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CURVATURE ESTIMATES OF A SPACELIKE

GRAPH IN A LORENTZIAN PRODUCT SPACE
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Abstract. Let M be an n -dimensional complete Riemannian manifold with the metric 〈,〉M and
let M×R1 be a Lorentzian product space M×R with the metric 〈,〉M − dt2 . We first provide
Heinz type curvature estimates for the spacelike graph in M×R1 of a C2 -function f defined on
a closed geodesic ball Bx0 (R) of radius R centered at x0 on M . In particular, the estimates are
related to the radius R and the value of ‖ f (x1)‖ for which f (x1) =maxBx0 (R) f . Secondly, we

give L2 -estimates of the mean curvature for a spacelike graph defined on a compact Riemannian
manifold.

1. Introduction

Curvature estimate for a graphical surface, which is a non-parametric surface, is
a natural consideration to analyze the surface. However, a graph with no geometric
condition may have curvature as high as desired at some point on a bounded domain
although the height is generally bounded on the domain. The following results are
related to the estimates of infimums of curvatures for the graph with no geometric
condition: Heinz [9] obtained the following estimates for the mean curvature H and
Gaussian curvature K of the graph of a function defined on an open disk Dx0(r) of
radius r centered at x0 on R

2 :

inf |H| � 1
r
,

inf |K| � 3e2

r2 ,

where e is the natural number. Chern [3] and Flanders [5] proved independently the
above inequalities to higher dimensions. Salavessa [13] extended the above result for
the graph of a smooth function f : M → N to a product space (M×N,g×−h) of two
Riemannian manifolds (M,g) and (N,h) . Coswosck and Fontenele [4] provided simi-
lar curvature estimates for graphs on a Riemannian domain according to the infimum of
the Ricci curvature of the domain. In particular, Honda, Kawakami, Koiso and Tori [10]
provided Heinz-type estimates for spacelike and timelike graphs on a relatively com-
pact domain in the Minkowski space, which are related to the maximum value for the
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norm of the gradient of the function on the domain. We can find related results [2, 6]
and the references therein.

In this paper, we mainly consider a spacelike graph over a Riemannian manifold in
a Lorentzian product space based on the Riemannian manifold, which is a natural way
to construct a spacetime based on a Riemannian manifold. Let M be an n -dimensional
Riemannian manifold with the metric 〈,〉M and M×R1 be a Lorentzian product space
M×R with the non-degenerate bilinear symmetirc form

〈,〉 = 〈,〉M −dt2.

Typical examples are an (n+1)-dimensionalMinkowski space L
n+1 and homogeneous

product spaces H
n×R1 and S

n×R1 where H
n and S

n are n -dimensional hyperbolic
space and sphere, respectively. The spacelike graph  f of a function f on D ⊂ M is
defined by the following set:

 f = {(x, f (x)) ∈ M×R1 | x ∈ D ⊂ M and ‖ f‖ < 1},
where  is the gradient on M . We denote by the sectional curvature, Ricci curvature
and scalar curvature of M by KM , RicM and KM , respectively, and also denote the
mean curvature, Ricci curvature, scalar curvature and the second fundamental form of
 f by H , Ric , K and B , respectively.

We organize this paper into two parts in terms of curvature estimates for  f : one
is Heinz type estimates for  f on a closed geodesic ball in M and the other is L2 -
estimates of the mean curvature of a spacelike graph in M×R1 where M is a compact
manifold using Poincaré and Sobolev inequalities.

In Section 2, we deal with the following Heinz type estimates for H , K and |B|
of  f in M×R1 :

THEOREM 1. (Theorems 7 and 8) Let M×R1 be a Lorentzian product space based
on an n-dimensional complete Riemannian manifold M and Bx0(R) a closed geodesic
ball of radius R centered at x0 in M with C = maxBx0 (R) KM and c = minBx0 (R) KM .

Suppose that there is a point x1 on Bx0(R) such that f (x1) = maxBx0 (R) f and

‖ f (x1)‖=  for a function f ∈C2(Bx0(R)) . Then, the spacelike graph  f in M×R1

satisfies

1. c < 0

min
 f

|H| � n
√−c√

1−  2
coth(

√−cR),

min
 f

|K| � 2c(2n−1)(n−1) 2

1−  2 coth2(
√−cR)+n(n−1)|C|.

2. c � 0

min
 f

|H| � n
R
√

1−  2
,

min
 f

|K| � 2(2n−1)(n−1) 2

R2(1−  2)
+n(n−1)C.
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In particular, the above inequalities hold if  = maxBx0 (R)‖ f‖ .

THEOREM 2. (Theorem 9) Let M×R1 be a Lorentzian product space based on
an n-dimensional complete Riemannian manifold M and Bx0(R) a closed geodesic
ball of radius R centered at x0 in M with c = minBx0 (R) KM . Suppose that there is a

point x1 on Bx0(R) such that f (x1) = maxBx0 (R) f and ‖ f (x1)‖ =  for a function

f ∈C2(Bx0(R)) . Then, the spacelike graph  f in M×R1 with Ric < (n−1)c satisfies

min
 f

|B| � 3(n−2)
√

1−  2

√−ccoth(
√−cR), c < 0,

min
 f

|B| � 3(n−2)


R
√

1−  2
, c > 0.

In particular, the above inequalities hold if  = maxBx0 (R)‖ f‖ .

Poincaré and Sobolev inequalities are important inequalities to study the partial
differential equation theory, which are related to a function and the norm of its gradient
on a domain. In Section 3, let M be a compact manifold and then we obtain three
L2 -estimates for the mean curvature H of  f in M×R1 from Poincaré and Sobolev
inequalities on M .

THEOREM 3. (Theorem 10) Let M×R1 be a Lorentzian product space based on
an n-dimensional compact Riemannian manifold M and  f the spacelike graph of
f ∈C2(M) with the mean curvature H in M×R1 . Then, f satisfies

1

c2
M

‖ f − f ‖2
L2 � ‖ f‖L2‖H‖L2 +

∫
M

〈
f f√

1−‖ f‖2
,

〉
M

ds,

where cM is a positive constant related to n and M , namely, Poincaré constant, and 
is the outward unit normal vector of M.

The following theorems are related to L2 -norm of the mean curvature of spacelike
graphs defined on n -dimensional compact Riemannian manifolds with no boundary or
with a smooth boundary. We denote wn by the volume of the n -dimensional unit sphere
in R

n+1 .

THEOREM 4. (Theorem 11) Let M×R1 be a Lorentzian product space based on
an n-dimensional compact Riemannian manifold M , n � 3 , with no boundary and
 f the spacelike graph of f ∈ C2(M) with the mean curvature H in M×R1 and let
1
p = 1

2 − 1
n . Then, there exists a positive number A such that

‖ f‖2
Lp � 4

n(n−2)w
2
n
n

‖ f‖L2‖H‖L2 +A‖ f‖2
L2 .



502 D. KIM

THEOREM 5. (Theorem 12) Let M×R1 be a Lorentzian product space based on
an n-dimensional compact Riemannian manifold M , n � 3 , with a smooth boundary
and  f the spacelike graph of f ∈C2(M) with the mean curvature H in M×R1 and

let q = 2(n−1)
n−2 . Then, there exists a positive number B such that

‖ f‖2
Lq(M) � 2

(n−2)w
1

n−1
n−1

(
‖ f‖L2‖H‖L2 +

∫
M

〈
f f√

1−‖ f‖2
,

〉
ds

)
+B‖ f‖2

L2(M).

2. Heinz type curvature estimates of the graph of f

We consider that an n -dimensional Riemannian manifold M with the metric 〈,〉M
and an (n+1)-dimensional Lorentzian product space M×R1 with the non-degenerate
bilinear symmetirc form 〈,〉 = 〈,〉M −dt2. More precisely, let M×R be a product set
of M and R . Let 1 : M×R→M and 2 : M×R→ R be the projection maps defined
by 1(x, t) = x and 2(x,t) = t . We consider a metric 〈,〉 = 〈,〉M − dt2 on M×R as
follows: for all (x, t) ∈ M×R and all v,w ∈ T(x,t)(M×R) , the metric 〈,〉 is defined by

〈v,w〉 = 〈d1(v),d1(w)〉M −dt2(d2(v),d2(w)).

The tilde over a letter is used to denote its lift to M ×R1 . Let f be a C2 -function
defined on M and X be the non-parametric form of the graph  f of f in M ×R1 ,
namely, X(x) = (x, f (x)) where x ∈ M . It follows that

dXp(v) = ṽ+ 〈 f (p),v〉M 
 t

,

where  is the gradient on M . Then, we have

‖dXp(v)‖2 = ‖ṽ‖2−〈 f (p),v〉2M , (1)

Let  be a unit normal vector field to  f :

 =
1

W̃

(
̃ f +


 t

)
,

W =
√
|‖ f‖2−1|=

√
1−‖ f‖2.

The second fundamental form B of  f and the Hessian 2 on M are defined as fol-
lows: for v,w ∈ TpM and f ∈C2(M) ,

〈B(dXp(v),dXp(w)),〉 = − 1
W(p)

(2 f )p(v,w), (2)

(2 f )p(v,w) = 〈v f ,w〉.
Let {ei} be an orthonormal basis of  f in M×R1 and {vi} be a basis on Tp̃M such
that dXp(vi) = ei . The principal curvatures i for i = 1, . . . ,n and the mean curvature
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H of  f at p̃ are

i(p̃) = −〈̃ei ei,〉 = −〈B(ei,ei),〉 =
1

W (p)
(2 f )p(vi,vi),

H(p̃) = −
n


i=1

〈̃ei ei,〉 = −
n


i=1

〈B(ei,ei),〉 =
n


i=1

1
W (p)

(2 f )p(vi,vi).

LEMMA 1. Let M be a complete Riemannian manifold and Bx0(R) the closed
geodesic ball of radius R centered at x0 in M . Let s(·) = distM(·,x0) be the distance
on M from x0 and h : Bx0(R) → R the function defined by

h(x) =
√

s2(x)+ r2,

where r is a positive number. Then, the followings hold:

1. The gradient of h at x ∈ Bx0(R) is

h(x) =

⎧⎨
⎩

0, x = x0,
s(x)√

r2 + s2(x)
s(x), x ∈ Bx0(R).

2. The Hessian of h at x ∈ Bx0(R) for a unit vector v ∈ TxM is

(2h)x(v,v) =

⎧⎪⎪⎨
⎪⎪⎩

1
r
, x = x0,

r2

(r2 + s2(x))
3
2

〈s(x),v〉2 +
s(x)√

r2 + s2(x)
(2s)x(v,v), x ∈ Bx0(R).

Proof. Let v be a unit tangent vector on Tx0M and  : (−,)→M be the geodesic
with (0) = x0 and  ′(0) = v . Then, we have s((t)) = t and

〈s(x0),v〉 =
d
dt

s((t))
∣∣∣∣
t=0

=
d
dt

t

∣∣∣∣
t=0

= 1,

(2s)x0(v,v) =
d2

dt2
s((t))

∣∣∣∣
t=0

=
d2

dt2
t

∣∣∣∣
t=0

= 0.

By direct computation, we have

h =
s√

s2 + r2
s, (3)

vh = v

(
s√

s2 + r2

)
s+

s√
s2 + r2

vs

=
r2

(r2 + s2)
3
2

〈s,v〉s+
s√

r2 + s2
vs,

(2h)(v,v) =
r2

(r2 + s2)
3
2

〈s,v〉2 +
s√

r2 + s2
(2s)(v,v). (4)
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Since s(x) = distM(x0,x) , the equations (3) and (4) at x = x0 yield

h(x0) =
s(x0)√

s2(x0)+ r2
s(x0) = 0,

(2h)x0(v,v) =
r2

(r2 + s2(x0))
3
2

〈s(x0),v〉2 +
s(x0)√

r2 + s2(x0)
(2s)x0(v,v)

=
1
r
. �

LEMMA 2. Let M be a complete Riemannian manifold and Bx0(R) the closed
geodesic ball of radius R centered at x0 in M . Suppose that there is a point x1 such
that f (x1) = maxBx0 (R) f and ‖ f (x1)‖ =  for a function f ∈ C2(Bx0(R)) and g :

Bx0(R) → R is a function defined by

g(x) =

{√
s2(x)+ r2,  
= 0,

0,  = 0,

where r = R
√

1− 2

 . Then, there exist a point x ∈ Bx0(R) and a constant r such that

(g− f )(x) = minBx0 (R)(g− f ) and ‖(g− f )(x)‖ = 0 .

Proof. Since Bx0(R) is compact, there is a point x1 ∈ Bx0(R) such that f (x1) =
maxBx0 (R) f and ‖ f (x1)‖ =  . We define a function gt : Bx0(R) → R by

gt(x) =

{√
s2(x)+ r2 + t,  
= 0,

t,  = 0,

where r = R
√

1− 2

 . Let  f be the spacelike graph of a function f ∈ C2(Bx0(R)) .
For a sufficiently large t , the graph gt of gt is contained in the above component of
(Bx0(R)×R) \ f . If t decreases until that gt touches  f at a first touching point,
say t = t0 and p̃ = (p, f (p)) ∈  f , then p is a minimum point of g− f , namely,
(g− f )(p) = minBx0 (R)(g− f ) . It is possible to occur that the first touching point p̃ is
on the interior or the boundary of  f .

We first assume that p̃ is on the interior of  f . Since t0 is a maximum value such
that (gt0 − f )(p) = 0, the tangent space Tp̃ f at p̃ to  f coincides to Tp̃gt0

at p̃ to

gt0
. Therefore, g− f has a minimum point p∈ Bx0(R) satisfying ‖(g− f )(p)‖ = 0.
Secondly, we assume that p̃ is on the boundary of  f , namely, p̃ = (x1, f (x1)) .

Let  : [0,R] → M be a minimizing geodesic segment from x0 to x1 . Because  is
minimizing, (t) does not pass through the cut locus Cut(x0) of x0 . Note that  f (x1)
is parallel to  ′(R) by the assumption of x1 . We consider two cases according to the
value of  :
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1.  
= 0
By Lemma 1, we have

d
dt

(gt0 − f )((t))
∣∣∣∣
t=R

=
d
dt

(g− f )((t))
∣∣∣∣
t=R

= 〈(g− f )(x1), ′(R)〉
= 〈g(x1), ′(R)〉− 〈 f (x1), ′(R)〉
=

R√
R2 + r2

〈
s(x1), ′(R)

〉−〈 f (x1), ′(R)〉

=
R√

R2 + r2
− 

= 0.

2.  = 0
By direct computation, we have

d
dt

(gt0 − f )((t))
∣∣∣∣
t=R

= 〈g(x1), ′(R)〉− 〈 f (x1), ′(R)〉

= −〈 f (x1), ′(R)〉
= 0.

Therefore, the function g− f has a minimum value at the point x1 ∈ Bx0(R) such that
‖(g− f )(x1)‖ = 0. �

We need the following Hessian comparison theorem to compare the principal cur-
vatures of  f and g (see, [11, 14]):

THEOREM 6. (Hessian comparison theorem) Let M be a complete Riemannian
manifold with sectional curvature bounded below by a constant c and  : [0,t] → M a
minimizing geodesic on M with (0) = p. Let s : [0,t] → R be the smooth distance
function from p to (t) on M . Then, for any unit vector v ∈ T(t)M that is perpendic-
ular to  ′(t) ,

(2s)(t)(v,v) �

⎧⎪⎨
⎪⎩
√

ccot(
√

ct), c > 0,

t−1, c = 0,√−ccoth(
√−ct), c < 0.

PROPOSITION 1. Let M ×R1 be a Lorentzian product space based on an n-
dimensional complete Riemannian manifold M and Bx0(R) a closed geodesic ball
of radius R centered at x0 in M with c = minBx0 (R) KM . Suppose that there is a

point x1 on Bx0(R) such that f (x1) = maxBx0 (R) f and ‖ f (x1)‖ =  for a function

f ∈C2(Bx0(R)) . Then, there exists a point p̃ on the spacelike graph  f of f in M×R1
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such that principal curvatures i(p̃) for i = 1, . . . ,n of  f satisfy

i(p̃) � √
1−  2

√−ccoth(
√−cR), c < 0,

i(p̃) � 
R
√

1−  2
, c � 0.

In particular, the inequalities hold if  = maxBx0 (R) ‖ f‖ .

Proof. Let g : Bx0(R) → R be the function defined by

gt(x) =

{√
s2(x)+ r2 + t,  
= 0,

t,  = 0,

where r=R
√

1− 2

 . In particular, we have the following inequality for =maxBx0 (R) ‖ f‖ :

√
1−  2

� √
1− 

2
.

Let {ei} be an orthonormal basis of  f in M×R1 and {vi} be a basis on Tp̃M
such that dXp(vi) = ei . By Lemma 2, the function g− f has the global minimum at
point p ∈ Bx0(R) . If we consider  = 0, then the followings hold: for v ∈ Tp̃ f ,

 f (p) = g(p) = 0,

(2 f )p(v,v) � (2g)p(v,v) = 0,

and then for v = vi ,

i(p̃) =
1

W (p)
(2 f )p(vi,vi) � 0.

Then, we have only  
= 0. There are two cases: p = x0 and p 
= x0 . In particular, the
case of p 
= x0 can be considered as two possibilities: p ∈ Cut(x0) and p /∈ Cut(x0) .

1. p = x0

By Lemmas 1 and 2, we have

 f (x0) = g(x0) = 0,

(2 f )x0 (v,v) � (2g)x0(v,v) =
‖v‖2

r
,

for v ∈ Tx0M . The equations (1) and (2) yield

−〈B(dXx0(v),dXx0(v)),〉 =
1

W (x0)
(2 f )x0(v,v) � ‖v‖2

r
=

‖dXx0(v)‖2

r
.
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For v = vi , we have

i(p̃) = −〈B(dXx0(vi),dXx0(vi)),〉
‖dXx0(vi)‖2 � 1

r
.

Besides, 1
r <

√−ccoth(
√−cr) for any c < 0.

2. p 
= x0 and p /∈ Cut(x0)
By Lemmas 1 and 2, we have for any v ∈ TpM ,

 f (p) = g(p) =
s(p)√

r2 + s2(p)
s(p),

(2 f )p(v,v) � (2g)p(v,v)

=
r2

(r2 + s2(p))
3
2

〈s(p),v〉2 +
s(p)√

r2 + s2(p)
(2s)p(v,v).

It is easy to consider ‖s(p)‖ = 1 and ‖v‖2 = ‖v⊥‖2 + 〈v,s(p)〉2 where v⊥ is the
normal component of s(p) . By the equation (1), we obtain

‖dXp(v)‖2 = ‖v⊥‖2 + 〈v,s(p)〉2 −〈 f (p),v〉2

= ‖v⊥‖2 + 〈v,s(p)〉2 − s2(p)
r2 + s2(p)

〈s(p),v〉2

= ‖v⊥‖2 +
r2

r2 + s2(p)
〈s(p),v〉2.

It is easy to verify that for u ∈ TpM satisfying that u is parallel to s(p) ,

us(p) = 0.

Thus, we obtain

−〈B(dXp(v),dXp(v)),〉
=

1
W (p)

(2 f )p(v,v)

�
√

r2 + s2(p)
r

(
r2〈s(p),v〉2
(r2 + s2(p))

3
2

+
s(p)(2s)p(v,v)√

r2 + s2(p)

)

=
r〈s(p),v〉2
r2 + s2(p)

+
s(p)

r
(2s)p(v,v)

=
‖dXp(v)‖2

r
− ‖v⊥‖2

r
+

s(p)
r

(2s)p(v⊥,v⊥)

=
‖dXp(v)‖2

r
+

‖v⊥‖2

r

(
s(p)(2s)p

(
v⊥

‖v⊥‖ ,
v⊥

‖v⊥‖
)
−1

)
.
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If we assume v⊥ = 0, then the following inequality holds for v = vi :

i(p̃) = −〈B(dXp(vi),dXp(vi)),〉
‖dXp(vi)‖2 � 1

r
=


R
√

1−  2
.

In particular, the inequality 1
R <

√−ccoth(
√−cR) for each R yields that the first

result holds. We assume v⊥ 
= 0. According to Hessian comparison theorem (The-
orem 6), we distinguish two cases as follows:

(a) c < 0
By Hessian comparison theorem (Theorem 6), we obtain

−〈B(dXp(v),dXp(v)),〉 � ‖dXp(v)‖2

r

+
‖v⊥‖2

r

(
s(p)

√−ccoth(
√−cs(p))−1

)
� ‖dXp(v)‖2

r

+
‖dXp(v)‖2

r

(
s(p)

√−ccoth(
√−cs(p))−1

)
=

‖dXp(v)‖2

r
s(p)

√−ccoth(
√−cs(p))

� ‖dXp(v)‖2

r
R
√−ccoth(

√−cR)

=
√

1−  2
‖dXp(v)‖2√−ccoth(

√−cR).

Therefore, for v = vi , we have

i(p̃) = −〈B(dXp(vi),dXp(vi)),〉
‖dXp(vi)‖2 � 

√−c√
1−  2

coth(
√−cR).

(b) c � 0
Hessian comparison theorem (Theorem 6) implies

i(p̃) = −〈B(dXp(vi),dXp(vi)),〉
‖dXp(vi)‖2 � 1

r
=


R
√

1−  2
.

3. p 
= x0 and p ∈ Cut(x0)
Let  : [0,s(p)] → M be a minimizing geodesic segment from x0 to p passing
through a point z = () sufficiently close to x0 . We consider the distance func-
tion s(x) from z to x . Then, we have p /∈ Cut(z) and define the following function
g : Bp(Rp) → R where Rp = min{s(p),R− s(p)} :

g(x) =

{√
(s(x)+ )2 + r2,  
= 0

0  = 0,
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where r = R
√

1− 2

 . In particular, for all x ∈ Bp(Rp) , g satisfies g(p) = g(p) and

g(x) � g(x) and then

(g− f )(x) � (g− f )(x) � (g− f )(p) = (g− f )(p).

It is easy to verify that if  = 0, then ( f )(p) = 0 and (2 f )p(v,v) � 0. By direct
computation, we have for all v ∈ TpM ,

 f (p) = g(p) =
s(p)√

s2(p)+ r2
s(p),

(2 f )p(v,v) � (2g)p(v,v) =
r2〈s(p),v〉2
(s2(p)+ r2)

3
2

+
s(p)(2 s)p(v,v)√

s2(p)+ r2
.

Also, we have

‖v‖2 = ‖v⊥‖2 + 〈v,s〉2,

‖dXp(v)‖2 = ‖v⊥‖2 +
r2〈s(p),v〉2

s2(p)+ r2 .

Combining the above equations yields

−〈B(dXp(v),dXp(v)),〉

� ‖dXp(v)‖2

r
+

‖v⊥‖2

r

(
s(p)(2 s)p

(
v⊥

‖v⊥‖ ,
v⊥

‖v⊥‖
)
−1

)
.

In particular, if we assume v⊥ = 0, then

−〈B(dXp(v),dXp(v)),〉
‖dXp(v)‖2 � 1

r
=


R
√

1−  2
<

√
1−  2

√−ccoth(
√−cR).

According to Hessian comparison theorem (Theorem 6), we have two cases:

(a) c < 0
It follows that

−〈B(dXp(v),dXp(v)),〉 � ‖dXp(v)‖2

r
(s(p)+ )

√−ccoth(
√−cs(p))

� ‖dXp(v)‖2

r
(R+ )

√−ccoth(
√−cR).

Letting  → 0, we obtain

i(p̃) = −〈B(dXp(vi),dXp(vi)),〉
‖dXp(vi)‖2 � 

√−c√
1−  2

coth(
√−cR).
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(b) c � 0
We have KM � 0 on Bx0(R) and obtain

−〈B(dXp(v),dXp(v)),〉 � ‖dXp(v)‖2

r

(
1+


s(p)

)
.

Letting  → 0, we arrive at the following result:

i(p̃) = −〈B(dXp(vi),dXp(vi)),〉
‖dXp(vi)‖2 � 

R
√

1−  2
. �

THEOREM 7. Let M×R1 be a Lorentzian product space based on an n-dimen-
sional complete Riemannianmanifold M and Bx0(R) a closed geodesic ball of radius R
centered at x0 in M with c =minBx0 (R) KM . Suppose that there is a point x1 on Bx0(R)

such that f (x1) = maxBx0 (R) f and ‖ f (x1)‖ =  for a function f ∈ C2(Bx0(R)) .
Then, the spacelike graph  f of f in M×R1 satisfies

min
 f

|H| � n
√−c√

1−  2
coth(

√−cR), c < 0,

min
 f

|H| � n
R
√

1−  2
, c � 0

In particular, the above inequalities hold if  = maxBx0 (R)‖ f‖ .

Proof. If H changes sign, then the result follows trivially. Suppose that H does
not vanish at any point on Bx0(R) . By Proposition 1, we have for i = 1, . . . ,n ,

i(p̃) � 
√−c√
1−  2

coth(
√−cR), c < 0,

i(p̃) � 
R
√

1−  2
, c � 0.

Since Bx0(R) is compact and the functions f and g in Lemma 1 is of C2(Bx0(R)) , the
following inequalities are obtained:

min
 f

|H| � H(p̃) =
n


i=1

i(p̃) � n
√−c√

1−  2
coth(

√−cR), c < 0,

min
 f

|H| � H(p̃) =
n


i=1

i(p̃) � n
R
√

1−  2
, c � 0. �

REMARK 1. Salavessa [13] proved an estimate of minimum value of mean curva-
ture for a spacelike graph  f ⊂ M×R1 of a function f defined on a compact domain
D ⊂ M with bD = maxD ‖ f‖ :

min
 f

|H| � bD√
1−b2

D

Volg(D)
Volg(D)

, (5)
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where H is the mean curvature not divided by n . Let Mc be a space form with constant
sectional curvature c and D = Bx0(R) a closed ball of radius R centered at x0 in Mc .
Although  � bD , we assume  = bD to compare Theorem 7 to the inequality (5).
Then, if c = −1 or 1, then the inequality (5) is sharper than Theorem 7 and if c = 0,
then the estimates are the same.

THEOREM 8. Let M×R1 be a Lorentzian product space based on an n-dimen-
sional complete Riemannian manifold M and Bx0(R) a closed geodesic ball of radius
R centered at x0 in M with C = maxBx0 (R) KM and c = minBx0 (R) KM . Suppose that

there is a point x1 on Bx0(R) such that f (x1) = maxBx0 (R) f and ‖ f (x1)‖ =  for

a function f ∈C2(Bx0(R)) . Then, the spacelike graph  f of f in M×R1 satisfies

min
 f

|K| � 2c(2n−1)(n−1) 2

1−  2 coth2(
√−cR)+n(n−1)|C|, c < 0,

min
 f

|K| � 2(2n−1)(n−1) 2

R2(1−  2)
+n(n−1)C, c � 0.

In particular, the above inequalities hold if  = maxBx0 (R)‖ f‖ .

Proof. If K changes sign, then the result is trivial. Suppose that K does not change
sign and then, we first assume K < 0 on M . Let {ei}n

i=1 be an orthonormal basis of
Tp̃ f in which the second fundamental form is diagonal. Since  f is an n -dimensional
spacelike hypersurface, the Gauss equation is

Kp̃(ei,e j) = −i(p̃) j(p̃)+Kp̃(ei,e j), (6)

for i 
= j where Kp̃ is the sectional curvature of M×R1 at p̃ , which yields by taking
sum on j

Ric p̃(ei,ei) = −
n


j=1,i
= j

i(p̃) j(p̃)+Ricp̃(ei,ei)

= −
n


j=1

i(p̃) j(p̃)+ 2
i (p̃)+Ricp̃(ei,ei)

= −H(p̃)i(p̃)+ 2
i (p̃)+Ricp̃(ei,ei),

where Ric p̃ is Ricci curvature of M×R1 at p̃ . By direct computation, we have

〈ei,e j〉 =
〈

ṽi + 〈 f ,vi〉M 
 t

, ṽ j + 〈 f ,v j〉M 
 t

〉
= 〈vi,v j〉M −〈 f ,vi〉M〈 f ,v j〉M,

and then,

‖vi‖2‖v j‖2−〈vi,v j〉2 = 1+ 〈 f ,vi〉2M + 〈 f ,v j〉2M � 1.
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Thus, we have

Ric p̃(ei,ei) = 
i
= j

〈R(ei,e j)ei,e j〉

= 
i
= j

〈RM(vi,v j)vi,v j〉

= 
i
= j

〈RM(vi,v j)vi,v j〉
‖vi‖2‖v j‖2−〈vi,v j〉2

(‖vi‖2‖v j‖2−〈vi,v j〉2
)

= 
i
= j

KM(vi,v j)
(‖vi‖2‖v j‖2−〈vi,v j〉2

)
� 

i
= j

KM(vi,v j).

Thus, we have

Ric p̃(ei,ei) � −H(p̃)i(p̃)+ 2
i (p̃)+ (n−1)c. (7)

Taking again sum on i yields

K p̃ � −H2(p̃)+ |B(p̃)|2 +n(n−1)c � −H2(p̃)+n(n−1)c, (8)

which implies

|K p̃| � |−H2(p̃)+n(n−1)c|� H2(p̃)+n(n−1)|c|.
By Theorem 7, we obtain

min
 f

|K| � min
 f

|H|2−n(n−1)c � cn2 2

1−  2 coth2(
√−cR)−n(n−1)c, c < 0,

min
 f

|K| � min
 f

|H|2 +n(n−1)c � n2 2

R2(1−  2)
+n(n−1)c, c � 0.

Secondly, we assume K > 0 and take the first touching point p̃ . Since K p̃ > 0 on
M , we can assume

1(p̃) � · · · � l(p̃) < 0 � l+1(p̃) � · · · � n(p̃).

By the Gauss equation (6), we have as follows:

K p̃ = −2 
1�i< j�n

i(p̃) j(p̃)+Kp̃

= −2 
1�i< j�l

i(p̃) j(p̃)−2 
l+1�i< j�n

i(p̃) j(p̃)−2
l


i=1

n


j=l+1

i(p̃) j(p̃)+Kp

� −2
l


i=1

n


j=l+1

i(p̃) j(p̃)+n(n−1)C.
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We obtain

0 < K p̃ � −2
l


i=1

n


j=l+1

i(p̃) j(p̃)+n(n−1)C

= −2

(
H(p̃)−

n


i=l+1

i(p̃)

)
n


j=l+1

 j(p̃)+n(n−1)C.

Then, the following inequalities hold:

|K p̃| � 2

∣∣∣∣∣−H(p̃)+
n


i=l+1

i(p̃)

∣∣∣∣∣
n


j=l+1

 j(p̃)+n(n−1)|C|

� 2

(
|H(p̃)|+

n


i=l+1

i(p̃)

)
n


j=l+1

 j(p̃)+n(n−1)|C|.

By Proposition 1 and Theorem 7, we have

min
 f

|K| � 2c(2n−1)(n−1) 2

1−  2 coth2(
√−cR)+n(n−1)|C|, c < 0,

min
 f

|K| � 2(2n−1)(n−1) 2

R2(1−  2)
+n(n−1)C, c � 0. �

THEOREM 9. Let M×R1 be a Lorentzian product space based on an n-dimen-
sional complete Riemannianmanifold M and Bx0(R) a closed geodesic ball of radius R
centered at x0 in M with c =minBx0 (R) KM . Suppose that there is a point x1 on Bx0(R)

such that f (x1) = maxBx0 (R) f and ‖ f (x1)‖ =  for a function f ∈ C2(Bx0(R)) .
Then, the spacelike graph  f of f in M×R1 with Ric < (n−1)c satisfies

min
 f

|B| � 3(n−2)
√

1−  2

√−ccoth(
√−cR), c < 0,

min
 f

|B| � 3(n−2)


R
√

1−  2
, c > 0.

In particular, the above inequalities hold if  = maxBx0 (R)‖ f‖ .

Proof. By the equation (7), we have

0 > Ric p̃(ei,ei)− (n−1)c � i(p̃)(i(p̃)−H(p̃)). (9)

We first consider that all principal curvatures i(p̃) at p̃ are positive by replacing
f by − f if necessary. Then, we have

|B|2 =
n


k=1

k(p̃)2 �
(

n


k=1

|k(p̃)|
)2

.
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By Proposition 1, we have

min
 f

|B| � n
√

1−  2

√−ccoth(
√−cR), c < 0,

min
 f

|B| � n


R
√

1−  2
, c > 0.

Secondly, we assume the sign of i(p̃) at p̃ for each i = 1, . . . ,n such that 1(p̃)�
· · · � l(p̃) < 0 < l+1(p̃) � · · · � n(p̃) for 2 � l � n− 1. By the equation (9), we
have

i(p̃)

(
n


k=1

k(p̃)−i(p̃)

)
> 0.

From the above inequality, we obtain

n


k=l+1

k(p̃)−i(p̃) > −
l


k=1

k(p̃).

Taking sum on i = 1, . . . , l yields

l


k=1

|k(p̃)| < l
l−1

n


k=l+1

k(p̃).

Then, we have

n


k=1

|k(p̃)| =
l


k=1

|k(p̃)|+
n


k=l+1

|k(p̃)| <
(

2+
1

l−1

) n


k=l+1

k(p̃) < 3
n


k=l+1

k(p̃),

which implies

|B|2 =
n


k=1

k(p̃)2 �
(

n


k=1

|k(p̃)|
)2

< 32

(
n


k=l+1

k(p̃)

)2

.

By Proposition 1, we have

|B| � 3(n− l)
√

1−  2

√−ccoth(
√−cR)

< 3(n−2)
√

1−  2

√−ccoth(
√−cR), c < 0,

|B| � 3(n− l)


R
√

1−  2
< 3(n−2)


R
√

1−  2
, c > 0.

Therefore, we obtain

min
 f

|B| � 3(n−2)
√

1−  2

√−ccoth(
√−cR), c < 0,

min
 f

|B| � 3(n−2)


R
√

1−  2
, c > 0. �
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3. Estimates from Poincaré inequality and Sobolev inequality

Let (M,g) be an n -dimensional compact Riemannian manifold and let Lp(M) be
the Lebesgue space on M consisting of all measurable functions f satisfying

‖ f‖Lp =
(∫

M
| f |p dVg

) 1
p

< .

Because M is compact, we consider the Sobolev space Hq
1 (M) for q ∈ [1,n) defined

as the completion of C(M) with respect to the norm

‖ f‖Hq
1

=
√
‖ f‖2

Lq +‖ f‖2
Lq .

There are many types of Poincaré and Sobolev inequalities (see, [1, 7, 8, 12] and
references therein). In this section, we consider Poincaré and Sobolev inequalities on
a compact manifold. The Poincaré inequality (see, [7] for example) is that for an n -
dimensional compact Riemannian manifold M and q ∈ [1,n) , there exists a positive
constant cM such that for any function f ∈ Hq

1 (M) ,

‖ f − f ‖Lq � cM‖ f‖Lq , (10)

where

f =
1

Volg(M)

∫
M

f dVg.

Hebey and Vaugon [8] proved that for an n -dimensional compact Riemannian manifold
M , n � 3, with no boundary and 1

p = 1
2 − 1

n , there exists a positive number A such that

for any f ∈ H2
1 (M) ,

‖ f‖2
Lp � K‖ f‖2

L2 +A‖ f‖2
L2 , (11)

where

K =
4

n(n−2)w
2
n
n

.

Here, we denote wn by the volume of the n -dimensional unit sphere in R
n+1 . On

the other hand, Li and Zhu [12] proved that for an n -dimensional compact Riemannian
manifold, n � 3, with a smooth boundary and q= 2(n−1)

n−2 , there exists a positive number
B such that for any f ∈ H2

1 (M) ,

‖ f‖2
Lq(M) � S‖ f‖2

L2 +B‖ f‖2
L2(M), (12)

where

S =
2

(n−2)w
1

n−1
n−1

.
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Note that the constants K and S in the inequalities (11) and (12) are optimal in such
inequalities.

The inequality (10) gives the following estimate for the L2 -norm of the mean
curvature of a spacelike graph defined on a compact manifold, which is inspired by [15]:

THEOREM 10. Let M×R1 be a Lorentzian product space based on an n-dimen-
sional compact Riemannian manifold M and  f the spacelike graph of f ∈ C2(M)
with the mean curvature H in M×R1 . Then, f satisfies

1

c2
M

‖ f − f ‖2
L2 � ‖ f‖L2‖H‖L2 +

∫
M

〈
f f√

1−‖ f‖2
,

〉
M

ds,

where cM is a positive constant related to n and M , namely, Poincaré constant, and 
is the outward unit normal vector of M.

Proof. Suppose that f satisfies the Poincaré inequality (10):

‖ f − f ‖L2 � cM‖ f‖L2 .

Then we have

‖ f − f ‖2
L2 � c2

M‖ f‖2
L2 � c2

M

∫
M

|| f ||2√
1−|| f ||2 dVg. (13)

The mean curvature H of  f in M×R1 is

H = divM

(
 f√

1−‖ f‖2

)
,

where divM is the divergence on M . The divergence theorem yields

∫
M

‖ f‖2√
1−‖ f‖2

dVg =
∫

M
fH dVg +

∫
M

〈
f f√

1−‖ f‖2
,

〉
ds, (14)

where  is the outward unit normal vector of M . Using Hölder’s inequality, we
obtain the following inequalities:∫

M
fH dVg �

∫
M
| f ||H| dVg � ‖ f‖L2‖H‖L2 . (15)

Combining inequalities (13), (14) and (15), the following inequality is obtained:

1

c2
M

‖ f − f ‖2
L2(M) � ‖ f‖L2‖H‖L2 +

∫
M

〈
f f√

1−‖ f‖2
,

〉
ds. �



CURVATURE ESTIMATES OF A GRAPH IN A LORENTZIAN SPACE 517

REMARK 2. We assume that the integral in the right hand side of the above in-
equality becomes zero for some suitable boundary condition. Then, we obtain ‖ f −
f ‖2

L2 � c2
M‖H‖2

L2 . In particular, if  f is maximal, then f is a constant function on M ,
so  f is isomorphic to M , namely,  f is a slice in M×R1 .

The following theorems are considered two types of Sobolev inequalities:

THEOREM 11. Let M×R1 be a Lorentzian product space based on an n-dimen-
sional compact Riemannian manifold M , n � 3 , with no boundary and  f the space-
like graph of f ∈ C2(M) with the mean curvature H in M×R1 and let 1

p = 1
2 − 1

n .
Then, there exists a positive number A such that

‖ f‖2
Lp � 4

n(n−2)w
2
n
n

‖ f‖L2‖H‖L2 +A‖ f‖2
L2 .

Proof. We follow the proof of Theorem 10 for the inequality (11):

‖ f‖2
Lp � K‖ f‖2

L2 +A‖ f‖2
L2

� K
∫

M

‖ f‖2√
1−‖ f‖2

dVg +A‖ f‖2
L2 .

By the equations (14) and (15) with the fact that M has no boundary, we have

‖ f‖2
Lp � K‖ f‖L2‖H‖L2 +A‖ f‖2

L2 . �

As the similar process, we have the following theorem for a compact Riemannian
manifold with a smooth boundary using the equation (12):

THEOREM 12. Let M×R1 be a Lorentzian product space based on an n-dimen-
sional compact Riemannian manifold M , n � 3 , with a smooth boundary and  f the
spacelike graph of f ∈ C2(M) with the mean curvature H in M ×R1 and let q =
2(n−1)
n−2 . Then, there exists a positive number B such that

‖ f‖2
Lq(M) � 2

(n−2)w
1

n−1
n−1

(
‖ f‖L2‖H‖L2 +

∫
M

〈
f f√

1−‖ f‖2
,

〉
ds

)
+B‖ f‖2

L2(M).
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