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AND MOHAMMAD SABABHEH

(Communicated by S. Varošanec)

Abstract. The main focus of this paper is a study of Jensen-type inequalities for the Lipschitzian
functions. We establish the reverse of the Jensen inequality expressed in terms of the correspond-
ing Lipschitz constant. In addition, we also obtain the reverse of the superadditivity relation for
a convex function, expressed in the same way. As an application, we obtain reverses of power
mean inequalities, the Hölder inequality, and the Hermite-Hadamard inequality, expressed in
terms of the Lipschitzianity. In particular, we derive reverses of the arithmetic-geometric mean
inequality in both difference and quotient forms.

1. Introduction

Let J ⊆ R be an interval. The function f : J → R is said to be convex if the
relation

f ((1−)a+b) � (1−) f (a)+ f (b) (1)

holds for all a,b ∈ J and 0 �  � 1. Conversely, f is concave if the sign of (1) is
reversed. There is also one more case for which the sign of (1) is reversed. Namely, if
a,b ∈ J and  /∈ [0,1] are such that (1− )a+ b ∈ J , then holds the reverse of (1),
provided that f is convex on J . This represents the so-called external form of (1).

The above inequality can be rewritten as

f (w1a+w2b) � w1 f (a)+w2 f (b), (2)

provided that w1 + w2 = 1, and w1,w2 � 0. A multivariable version of (2) is the
celebrated Jensen inequality which asserts that if f : J → R is a convex function and
a1,a2, . . . ,an ∈ J , then holds the inequality

f

(
n


i=1

wiai

)
�

n


i=1

wi f (ai)

where w1,w2, . . . ,wn � 0 are such that n
i=1 wi = 1.
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If f : [0,) → R is a convex function such that f (0) � 0, then (1) implies the
inequality f (x) �  f (x) , where x � 0 and 0 �  � 1. Now, by putting x = a+ b ,
 = a

a+b , a,b � 0, and then,  = a
a+b , in this inequality, we obtain

f (a)+ f (b) � f (a+b). (3)

This means that f is superadditive on [0,) .
Although classical, the Jensen inequality is still of interest to numerous authors.

For a comprehensive overview of convexity and the Jensen inequality, including proofs,
generalizations, and diverse applications, the reader is referred to monographs [7, 12,
13] and the references cited therein. Furthermore, for the latest research regarding this
topic, we recommend referring to [1, 3, 8, 9, 10, 14, 15, 16, 17].

The main goal of this paper is to establish the connection between convex func-
tions and another important class of real functions named after the 19th-centuryGerman
mathematician Rudolf Lipschitz. A function f : J → R is said to satisfy a Lipschitz
condition on the interval J ⊆ R if there exists a constant L > 0 such that the inequality

| f (a)− f (b)| � L |a−b| (4)

holds for all a,b∈ J . We also say that f is L -Lipschitzian (see, e.g. [13]). For example,
since |b2−a2| = |b+a||b−a|� 2max{|a|, |b|}|b−a| , it follows that f (x) = x2 is 2-
Lipschitzian function on the unit interval.

The function belonging to this class is characterized by the fact that its rate of
change is bounded by the corresponding Lipschitz constant. In fact, the Lipschitz con-
stant measures how much the function can change as the input values change.

Lipschitzianity is an important concept in various fields of mathematics, including
calculus, functional analysis, and optimization theory. In particular, it is often used to
prove both the existence and uniqueness of solutions to various boundary value prob-
lems. Further, the Lipschitz continuous functions are frequently used to analyze numer-
ical methods in computational mathematics. One of the most significant implications of
Lipschitzian mappings is that they provide means to quantify the stability of solutions
of differential equations. By bounding the rate of change of a function via the Lipschitz
constant, one can show that small changes in the initial conditions result in correspond-
ingly small changes in the solution. This is a powerful tool for analyzing the behavior
of complex systems in physics, engineering, and other disciplines.

This paper’s main objective is to study Jensen-type inequalities for the Lipschitzian
functions. It turns out that the reverses of the Jensen-type inequalities can be expressed
in terms of Lipschitzianity. The paper’s outline is as follows: after this Introduction,
in Section 2, we establish a class of Jensen-type inequalities for Lipschitzian functions.
We obtain a reverse of the Jensen inequality if these functions are also convex. In other
words, we derive the reverse of the Jensen inequality, expressed via the corresponding
Lipschitz constant. In particular, we also obtain the reverse of the superadditivity rela-
tion for a convex function. As an application, in Section 3, our main results are applied
in deriving reverses of power mean inequalities. In particular, we establish reverses
of the arithmetic-geometric mean inequality, in terms of the Lipschitzianity, in both
difference and quotient forms. Further, in Section 4, we give a reverse of the Hölder
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inequality. Finally, Section 5 deals with further extensions in this topic. First, we give
an external form of the Jensen inequality for Lipschitzian functions. Then, we establish
an even more precise Jensen-type inequality for this class of functions. Finally, as an
application, we also derive a reverse of the Hermite-Hadamard inequality in terms of
the corresponding Lipschitz constant.

We believe that our results have potential applications in various fields, including
optimization, mathematical finance, and machine learning. This paper contributes to
the existing literature by providing a deeper understanding of Lipschitzian mappings
and their properties. We refer the reader to [4, 11, 18] as a list of some treatments of
Lipschitzian and convex functions with their applications.

2. Main results

The starting point in our study is the following basic property of Lipschitzian map-
pings.

THEOREM 1. Let J ⊆ R be an interval such that a,b ∈ J , and let f : J ⊆ R → R

be a L-Lipschitzian mapping on J . Then the inequality

|(1−) f (a)+ f (b)− f ((1−)a+b)| � 2L(1−) |b−a| (5)

holds for all 0 �  � 1 . In particular, if 0 ∈ J and f (0) = 0 , then the inequality

| f (x)− f (x)| � 2L(1−) |x| (6)

holds for any x ∈ J and 0 �  � 1 .

Proof. Utilizing the triangle inequality, as well as the L -Lipschitzian condition
(4), we have

|(1−) f (a)+ f (b)− f ((1−)a+b)|
= |(1−)( f (a)− f ((1−)a+b))+ ( f (b)− f ((1−)a+b))|
�(1−) | f (a)− f ((1−)a+b)|+ | f (b)− f ((1−)a+b)|
� L(1−) |a− ((1−)a+b)|+L |b− ((1−)a+b)|
= 2L(1−) |b−a|,

so (5) holds. Furthermore, by putting a = 0, b = x in (5), and taking into account that
f (0) = 0, we get | f (x)− f (x)| � 2L(1−) |x| , as claimed. �

REMARK 1. It should be noticed here that if f : J → R is a convex function, then
the modulus function on the left-hand side of (5) is redundant. This means that (5)
represents a reverse of a convexity definition (1), expressed in terms of the Lipschitz
constant of the corresponding function. The same conclusion can be drawn for concave
functions.
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Theorem 1 can be exploited in obtaining superadditivity relations for Lipschitzian
mappings. We start our discussion with the following simple result.

THEOREM 2. Let f : [0,) → R be a L-Lipschitzian mapping and let a,b � 0 .
If f (0) = 0 , then holds the inequality

| f (a+b)− f (a)− f (b)| � 4Lab
a+b

,

provided that a+b �= 0 .

Proof. Since 0 � a
a+b � 1, by putting  = a

a+b and x = a+ b in (6), we obtain
the inequality∣∣∣∣ a

a+b
f (a+b)− f

(
a

a+b
(a+b)

)∣∣∣∣=
∣∣∣∣ a
a+b

f (a+b)− f (a)
∣∣∣∣

� 2Lab
a+b

.

(7)

Similarly, by changing the roles of variables a and b , we also have∣∣∣∣ b
a+b

f (a+b)− f (b)
∣∣∣∣� 2Lab

a+b
. (8)

Finally, utilizing the triangle inequality, as well as relations (7) and (8), we have that

| f (a+b)− f (a)− f (b)|

=
∣∣∣∣ b
a+b

f (a+b)− f (b)+
a

a+b
f (a+b)− f (a)

∣∣∣∣
�
∣∣∣∣ b
a+b

f (a+b)− f (b)
∣∣∣∣+
∣∣∣∣ a
a+b

f (a+b)− f (a)
∣∣∣∣

� 4Lab
a+b

,

and the proof is completed. �
However, by a more precise analysis, Theorem 2 can be improved in the following

way:

THEOREM 3. Let f : [0,) → R be a L-Lipschitzian mapping and let a,b � 0 .
If f (0) = 0 , then holds the inequality

4Lab
a+b

−| f (a+b)− f (a)− f (b)|

�
∣∣∣∣∣
∣∣∣∣ a
a+b

f (a+b)− f (a)
∣∣∣∣−
∣∣∣∣ b
a+b

f (a+b)− f (b)
∣∣∣∣
∣∣∣∣∣,

(9)

provided that a+b �= 0 .
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Proof. Due to (7) and (8), we have that

max

{∣∣∣∣ a
a+b

f (a+b)− f (a)
∣∣∣∣ ,
∣∣∣∣ b
a+b

f (a+b)− f (b)
∣∣∣∣
}

� 2Lab
a+b

. (10)

On the other hand, if x,y ∈ R , then

max{|x|, |y|} =
|x|+ |y|+ ||x|− |y||

2
� |x+ y|+ ||x|− |y||

2
,

i.e., we arrive at the inequality

2max{|x|, |y|} � |x+ y|+ ||x|− |y||.

Now, by substituting x = a
a+b f (a+b)− f (a) and y = b

a+b f (a+b)− f (b) in the last
inequality, as well as, taking into account (10), we obtain (9), as claimed. �

We have already discussed in Remark 1 that if f is a convex function, then the left-
hand sides of inequalities (5) and (6) are non-negative, and we may drop the modulus
function. In the sequel, we deal with functions that are also differentiable. Recall that
the Lagrange mean value theorem asserts that if f : [x,y]→ R is a continuous function,
that is differentiable on (x,y) , then there exists  ∈ (x,y) such that

f (y)− f (x) = f ′( )(y− x).

The following result, referring to both differentiable and convex functions, is a
consequence of Theorems 2 and 3.

COROLLARY 1. Let f : [0,) → R be a differentiable convex function, let a,b >
0 , and L = sup

t∈[a,b]
| f ′ (t)| < . If f (0) = 0 , then hold the inequalities

0 � f (a+b)− f (a)− f (b) � 4Lab
a+b

(11)

and

4Lab
a+b

− f (a+b)+ f (a)+ f (b)

�
∣∣∣∣∣
∣∣∣∣ a
a+b

f (a+b)− f (a)
∣∣∣∣−
∣∣∣∣ b
a+b

f (a+b)− f (b)
∣∣∣∣
∣∣∣∣∣,

(12)

provided that a+b �= 0 .

Proof. Let x,y ∈ [a,b] , x < y . Then, by the Lagrange mean value theorem, we
have that | f (y)− f (x)|= | f ′ ( )| |y− x|�L |y− x| , since  ∈ (x,y)⊂ [a,b] . This means
that f is L -Lipschitzian on [a,b] . The rest of the proof follows from Theorems 2 and
3 due to the convexity of f . �
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REMARK 2. It should be noticed here that relations (11) and (12) represent re-
verses of the superadditivity relation (3).

REMARK 3. Let a,b ∈ R , 0 � a < b , and let f (x) = xp , where p � 1. Clearly,
f is a differentiable convex function on [0,) and f (0) = 0. Moreover, since f ′(t) =
pt p−1 is increasing function, it follows that L = sup

t∈[a,b]

∣∣pt p−1
∣∣= pbp−1 , so in this set-

ting Corollary 1 yields the inequalities

0 � (a+b)p−ap−bp � pbpa
a+b

and

pbpa
a+b

− (a+b)p +ap +bp �
∣∣∣∣∣
∣∣∣a(a+b)p−1−ap

∣∣∣− ∣∣∣b(a+b)p−1−bp
∣∣∣
∣∣∣∣∣.

Our next intention is to extend inequality (5) to a multivariable version. In fact,
keeping in mind Remark 1, we obtain a reverse of the Jensen inequality expressed in
terms of the Lipschitz constant of the corresponding function.

THEOREM 4. Let f : J ⊆ R → R be a L-Lipschitzian mapping on J , and let
a1,a2, . . . ,an ∈ J . If w1,w2, . . . ,wn are non-negative scalars such that n

i=1 wi = 1 ,
then holds the inequality∣∣∣∣∣

n


i=1

wi f (ai)− f

( n


i=1

wiai

)∣∣∣∣∣� L
n


i=1

wi

∣∣∣∣ai−
n


j=1

wja j

∣∣∣∣. (13)

Proof. Rewriting the left-hand-side of (13) in a suitable form and then using the
triangle inequality, as well as relation (4), we have respectively,∣∣∣∣∣

n


i=1

wi f (ai)− f

( n


i=1

wiai

)∣∣∣∣∣=
∣∣∣∣∣

n


i=1

wi

(
f (ai)− f

( n


i=1

wiai

))∣∣∣∣∣
�

n


i=1

wi

∣∣∣∣ f (ai)− f

( n


i=1

wiai

)∣∣∣∣
� L

n


i=1

wi

∣∣∣∣ai−
n


j=1

wja j

∣∣∣∣,
and the proof is completed. �

REMARK 4. Since |cosy−cosx|� |y−x| , for all x,y∈R , by the Lagrange mean
value theorem, it follows that the cosine function is 1-Lipschitzian on R . Hence, in
this setting, relation (13) reads∣∣∣∣∣

n


i=1

wi cos(ai)− cos

(
n


i=1

wiai

)∣∣∣∣∣�
n


i=1

wi

∣∣∣∣ai −
n


j=1

wja j

∣∣∣∣,
where a1,a2, . . . ,an are arbitrary real numbers.
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If f is a convex function, then the modulus function on the left-hand side of (13)
is redundant, which represents a reverse of the Jensen inequality. In fact, similarly to
Corollary 1, we arrive at the following consequence of Theorem 4.

COROLLARY 2. Let f : J ⊆R→R be a differentiable mapping, let a1,a2, . . . ,an ∈
J and L = sup

t∈J
| f ′ (t)| <  . If w1,w2, . . . ,wn are non-negative real numbers such that

n
i=1 wi = 1 , then holds inequality (13). In addition, if f is a convex function, then

holds the inequality

0 �
n


i=1

wi f (ai)− f

(
n


i=1

wiai

)
� L

n


i=1

wi

∣∣∣∣ai −
n


j=1

wja j

∣∣∣∣. (14)

Inequality (14) represents a reverse of the Jensen inequality expressed in terms
of the Lipschitzianity of a convex function f . We aim now to exploit this relation in
establishing reverses of power mean inequalities, which is the focus of the next section.

3. Reverses of power mean inequalities

Here, we aim to derive reverse inequalities for power means based on our Theorem
4 and Corollary 2. Recall that a power mean is defined by

Mr (x,w) =

{
(n

i=1 wixi
r)

1
r , r �= 0,

n
i=1 xi

wi , r = 0,

where x = (x1,x2, . . . ,xn) stands for a strictly positive n -tuple and w = (w1,w2, . . . ,wn)
is a non-negative n -tuple such that n

i=1 wi = 1. The case of w1 = w2 = · · · = wn = 1
n

yields the corresponding non-weighted mean

mr (x) =

⎧⎨
⎩
(

1
n 

n
i=1 xi

r
) 1

r , r �= 0,

(n
i=1 xi)

1
n , r = 0.

The set of all non-negative n -tuples w = (w1,w2, . . . ,wn) such that n
i=1 wi = 1 will be

denoted by W +
n , for brevity.

Recall that the values r = −1,0,1, provide the harmonic, geometric, and arith-
metic means, respectively. The basic power mean inequality, describing monotonic
behavior of means, asserts that if r < s , then

Mr (x,w) � Ms (x,w) . (15)

This inequality is still of interest to numerous mathematicians. In particular, it has been
proved in [6] that

n min
1�i�n

{wi} [ms
s (x)−ms

r (x)] � Ms
s (x,w)−Ms

r (x,w)

� n max
1�i�n

{wi} [ms
s (x)−ms

r (x)] .
(16)



478 M. BOŠNJAK, M. KRNIĆ, H. R. MORADI AND M. SABABHEH

The left inequality in (16) represents a refinement of (15), while the right inequality pro-
vides the corresponding reverse expressed in terms of the corresponding non-weighted
means. For a comprehensive study of power means, including refinements and gener-
alizations, the reader is referred to monographs [7, 12], as well as to papers [5, 6] and
the references cited therein.

Now, based on our Theorem 4 and Corollary 2, we give a different class of reverses
for the basic power mean inequality (15). In order to do this, we have to choose the
appropriate parameters in inequality (13).

We first deal with the case when both parameters r and s in (15) are not equal to
zero.

COROLLARY 3. Let s,r �= 0 , x ∈ [a,b]n , 0 < a < b, and w ∈ W +
n . Then holds

the inequality

|Ms
s (x,w)−Ms

r (x,w)| �
∣∣∣ s
r

∣∣∣max{as−r,bs−r}
n


i=1

wi |xr
i −Mr

r (x,w)|, (17)

where

|Ms
s (x,w)−Ms

r (x,w)| =
{

Ms
s (x,w)−Ms

r (x,w) , s
r < 0 or s

r > 1,

Ms
r (x,w)−Ms

s (x,w) , 0 < s
r � 1.

Proof. We consider (13) with f (t) = t
s
r , t > 0, and with xr = (xr

1,x
r
2, . . . ,x

r
n) in-

stead of n -tuple (a1,a2, . . . ,an) . Then
n

i=1

wi f (ai)=
n

i=1

wixs
i = Ms

s (x,w) , f
( n

i=1

wiai
)
=

( n

i=1

wixr
i

) s
r = Ms

r (x,w) , and
n

j=1

wja j =
n

j=1

wjxr
j = Mr

r (x,w) . Moreover, since x ∈
[a,b]n , it follows that xr ∈ [a,b] , where a = min{ar,br} and b = max{ar,br} .
Consequently, it follows that

L = sup
t∈[a,b]

∣∣ f ′(t)∣∣= ∣∣∣ s
r

∣∣∣ sup
t∈[a,b]

t
s
r−1 =

∣∣∣ s
r

∣∣∣max{as−r,bs−r},

since t
s
r−1 is monotonic on the interval [a,b] . This yields (17). Clearly, f is convex

if s
r < 0 or s

r > 1, while it is concave for 0 < s
r � 1. The proof is now completed. �

We proceed with the consequences of (15) when one of the parameters r and s
equals zero. If s = 0, we obtain the following result:

COROLLARY 4. Let r �= 0 , x ∈ [a,b]n , 0 < a < b, and w ∈ W +
n . Then holds the

inequality ∣∣∣∣log
Mr (x,w)
M0 (x,w)

∣∣∣∣� max{a−r,b−r}
|r|

n


i=1

wi |xr
i −Mr

r (x,w)|, (18)

where ∣∣∣∣log
Mr (x,w)
M0 (x,w)

∣∣∣∣=
⎧⎨
⎩

log Mr(x,w)
M0(x,w) , r > 0,

log M0(x,w)
Mr(x,w) , r < 0.
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Proof. Similar to the previous corollary, (18) is a consequence of inequality (13)
when f (t) = 1

r log t , t > 0, and when the n -tuple (a1,a2, . . . ,an) is replaced by xr =
(xr

1,x
r
2, . . . ,x

r
n) . Clearly, f is convex for r < 0 and concave for r > 0. In this setting,

we have that
n

i=1

wi f (ai) =
n

i=1

wi logxi = M0 (x,w) and f
( n

i=1

wiai
)
= log

( n

i=1

wixr
i

) 1
r =

logMr (x,w) . In addition, since xr ∈ [a,b] , where a = min{ar,br} and b =
max{ar,br} , it follows that

L = sup
t∈[a,b]

∣∣ f ′(t)∣∣= 1
|r| sup

t∈[a,b]

1
t

=
1
|r| max{a−r,b−r},

due to monotonicity of function 1/t on the interval [a,b] . This completes the
proof. �

REMARK 5. In particular, if r = 1, then inequality (18) reduces to

M1 (x,w)
M0 (x,w)

�
n


i=1

exp

(
wi |xi −M1 (x,w)|

a

)
,

providing the reverse of the arithmetic-geometric mean inequality in the so-called quo-
tient form. On the other hand, if r = −1, we obtain the corresponding reverse of the
geometric-harmonic inequality:

M0 (x,w)
M−1 (x,w)

�
n


i=1

exp
(
bwi
∣∣x−1

i −M−1
1 (x,w)

∣∣) .
The above remark provided a reverse of the arithmetic-geometric mean inequal-

ity in a quotient form. In the sequel, we will also derive a reverse of the arithmetic-
geometric mean inequality in a difference form. The corresponding relation will be
covered by the case when parameter r is equal to zero.

COROLLARY 5. Let s ∈ R , x ∈ [a,b]n , 0 < a < b, and w ∈ W +
n . Then holds the

inequality

0 � Ms
s (x,w)−Ms

0 (x,w) � |s|max{as,bs}
n


i=1

wi

∣∣∣∣log
xi

M0 (x,w)

∣∣∣∣. (19)

Proof. Here, the starting point is also relation (13) equipped with f (t) = est and
with n -tuple logx = (logx1, logx2, . . . , logxn) instead of (a1,a2, . . . ,an) . Then, it fol-

lows that
n

i=1

wi f (ai)=
n

i=1

wies logxi = Ms
s (x,w) , f

( n

i=1

wiai
)
= esn

i=1 wi logxi = Ms
0 (x,w) ,

and
n

j=1

wja j =
n

j=1

wj logx j = logM0 (x,w) . Furthermore, since logx∈ [loga, logb] , it

follows that

L = sup
t∈[loga,logb]

∣∣ f ′(t)∣∣= |s| sup
t∈[loga,logb]

est = |s|max{as,bs}.

Finally, f (t) = est is convex for every s ∈ R , so (20) holds. �
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REMARK 6. If s = 1, then inequality (19) reduces to

0 � M1 (x,w)−M0 (x,w) � b
n


i=1

wi

∣∣∣∣log
xi

M0 (x,w)

∣∣∣∣, (20)

which represents the reverse of the arithmetic-geometric mean inequality in a difference
form. Similarly, if s = −1, we obtain the reverse of the geometric-harmonic mean
inequality in a difference form:

0 � M−1
−1 (x,w)−M−1

0 (x,w) � 1
a

n


i=1

wi

∣∣∣∣log
xi

M0 (x,w)

∣∣∣∣.
In the next section, relation (20) will be exploited in establishing a reverse of

another important inequality.

4. Reverse of the Hölder inequality

Let (,,) be a  -finite measure space and let n
i=1

1
ri

= 1, ri > 1. If fi ∈
Lri() , i = 1,2, . . . ,n , are non-negative measurable functions, then there holds the
inequality ∫



n


i=1

fi(x)d(x) �
n


i=1

‖ fi‖ri , (21)

where ‖ fi‖ri =
(∫

 f ri
i (x)d(x)

) 1
ri . It is well known that the Hölder inequality can

be proved in several ways, in particular, via the arithmetic-geometric mean inequality,
i.e., the Young inequality (for more details, see [7, 12]). Bearing in mind this fact,
relation (20) can be exploited in establishing a new reverse of the Hölder inequality
(21). However, to derive the corresponding result, we also have to impose some extra
conditions on non-negative measurable functions fi ∈ Lri() , i = 1,2, . . . ,n .

THEOREM 5. Let (,,) be a  -finite measure space and let n
i=1

1
ri

= 1 , ri >

1 , i = 1,2, . . . ,n. Further, suppose that fi ∈ Lri() , i = 1,2, . . . ,n, are non-negative
measurable functions such that

0 < fi(x) � b
1
ri ‖ fi‖ri , x ∈, i = 1,2, . . . ,n, (22)

where b > 0 . Then there holds the inequality

n


i=1

‖ fi‖ri −
∫


n


i=1

fi(x)d(x)

� b
n


i=1

‖ fi‖ri

n


i=1

1
ri

∫


∣∣∣ log
( f ri−1

i (x)

‖ fi‖ri−1
ri

n


j=1, j �=i

‖ f j‖r j

f j(x)

)∣∣∣d(x).
(23)
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Proof. Rewriting (20) with ( 1
r1

, 1
r2

, . . . , 1
rn

) instead of the n -tuple w , we arrive at
the corresponding Young form of inequality:

n


i=1

xi

ri
−

n


i=1

x
1
ri
i � b

n


i=1

1
ri

∣∣∣ log
(
xi

1− 1
ri

n


j=1, j �=i

x
− 1

r j
j

)∣∣∣.
The next step is to substitute

f
ri
i (x)
‖ fi‖ri

ri
, x ∈  , instead of xi , i = 1,2, . . . ,n , in the above

inequality. Of course, this can be done since
f
ri
i (x)
‖ fi‖ri

ri
∈ (0,b] , due to (22). Consequently,

we have that

n


i=1

f ri
i (x)

ri‖ fi‖ri
ri
−

n


i=1

fi(x)
‖ fi‖ri

� b
n


i=1

1
ri

∣∣∣∣∣log
( f ri−1

i (x)

‖ fi‖ri−1
ri

n


j=1, j �=i

‖ f j‖r j

f j(x)

)∣∣∣∣∣ .
We proceed with integrating the above inequality over  with respect to the measure
 . More precisely, since

∫
 f ri

i (x)d(x) = ‖ fi‖ri
ri , we have that

n


i=1

1
ri
−
∫


n
i=1 fi(x)d(x)
n

i=1‖ fi‖ri

� b
n


i=1

1
ri

∫


∣∣∣ log
( f ri−1

i (x)

‖ fi‖ri−1
ri

n


j=1, j �=i

‖ f j‖r j

f j(x)

)∣∣∣d(x),

that is,

1−
∫


n
i=1 fi(x)d(x)
n

i=1 ‖ fi‖ri

� b
n


i=1

1
ri

∫


∣∣∣ log
( f ri−1

i (x)

‖ fi‖ri−1
ri

n


j=1, j �=i

‖ f j‖r j

f j(x)

)∣∣∣d(x),

since n
i=1

1
ri

= 1. Clearly, the last inequality is equivalent to (23), which completes the
proof. �

REMARK 7. In particular, if n = 2, r1 = r2 = 2, f1 = f , f2 = g , inequality (23)
reduces to

‖ f‖‖g‖−
∫


f (x)g(x)d(x) � b‖ f‖‖g‖
∫


∣∣∣ log
( f (x)

g(x)
‖g‖
‖ f‖

)∣∣∣d(x), (24)

provided that 0 < f (x) �
√

b‖ f‖ and 0 < g(x) �
√

b‖g‖ , x ∈  . Here, ‖ · ‖ , stands
for the usual L2 norm, i.e ‖ f‖=

√∫
 f 2(x)d(x) . Clearly, relation (24) represents the

reverse of the celebrated Cauchy-Schwarz inequality.
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5. Further extensions, remarks and applications

The main topic in this section is our basic relation (5) that describes a reverse of
convexity in terms of Lipschitzianity. We aim here to extend it in several different ways.

Inequality (5) holds for all  ∈ [0,1] . Our first goal is to derive its external version.
More precisely, we are going to derive a version of (5) that holds for values of  not
belonging to the unit interval. In fact, the proof is very familiar to Theorem 1.

THEOREM 6. Let f : J ⊆ R → R be L-Lipschitzian mapping on J and let  /∈
[0,1] . If a,b,(1−)a+b∈ J , then holds the inequality

|(1−) f (a)+ f (b)− f ((1−)a+b)| � 2L |(1−)| |b−a| . (25)

Proof. Utilizing the triangle inequality and relation (4), we have that

|(1−) f (a)+ f (b)− f ((1−)a+b)|
= |(1−)( f (a)− f ((1−)a+b))+ ( f (b)− f ((1−)a+b))|
� |1−| | f (a)− f ((1−)a+b)|+ || | f (b)− f ((1−)a+b)|
� 2L || |1−| |b−a|,

so (25) holds. �

REMARK 8. Consider the function f (x) = x2k+1 , k ∈ N , on [a,b] ⊂ R . Since
f ′(x) = (2k + 1)x2k , utilizing the Lagrange mean value theorem, it follows that f is
L -Lipschitzian on [a,b] , with L = (2k+1)max

{
a2k,b2k

}
. Moreover, if , ∈ [a,b]

and  /∈ [0,1] are such that (1−) + ∈ [a,b] , then holds the inequality∣∣∣(1−)2k+1 + 2k+1− ((1−) + )2k+1
∣∣∣

� 2(2k+1)max
{

a2k,b2k
}
|(1−)|( −) ,

due to (25).

According to our discussion in Section 2, we also give a differentiable and convex
version of the previous theorem.

COROLLARY 6. Let f : J ⊆ R → R be a differentiable convex mapping and let
L = sup

t∈J
| f ′ (t)| <  . If a,b ∈ J and  /∈ [0,1] are such that (1−)a+ b ∈ J , then

holds the inequality

0 � f ((1−)a+b)− (1−) f (a)− f (b) � 2L |(1−)| |b−a| .
Note that inequality (5) includes convex combination (1−)a+b , provided that

0 �  � 1. Therefore, it can be rewritten as

|w1 f (a1)+w2 f (a2)− f (w1a1 +w2a2)| � 2Lw1w2|a1−a2|, (26)
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provided that w1,w2 > 0 are such that w1 +w2 = 1. We aim now to establish a variant
of (26) in the case when w1 + w2 � 1. To do this, we need to impose an additional
condition on the corresponding Lipschitzian function.

THEOREM 7. Let J ⊆ R be an interval such that 0 ∈ J , and let a1,a2 ∈ J . Fur-
ther, let f : J → R be L-Lipschitzian mapping on J such that f (0) = 0 . If w1,w2 > 0
are such that w1 +w2 � 1 , then holds the inequality

|w1 f (a1)+w2 f (a2)− f (w1a1 +w2a2)|
� 2L

(
(1− (w1 +w2)) |w1a1 +w2a2|+ w1w2

w1 +w2
|a1−a2|

)
.

(27)

Proof. By putting  = w1 +w2 and x = w1
w1+w2

·a1 + w2
w1+w2

·a2 in relation (6), we
have that ∣∣∣∣(w1 +w2) f

(
w1a1 +w2a2

w1 +w2

)
− f (w1a1 +w2a2)

∣∣∣∣
� 2L(w1 +w2) (1− (w1 +w2))

∣∣∣∣w1a1 +w2a2

w1 +w2

∣∣∣∣
= 2L(1− (w1 +w2)) |w1a1 +w2a2| .

(28)

On the other hand, considering (26) with w1
w1+w2

and w2
w1+w2

, instead of w1 and w2 ,
respectively, we obtain∣∣∣∣ w1

w1 +w2
f (a1)+

w2

w1 +w2
f (a2)− f

(
w1a1 +w2a2

w1 +w2

)∣∣∣∣
� L

(
w1

w1 +w2

∣∣∣∣a1− w1a1 +w2a2

w1 +w2

∣∣∣∣+ w2

w1 +w2

∣∣∣∣a2− w1a1 +w2a2

w1 +w2

∣∣∣∣
)

,

that is, ∣∣∣∣w1 f (a1)+w2 f (a2)− (w1 +w2) f

(
w1a1 +w2a2

w1 +w2

)∣∣∣∣
� L

(
w1

∣∣∣∣a1− w1a1 +w2a2

w1 +w2

∣∣∣∣+w2

∣∣∣∣a2− w1a1 +w2a2

w1 +w2

∣∣∣∣
)

,

(29)

after multiplying the previous relation by w1 +w2 both-sided. Now, utilizing the trian-
gle inequality, as well as relations (28) and (29), we have that

|w1 f (a1)+w2 f (a2)− f (w1a1 +w2a2)|

�
∣∣∣∣(w1 +w2) f

(
w1a1 +w2a2

w1 +w2

)
− f (w1a1 +w2a2)

∣∣∣∣
+
∣∣∣∣w1 f (a1)+w2 f (a2)− (w1 +w2) f

(
w1a1 +w2a2

w1 +w2

)∣∣∣∣
� 2L(1− (w1 +w2)) |w1a1 +w2a2|

+L

(
w1

∣∣∣∣a1− w1a1 +w2a2

w1 +w2

∣∣∣∣+w2

∣∣∣∣a2− w1a1 +w2a2

w1 +w2

∣∣∣∣
)

.

(30)
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The last inequality is obviously equivalent to (27), which completes the proof. �

It should be noticed here that if w1 +w2 = 1, then inequality (27) reduces to (26).
Furthermore, if f is convex, then the modulus function on the left-hand side of (27) is
redundant. This can be easily deduced from the first inequality in (30). Therefore, a
differentiable convex version of the previous theorem reads as follows:

COROLLARY 7. Let J ⊆ R be an interval such that 0 ∈ J , and let a1,a2 ∈ J .
Further, let f : J → R be a differentiable convex function such that f (0) = 0 and
L = sup

t∈[a1,a2]
| f ′ (t)| <  . Then,

0 � w1 f (a1)+w2 f (a2)− f (w1a1 +w2a2)

� 2L
(

(1− (w1 +w2)) |w1a1 +w2a2|+ w1w2

w1 +w2
|a1−a2|

)
,

provided that w1 +w2 � 1 and w1,w2 > 0 .

Our next goal is to establish a refinement of inequality (5). To do this, we recall a
more precise relation that holds for convex functions. It is well known (see, e.g. [2] or
[6]) that if f : J → R is a convex function and a,b ∈ J , then for any 0 �  � 1 holds
the inequality

f ((1−)a+b) � (1−) f (a)+ f (b)−2r

(
f (a)+ f (b)

2
− f

(
a+b

2

))
, (31)

where r = min{,1−} . Clearly, this inequality represents the refinement of the
Jensen inequality. In fact, the left inequality in (16) is a consequence of (31) (for more
details, see [6]). Further, since the modulus function is convex on R , we infer that

|(1−)a+b|� (1−)|a|+ |b|− r (|a|+ |b|− |a+b|) , (32)

for all a,b ∈ R and 0 �  � 1. It should be noticed here that (32) represents a more
accurate triangle inequality. This relation will be crucial in establishing refinement of
(5).

THEOREM 8. Let J ⊆ R be an interval such that a,b ∈ J , and let f : J ⊆ R → R

be a L-Lipschitzian mapping on J . Then the inequality

|(1−) f (a)+ f (b)− f ((1−)a+b)|
� 2L(1−) |b−a|− r

(
| f (a)− f ((1−)a+b)|

+ | f (b)− f ((1−)a+b)|− | f (a)+ f (b)−2 f ((1−)a+b)|
)
,

(33)

where r = min{,1−} , holds for all 0 �  � 1 .
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Proof. By virtue of the improved triangle inequality (32) and relation (4), it fol-
lows that

|(1−) f (a)+ f (b)− f ((1−)a+b)|
= |(1−)( f (a)− f ((1−)a+b))+ ( f (b)− f ((1−)a+b))|
�(1−) | f (a)− f ((1−)a+b)|+ | f (b)− f ((1−)a+b)|
− r
( | f (a)− f ((1−)a+b)|+ | f (b)− f ((1−)a+b)|

− | f (a)+ f (b)−2 f ((1−)a+b)|)
� 2L(1−) |b−a|− r

( | f (a)− f ((1−)a+b)|+ | f (b)− f ((1−)a+b)|
− | f (a)+ f (b)−2 f ((1−)a+b)|),

so (33) holds. �

REMARK 9. In particular, if 0 ∈ J and f (0) = 0, then (33) implies the inequality

| f (x)− f (x)| � 2L(1−) |x|− r
(| f (x)|+ | f (x)− f (x)|− | f (x)−2 f (x)|),

that holds for any x ∈ J and 0 �  � 1.

REMARK 10. According to our discussion in Section 2, a differentiable and con-
vex version of Theorem 8 follows easily. Moreover, taking into account the multivari-
able version of relation (31) (see, e.g., [2] or [6]), one can establish a refinement of
inequality (13) that corresponds to (33). These results are omitted here and left to the
reader.

In order to conclude this paper, we will exploit (5) in establishing a reverse of
another celebrated inequality. The Hermite-Hadamard inequality (see, e.g., [7] or [12])
asserts that if f : [a,b] ⊂ R → R is a convex function, then there holds the following
double inequality:

f

(
a+b

2

)
� 1

b−a

∫ b

a
f (x)dx � f (a)+ f (b)

2
. (34)

By virtue of (5), we are able to derive a reverse of the right inequality in (34).

THEOREM 9. Let J ⊆ R be an interval such that a,b ∈ J , and let f : J ⊆ R → R

be a L-Lipschitzian mapping on J . Then there holds the inequality∣∣∣ f (a)+ f (b)
2

− 1
b−a

∫ b

a
f (x)dx

∣∣∣ � L
3
|b−a|. (35)

Proof. Integrating relation (5) over the unit integral, with respect to variable  ,
we have that∫ 1

0
|(1−) f (a)+ f (b)− f ((1−)a+b)|d � 2L |b−a|

∫ 1

0
(1−)d

=
L
3
|b−a|.
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On the other hand, since

∫ 1

0
((1−) f (a)+ f (b)− f ((1−)a+b))d =

f (a)+ f (b)
2

− 1
b−a

∫ b

a
f (x)dx,

we have that

∣∣∣ f (a)+ f (b)
2

− 1
b−a

∫ b

a
f (x)dx

∣∣∣� ∫ 1

0
|(1−) f (a)+ f (b)− f ((1−)a+b)|d,

due to the triangle inequality for integrals. Clearly, the previous two inequalities yield
(35), as claimed. �

Of course, if f is a convex function, then the modulus function on the left-hand
side of (35) is redundant, so we obtain the reverse of the right inequality in (34).
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