n−1) . Now, for 0 � m,m+1 � (n−1) ,

m+1 � m

⇔ p
(
1+ p2n−2m−3)�

(
1+ p2n−2m−1)

⇔ (1− p)(1− p2n−2m−2) � 0,

which is true for all p ∈ (0,1) . This shows that the sequence {k} is a decreas-
ing sequence. Next, we want to show that the sequence {k} is a convex sequence.
Here, we clarify that a real sequence {k} is called a convex sequence if the inequality
m−1 +m+1 � 2m holds for all m . For this sequence {k} , we calculate

m−1 +m+1 � 2m

⇔ 1+ p2n−2m+1 + p2 (1+ p2n−2m−3)� 2p
(
1+ p2n−2m−1)

⇔ (1− p)2 (1+ p2n−2m−1)� 0,

which is valid for all p ∈ (0,1) . Therefore, {k} is a convex sequence. Now, by a
result of Rogosinski (c.f. [16]), we get

Re(g(z)) >
1
2
, z ∈ D.

From [18, Theorem 1.3], we know that functions with this property are bound preserv-
ing i.e. one will have

|(g ∗w)(1)|� 1,

where ∗ denotes the Hadamard convolution. This will immediately prove the inequal-
ity (2.4). Thus, the first part of the theorem is established. Next, using the triangle
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inequality, we obtain

|an+1−an| �
∣∣∣∣(an+1−an)− (1− p)(1+ p2n+3)

pn(1− p4)

∣∣∣∣+ (1− p)(1+ p2n+3)
pn(1− p4)

,

� (1− p)(1+ p2n−1)
pn−2(1− p4)

+
(1− p)(1+ p2n+3)

pn(1− p4)
,

=
1+ p2n+1

pn(1+ p)
,

for n � 3 and p ∈ (0,1) . Also, it is a simple exercise to check that all the inequalities
stated in the theorem are best possible for the function kp . This completes proof of the
theorem. �

We now prove our next result.

THEOREM 2. Let f ∈Co(p) have the expansion of the form (1.1) in Dp . Then
(a)

+
1 =

1− p+ p2

p
and −

1 =
−(1− p)(1− p3)

p(1+ p2)
.

(b)

+
n =

1+ p2n+1

pn(1+ p)
for n � 2, p ∈ (0,1).

(c) for n � 2 ,

p(1− p2)(1+ p2n)− (1+ p2)(1− p2n+2)
pn(1− p4)

< −
n <

p(1+ p2)(1− p2n)− (1− p2)(1+ p2n+2)
pn(1− p4)

.

Proof. (a) From (1.4), we have

(1− p2)(1+ p2n)
pn−1(1− p4)

� |an| � (1+ p2)(1− p2n)
pn−1(1− p4)

. (2.5)

The case n = 2 of the above inequality provides

1+ p4

p(1+ p2)
� |a2| � (1+ p2)

p
,

and consequently, we get

+
1 = sup

f∈Co(p)
(|a2|−1) =

1− p+ p2

p
,
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where the supremum is attained by the function kp and

−
1 = sup

f∈Co(p)
(1−|a2|) = − (1− p)(1− p3)

p(1+ p2)
,

where the supremum is attained by the following function:

f1(z) :=
z− 2p

1+p2 z2(
1− z

p

)
(1− pz)

, z ∈ D.

(b) Next, from the equation (1.6), we get

||a3|− |a2|| � |a3−a2| � 1+ p5

p2(1+ p)
,

which in turn implies +
2 = (1+ p5)/(p2(1+ p)) . Again using the inequality ||an+1|−

|an|| � |an+1−an| , from the second part of Theorem 1, we get for all n � 3,

||an+1|− |an|| � 1+ p2n+1

pn(1+ p)
.

Sharpness of this inequality is evident as for the function kp , we calculate

||an+1|− |an|| = |an+1−an| = 1+ p2n+1

pn(1+ p)
,

for all n � 1. The above discussion immediately yields us for f ∈Co(p) and n � 3,

+
n =

1+ p2n+1

pn(1+ p)
, p ∈ (0,1).

The function kp is extremal for +
n , which proves the second part of the theorem.

(c) Using the maximum and the minimum values of |an| and |an+1| from (2.5),
we get

(1− p2)(1+ p2n)
pn−1(1− p4)

− (1+ p2)(1− p2n+2)
pn(1− p4)

< −
n <

(1+ p2)(1− p2n)
pn−1(1− p4)

− (1− p2)(1+ p2n+2)
pn(1− p4)

for n � 2. Upon simplification of the above quantities, the proof of the theorem is
complete. �

REMARK 1. We observed that, the sharp upper bounds of ||an+1| − |an|| and
|an+1−an| for the class K differ (see [10]) whereas we get the same upper bounds for
these two quantities whenever f ∈Co(p) (the meromorphic analogs of the class K ).
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REMARK 2. From Theorem 2, we have +
1 = (1− p+ p2)/p and −

1 = −(1−
p)(1− p3)/p(1+ p2) which imply that, in general, −

n �=+
n for f ∈Co(p) and n � 1.

Furthermore, we do not know the exact values of −
n when n � 2.

REMARK 3. It is worth noting that, unlike in class K , we got −
1 as a negative

real number. We also understand that, for larger n , −
n will be a negative quantity for

the class Co(p) . This is because, the variability zones for an are particular discs lying
in the right half plane, and hence, each |an| has a non trivial lower bound.

3. Toeplitz determinant for functions in the class Co(p)

The equation (2.3) and the inequality |c0|� 1 together immediately yield the exact
region of variability of (a2−a1) as∣∣∣∣(a2−a1)− (1− p)(1+ p5)

p(1− p4)

∣∣∣∣� (1− p)(1+ p)
p−1(1− p4)

. (3.1)

Now from equations (3.1) and (1.6), we have

|a2−a1| � 1+ p3

p(1+ p)
and |a3−a2| � 1+ p5

p2(1+ p)
,

for p ∈ (0,1) . Therefore, the above inequalities together with the bounds of |a2| and
|a3| from (1.5) provides

|T2(1)| � 1− p6

p2(1− p2)
and |T2(2)| � 1− p10

p4(1− p2)
.

Also, these bounds are best possible for the function kp . The next theorem deals with
the estimates of |Tq(n)| for q = 2,n � 3, where Tq(n) is defined in (1.7).

THEOREM 3. Let f ∈Co(p) be of the form (1.1) in Dp . Then for all n � 3 and
p ∈ (0,1) , we have

|T2(n)| � 1− p4n+2

p2n(1− p2)
.

The above inequalities are sharp for the function kp .

Proof. From the definition of the Toeplitz determinant, we have T2(n) = a2
n −

a2
n+1 . Therefore, by using Theorem 1 and bounds of |an| , we get

|T2(n)| � (|an|+ |an+1|)(|an+1−an|)

�
(

1− p2n

pn−1(1− p2)
+

1− p2(n+1)

pn(1− p2)

)(
1+ p2n+1

pn(1+ p)

)
=

1− p4n+2

p2n(1− p2)
.



468 B. BHOWMIK, A. JOHN AND F. PARVEEN

Again for the function kp , it can be computed that |T2(n)|= 1−p4n+2

p2n(1−p2) , which completes

proof of the theorem. �
We prove a sharp upper bound for |T3(1)| whenever f ∈ Co(p) in the following

theorem.

THEOREM 4. Let f ∈Co(p) be of the form (1.1) in Dp . Then for p ∈ (0,1) , we
have

|T3(1)| � (1+ p2)2(1+ p4)
p4 .

Equality holds in the above inequality for the function kp .

Proof. A simple computation yields that

T3(1) = 1−2a2
2 +2a2

2a3−a2
3 = 1+a2

2(a3−2)−a3(a3−a2
2).

Now, we know that for functions f ∈Co(p) , |a3−a2
2|� 1 (see [12]). Also, the bounds

for |a2| and |a3| are known. By using the triangle inequality we get

|T3(1)| � 1+ |a2|2|(a3 −2)|+ |a3||(a3−a2
2)|. (3.2)

Therefore, to get an upper bound for |T3(1)| , we need to find the maximum value of
|a3−2| whenever f ∈Co(p) . From (2.2), we calculate

a3−2 =
1+ p4

p2 − c0− p
1+ p2 c1 −2.

Hence

|a3−2|� (1− p2)2

p2 + |c0|+ p
1+ p2 (1−|c0|2).

The right hand side of the above inequality has the maximum when |c0|= 1. Therefore,

|a3−2|�
(

(1− p2)2

p2 +1

)
. (3.3)

Next, plugging in the above bound, and the bounds of |a2| and |a3| in (3.2), we get

|T3(1)| � (1+ p2)2(1+ p4)
p4 .

Again for the function kp , it is a simple exercise to check that equality holds in the
above inequality. This ends the proof of the theorem. �
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