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EXTENSION FORMULAS AND NORM
INEQUALITIES IN SOBOLEV HILBERT SPACES

SABUROU SAITOH

(Communicated by I. Peri¢)

Abstract. In this note, we shall consider extension formulas and norm inequalities for some
typical Sobolev Hilbert spaces. We see many related open problems.

1. Introduction

In order to give the background for the results in this note, we first recall the
fundamental general property of reproducing kernel Hilbert spaces based on [5].

We consider a positive definite quadratic form function K : E X E — C and its re-
striction of K to Ey x Ey, where Ej is a subset of E. Of course, the restriction is again
a positive definite quadratic form function on the subset Ey X Ey. The relation between
two reproducing kernel Hilbert spaces derived from the positive definite quadratic form
functions is given by the following theorem.

THEOREM A. ([5], page 78) Let Ey be a subset of E. Then the reproducing
kernel Hilbert space that K|Ey X Ey : Eg X Ey — C defines is given by:

HygyxE,(Eo) = {f € F (Ep) : f=flEy for some fc Hk(E)}. (D

Furthermore, the norm is expressed in terms of the one of Hg(E):
1 W ety ey (E0) = min{|| fl g (e) : f € Hk(E), f = f|Eo}- (2)

In Theorem A, note that the inequality, for any function f € Hg(E)

||fHHK\E0><E0(E0) < Hf”HK(E) (3)

holds, that is, the restriction map is a bounded linear operator.
At first, we shall consider the simplest Sobolev Hilbert space.
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The space Hg(R) is comprising of absolutely continuous functions f on R with
the norm

s = [0 + 1@ )ax. @
The Hilbert space Hg(R) admits the reproducing kernel
Koy = 5 [ el y)ade = 2 wyem).  ©)
W= og 1 e Py =3¢ %y €R).

Its restriction to the closed interval [a,b] is the reproducing kernel Hilbert space
Hsla,b] = W12[a,b] as a set of functions, and the norm is given by

b
i = \/ ([0rwr+rwpa) sir@p+er  ©

([5], pages 10-16).
The representation (5) means that the functions f(x) of Hg(R) are represented in
the form

1) = 55 [ T e (BE F ()

with the functions F (&) satisfying

37 | TElr©PaE <

and the norm is represented by

1 ey = \/ 3 L EIF @R

The restriction mapping L from the space Hg(R) to the space Hgla,b] is, of course,
not injective and so, in particular, we obtain the norm inequality

1 g (=) = 11 b a3

that is,

b
[+ irwRac ([ Qrwr+1r @R+ r@f+ ek @

By our general theory, we can give the precise correspondence of the two spaces;
that is,

Fliap) (%) = (F(), K (E,%)) g () (8)

and

f(x) = (f[aJ)](g)aK(gax))Hs[mb])a )
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with the minimum extension f of fi, in Hs([a,b]) to Hs(R). Indeed, we can derive
directly the identity (9) for the minimum extension f of fi,; in Hs[a,b]) to Hs(R).
See the following proof of Theorem 1 for the space W2?(R).

However, for the minimum extension formula we have the general formula in The-
orem A,

f(p) = (f‘EO(')’K(Hp))Hk‘onEo(Eo);

for the minimum extension f of f|Ey. See the proof of Proposition 2.5 in [5] (pages
79-80), in particular, (2.48). There, we see some general and abstract proof, however,
for the proof of Theorem 1 for the space W2?(R), we can see the constructive proof
for the minimum norm function.

We obtained several realizations of restricted reproducing kernel Hilbert spaces as
in (6), however, they are, in general, involved. See [4], [5]. The formula (6) is a simple
result, however, the realization of the restricted reproducing kernel spaces is, in general,
complicated in this sense.

n
OPEN PROBLEM. Let m > 3 be an integer. Denote by ,,Cy the binomial coeffi-

cient and by W™2(R") the Sobolev space whose norm is given by

i Yooyl [99F(x) 2
F m, ny — mC — d . 10
H ”W it vz=:0 ! an”z\alfva! R dxc ' 1o
1+ |0=
Then, the reproducing kernel K is given by
_ 1 exp(i(x—y)- &) n
K(x7y) - (271_)" /n (l+ |§‘2)m d& (.X,y eR ) (11)

([5], page 22). How will be the realization of the norm for the restricted reproducing
kernel Hilbert space to some nontrivial subset (the typical case is a sphere {r < a}) of
R" as in the case (6) of one dimensional way?

2. The typical case for the space W??(R)

For the Sobolev Hilbert space W2?(R) defined to be the completion of CZ°(R)
with respect to the norm:

1 llw22®) = \/||f”HL2(R)2 202 my* + 1 2wy

we have the reproducing kernel

G(s,t)=~e (14 ]s—1]) (s,r €R)

1
4
([5], page 21-22).

For simplicity, in this section, we shall consider functions in real valued functions.
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In order to look for the reproducing kernel Hilbert space Ws([a,b]),(a < b) ad-
mitting the restricted reproducing kernel G(s,t) to the interval [a,b], we calculate the
integral, for any function f € W22(R)

(f(s)7G(s7t))W2‘2([a7b]).

By setting G;(s) = G(s,t), we note that

t—s+1 s—t+1
Gi(s) = 7 exp(s = 1) H(a (5) + 5 explt = )i (5)
dG, t—s s—t
K(S) = exp(s —1) X(as)(5) — e exp(t —5) Xjrp) (5),
d>G; t—s—1 s—t—1

(s)= 1 exp(s —1) X(as)(5) + 1 exp(t —s)xpp(s).  (12)
Then, by integration by parts repeatedly, we have

(f(5), G(8,0))w22((ap))

= )+ fl@) =2 expla—1) ~ (@) =5 expla—1)
)22 exp (= 1)+ £ () 2L expt — ). (13)

That is
(f(5),G(s,1))w22(a.))
— f() + f(a)Gla, )( 1+1+t1 )+f’(a)G’(a,t)<$—1)

+f(b)G(b,1) ( 1+ 1+b1 ) + f'(b)G'(b,1) (b% - 1) (14)

We thus have the desired identity admitting the restricted reproducing kernel of
G(s,t) to the interval [a,b]

(£, Gt wyany = (GO0 — Fla) — 2 expla—1)
@) =S expla—1)+ £(0) " exp(t - b)
) 2 L expe— ). (15)

We can see that this identity is right, indeed, we shall give another natural method
in order to see it.

In order to look for the norm admitting the restricted reproducing kernel of G(s,)
to the interval [a,b], note that the integral

[ (@R 2 0P 4502 dn (16)



FORMULAS AND INEQUALITIES IN SOBOLEV HILBERT SPACES 493

is identical with its integral of the function

f(x) =4f(a)Ga(x) — 4f'(a) Gy (x) (17)

that is the minimum norm square over (—eo,a) of the functions W22(R) taking the
values f(a) and f'(a).

Here, following Theorem A, we wish to look for the function with the minimum
norm; on the interval [a,b] the functions are the same and so the minimum should be
considered on the intervals (—eo,a] and (b,o<]. On the interval (—oo,a] case, it is given
by the function (17) in term of the reproducing kernel. The function (17) is given by

f(x)=[(A+B)(a—x)+Alexp(x —a)
with
A=f(a), B=—f(a).
Then, by direct calculations, we have

/_: (£ ()2 +2f (0% + F(x)?) dx = 2(A2 + AB+ B?)

=2(f(a)*— f(a)f' (a)+ f'(a)*).  (18)

From this result, we see that the corresponding inner product over (—eo,a) is repre-
sented by

(1. S2)w2( ) = 2(fi(@)f2(a) + fi(a)f3(a))
+5(h(@) ~ fi(@) (2(a) ~ fi(a)
~3(fila) + fit@) (@) + (@) (19)
The situation for the integrals over (b,+e) is similar and so we obtain the desired
isometric identity

Hf”%VZ,Z(R) = ||fH‘2)VZA,2([a,b]) + 2(f(a)2 —f(a)f/(a) —|—f/(a)2)
F2(f(b)* = f(B)f (b) + ' (b)) (20)

Therefore, the inner product relation is given by

(oS hwaoimy = (iS22 oy + 201 (@) (0) + (@) 3(a)
+5(fi(a) = (@) () ~ )
~5 (@) + A@)(fafa) + (@)
PO 0) + A + 5 (6)~ FE)(0) ~ £0))

_;ﬂ@+ﬂwMﬁw+ﬁw»
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We can confirm that this identity and (15) are consistent, directly.
Indeed,

2f(@)Gi(a) + £ (@Gi(@) + 3 (f(a) ~ (@)(Gi(a) ~ Gi(@)
3 (@) +£(@)(Gi(a) + Gi(a)
is identical with
@)= expla—1)+ (@) 5 expla—1).

For the point b, the result is similar.

Of course, the isometrical identity and the inner product forms identity are valid
with the minimum extension functions in Theorem A.

In particular, we have

THEOREM 1. The extension of the functions f in Ws(|a,b]) to W>?(R) with the
minimum norm is given by

f@6) = (£,G(1))w22(ap)) +2(f(@)Gi(a) + f'(a)Gi())
1

+§(f(a) — f'(a))(Gi(a) — Gi(a))

1

—5(f(@)+ f'(@)(Gi(a) + Gy(@) +2(f () Gi(b) + f'(B) G; (b))

1

+5(F(0) = f'(8))(Gi(b) — Gi(b)) — %(f(b) +£(0))(Gi (D) + Gy(b)).

COROLLARY 1. We obtain the inequality for real valued functions f of W>2(R)
1By = 17 1Pagy + 21 gy + 11
> 1 sy + 20y + 1122
+2(f(a)? = fl@)f (@) + £ (@) +2(/(B)* = [(B)f' (B) + 1 (B)%).

Equality holds for the minimum extension stated in Theorem 1.

Related versions

By the similar method or directly we have the following results.
Let

K(s,1) E/O Wdu = %(exp(—|s—t\) +exp(—s—1)) (21)

for s,¢ > 0. Then Hg(0,%) = W!?(0,0) as a set of functions and the norm is given
by:

2 oo
o =y 2 [ 0P 417002 @2
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([5], page 12-13). From the restriction of the kernel K(s,?) to [a,b], a > 0, we have
the norm inequality

) 2 1 —exp(—2a) 5
1/ e 0.00) = Em\ﬂaﬂ
b
+2 [ @R+ P dut 21 0)P @3
Indeed, the minimum norm function f,(x) having f(a) over [0,q] is given by
Fole) = T (expla— )+ expl-x )

and its norm square over [0,4a] is given

2 1 —exp(—2a)

7 1+ exp(—2a) YOI

Meanwhile, the minimum norm function f,(x) having f(b) over [b,o°) is given by

Jo(x) = uc)

B W(—ﬂ)) (exp(b—x) +exp(—x—b))

and its norm square over [b, o) is given by
2
Z|f )
217(0)
Let

K(s,t)z/omwdu: (exp(—|s—1]) —exp(—s—1))  (24)

T
u?+1 4
for s, > 0. Then we have

as a set of functions and the norm is given by

2 oo
o =\ 2 [ 1@ 100 26

([5], 13-14). From the restriction of the kernel K(s,7) to [a,b],a > 0, we have the
norm inequality, similarly

2 1 +exp(—2a)
1 —exp(—2a)

2 b 2
= [ P+ 1P du+ 2B e

f(a)]?

11z 0.00) =
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Let
K(s,t) = min(s,z) (s, > 0). (28)
Then we have
H (0,00) = {f eW'2(0,e0) : lim f(e) = 0} (29)

as a set of functions and the norm is given by

Flgiom =1/ | 1 w)2du (30)

([5], 14-15). From the restriction of the kernel K(s,t) to [a,b], a > 0, we have the
norm inequality

1 b
I Bict0 > U@+ 1) 6D
Indeed, the minimum norm function f,(x) having f(a) over [0,q] is given by
fa(x) == f(a)
and its norm square over [0,a] is given by
1 2
@l
Meanwhile, the minimum norm function f,(x) having f(b) over [b,o°) is given by
fo(x) =0

and its norm square over [b,o°) is given by 0.
We have many type Sobolev Hilbert spaces. For example, for o> = y> —a? > 0,
the kernel

_exp(—als—1])

K(s,1) T

{cos(a)\s —1])+ % sin(w|s — t\)}
is the reproducing kernel for the Sobolev Hilbert space admitting the norm
b
el = dorPu(@)? + dend (@2 + [ (o (6) + 200 (0) + Pule)) " ds

(E. Parzen, [2]).
See also [1] and the recent paper A. Yamada ([6]).

3. Basic applications of the realization of the restricted reproducing
kernel Hilbert space

Theorem 1 and other derived identities show that the extension of the function
with the minimum norm to the whole space (the half space) from a closed interval [a, b]
is given simply. This means that in the related Fourier transform, the inversion that
corresponds to the function with the minimum norm may be calculated in terms of the
values on the interval [a,b].
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