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CURVATURE ESTIMATES OF A SPACELIKE
GRAPH IN A LORENTZIAN PRODUCT SPACE

DAEHWAN KiM

(Communicated by I. Peric)

Abstract. Let M be an n-dimensional complete Riemannian manifold with the metric (, )y and
let M x Ry be a Lorentzian product space M x R with the metric (,)y — dt*>. We first provide
Heinz type curvature estimates for the spacelike graph in M x Ry of a C2-function f defined on
a closed geodesic ball By, (R) of radius R centered at xo on M. In particular, the estimates are
related to the radius R and the value of ||V f(x;)|| for which f(x|)=max 9By, (R) f. Secondly, we

give L?-estimates of the mean curvature for a spacelike graph defined on a compact Riemannian
manifold.

1. Introduction

Curvature estimate for a graphical surface, which is a non-parametric surface, is
a natural consideration to analyze the surface. However, a graph with no geometric
condition may have curvature as high as desired at some point on a bounded domain
although the height is generally bounded on the domain. The following results are
related to the estimates of infimums of curvatures for the graph with no geometric
condition: Heinz [9] obtained the following estimates for the mean curvature H and
Gaussian curvature K of the graph of a function defined on an open disk Dy,(r) of
radius r centered at xo on R?:
. 1
inf|H| < —,
,
2
inf|K| < 312,
;
where e is the natural number. Chern [3] and Flanders [5] proved independently the
above inequalities to higher dimensions. Salavessa [13] extended the above result for
the graph of a smooth function f: M — N to a product space (M x N,g x —h) of two
Riemannian manifolds (M,g) and (N,h). Coswosck and Fontenele [4] provided simi-
lar curvature estimates for graphs on a Riemannian domain according to the infimum of
the Ricci curvature of the domain. In particular, Honda, Kawakami, Koiso and Tori [10]
provided Heinz-type estimates for spacelike and timelike graphs on a relatively com-
pact domain in the Minkowski space, which are related to the maximum value for the
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norm of the gradient of the function on the domain. We can find related results [2, 6]
and the references therein.

In this paper, we mainly consider a spacelike graph over a Riemannian manifold in
a Lorentzian product space based on the Riemannian manifold, which is a natural way
to construct a spacetime based on a Riemannian manifold. Let M be an n-dimensional
Riemannian manifold with the metric (,)s and M x R; be a Lorentzian product space
M x R with the non-degenerate bilinear symmetirc form

<v> = <7>M_dt2'

Typical examples are an (n+ 1)-dimensional Minkowski space L."*! and homogeneous
product spaces H" x Ry and S" x R; where H"” and S" are n-dimensional hyperbolic
space and sphere, respectively. The spacelike graph I'y of a function f on D C M is
defined by the following set:

I'p={(x,f(x)) eMxR;|xe DCMand|Vf] <1},

where V is the gradient on M. We denote by the sectional curvature, Ricci curvature
and scalar curvature of M by Ky, RicM and Ky, respectively, and also denote the
mean curvature, Ricci curvature, scalar curvature and the second fundamental form of
I’y by H, Ric, K and B, respectively.

We organize this paper into two parts in terms of curvature estimates for I's: one
is Heinz type estimates for I'y on a closed geodesic ball in M and the other is L2-
estimates of the mean curvature of a spacelike graph in M x Ry where M is a compact
manifold using Poincaré and Sobolev inequalities.

In Section 2, we deal with the following Heinz type estimates for H, K and |B|
of I'r in M X Ry:

THEOREM 1. (Theorems 7 and 8) Let M x Ry be a Lorentzian product space based
on an n-dimensional complete Riemannian manifold M and By, (R) a closed geodesic
ball of radius R centered at xy in M with C = maxg (g Ky and ¢ = mingx0 ) Kt
Suppose that there is a point x; on 9By, (R) such that f(x;) = max,g, &) [ and
V£ (x1)|| = € for afunction f € C?(By,(R)). Then, the spacelike graph Ty in M x R,
satisfies

1. ¢<0
min|H| < @coth(\/—_cR),
s e
minK| < 26(2”‘1 1_>(§"2_ DE® ot (v=eR) +n(n— 1)[C].
2. ¢20
min|H| < _ e

ry R1-E2
_ 2(2n—1)(n—1)&2
K S iy

+n(n—1)C.
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In particular, the above inequalities hold if & = maxg, (g V]l

THEOREM 2. (Theorem 9) Let M x Ry be a Lorentzian product space based on
an n-dimensional complete Riemannian manifold M and By, (R) a closed geodesic
ball of radius R centered at xy in M with ¢ = mingx0 (R) Ky. Suppose that there is a

point xi on dBy,(R) such that f(x;) = maxagxo(R)f and ||V f(x1)|| = & for a function
f €C*(Byy(R)). Then, the spacelike graph T'y in M x Ry with Ric < (n—1)c satisfies

min |B| < 3(n—2)i\/—cc0th(\/—cR), ¢ <0,

I /1— &2

min|B| < 3(n—2) ¢

Iy R\/1—E2

In particular, the above inequalities hold if & = Maxg, (g) VSl

c>0.

Poincaré and Sobolev inequalities are important inequalities to study the partial
differential equation theory, which are related to a function and the norm of its gradient
on a domain. In Section 3, let M be a compact manifold and then we obtain three
L*-estimates for the mean curvature H of T’y in M x R; from Poincaré and Sobolev
inequalities on M.

THEOREM 3. (Theorem 10) Let M x Ry be a Lorentzian product space based on
an n-dimensional compact Riemannian manifold M and Ty the spacelike graph of
f € C*(M) with the mean curvature H in M x Ry. Then, f satisfies

Lo Y
V=T < Wl + M< = f”27n>Mds7

where cyy is a positive constant related to n and M, namely, Poincaré constant, and n
is the outward unit normal vector of M.

The following theorems are related to L? -norm of the mean curvature of spacelike
graphs defined on n-dimensional compact Riemannian manifolds with no boundary or
with a smooth boundary. We denote w;, by the volume of the n-dimensional unit sphere
in R*1,

THEOREM 4. (Theorem 11) Let M x Ry be a Lorentzian product space based on
an n-dimensional compact Riemannian manifold M, n > 3, with no boundary and
[y the spacelike graph of f € C%(M) with the mean curvature H in M x Ry and let
1 L Then, there exists a positive number A such that

= 0

1
p 2
4

IF1ze < Tl 12 l1H 2 + Al

n(n—2)ws;
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THEOREM 5. (Theorem 12) Let M x Ry be a Lorentzian product space based on
an n-dimensional compact Riemannian manifold M, n > 3, with a smooth boundary
and I'y the spacelike graph of f € C*(M) with the mean curvature H in M x Ry and
2(n—1)

. Then, there exists a positive number B such that

let g =

2 VS
fzq <7<f 2|[H |2 + <7 >d>—|—Bf22 .
1120y < p— Iz H 2+ [ o s | Bl g

2. Heinz type curvature estimates of the graph of f

We consider that an n-dimensional Riemannian manifold M with the metric (, )y
and an (n+ 1)-dimensional Lorentzian product space M x R; with the non-degenerate
bilinear symmetirc form (,) = (, )y — dt*>. More precisely, let M x R be a product set
of M and R. Let 7; : M xR — M and 7, : M x R — R be the projection maps defined
by my(x,t) = x and m(x,) =t. We consider a metric (,) = (,)y —dt*> on M x R as
follows: for all (x,7) € M x R and all v,w € T{,.;(M x R), the metric (,) is defined by

(v,w) = (dmy (v),dmy(w))ar — di*(dmy(v), d Ty (w)).

The tilde over a letter is used to denote its lift to M x R;. Let f be a C?-function
defined on M and X be the non-parametric form of the graph I'y of f in M x Ry,
namely, X (x) = (x, f(x)) where x € M. It follows that

aXp(4) = 7+ (VF(p) s o

t

where V is the gradient on M. Then, we have

X, () 1> = 1191 = (V£ (p), V)i (D

Let v be a unit normal vector field to I'y:

1 /=~ 0
vV = W (Vf+ E),
VIR =11 = /1= 1V 7]

The second fundamental form B of I'y and the Hessian V2 on M are defined as fol-
lows: for v,w € T,M and f € C*(M),

w

(BaXy (3).dX,().¥) = —i=(F2 )y v0) @

(V2 )p(vw) = (VyVf,w).

Let {e;} be an orthonormal basis of I'; in M x Ry and {v;} be a basis on T;M such
that dX,,(v;) = e;. The principal curvatures A; for i = 1,...,n and the mean curvature
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H of 'y at p are
1

2i(p) = —(Veei,v) = —(Blei,ei), v) = W(sz)p(viavi)a
5 ST e ) = — S Blene) V= S L (V2 (v
H(p) = i:1<vei V) ;(B( i»€i),V) ZWip) (Vf)p(visvi).

LEMMA 1. Let M be a complete Riemannian manifold and By, (R) the closed
geodesic ball of radius R centered at xy in M. Let s(-) = disty(-,x0) be the distance
on M from xo and h: By (R) — R the function defined by

h(x) = \/s*(x) + 72,

where r is a positive number. Then, the followings hold:

1. The gradient of h at x € By,(R) is

2. The Hessian of h at x € By,(R) for a unit vector v € TyM is

1

7 X = X0,
it =1" 2 () _

st N g (e, x€Ba(®)

Proof. Let v be a unit tangent vector on T,,M and y: (—¢,€) — M be the geodesic
with y(0) = xo and y'(0) = v. Then, we have s(y(¢)) =t and

d d
(Vs(xo),v) = —s(v())| = —1] =1,
dt t=0 dt t=0
d? d?
(V) (wy) = T3s(y(0))| = 51| =0.
t=0 t=0
By direct computation, we have
s
Vh = 7WVS7 (3)
s s
V,\Vh = v| —=—— | Vs + —=—=V, Vs
r s
= ——(Vs,»)Vs+ ——=V, Vs,
(r2+s2)%< ) Vitts?
r s
(V2h)(v,v) = m(vmuﬁ(v%)(m. 4)
r’+s



504 D. KM

Since s(x) = disty(xo,x), the equations (3) and (4) at x = xq yield

s(x0)
Vh(xo) = m XO):07
2
2h)x, (v, v S s(x0),v)? & 28) e (Vv
(Voh)x (v,v) (r2+s2(x0))%<v(°) Y+ r2—|—s2(xo)(v ) (V)
1
=—-. O

LEMMA 2. Let M be a complete Riemannian manifold and By, (R) the closed

geodesic ball of radius R centered at xo in M. Suppose that there is a point x| such
that f(x)) = maxaEYO(R)f and |Vf(x1)|| = & for a function f € C*(By,(R)) and g :

By, (R) — R is a function defined by

where r = R—Vlgéz. Then, there exist a point x € By, (R) and a constant r such that
(8~ /)(x) = ming,_(z)(g— f) and V(g f)(x)]| = 0.

Proof. Since 9By, (R) is compact, there is a point x; € _&‘EXO (R) suchthat f(x;) =
maxyg, (v f and [[Vf(x1)|| = &. We define a function g : By, (R) — R by

s2(x) +r?
&@:{t WP+ £#0,

where r =R —Vlgéz Let 'y be the spacelike graph of a function f € C*(By,(R)).
For a sufficiently large ¢, the graph I'y, of g; is contained in the above component of
(Byy(R) x R)\T'y. If ¢ decreases until that I', touches 'y at a first touching point,
say t =1y and p = (p,f(p)) € 'y, then p is a minimum point of g — f, namely,
g—/Np) = mingx0 (r)(§ — f). Itis possible to occur that the first touching point p is
on the interior or the boundary of T'y.

We first assume that p is on the interior of I's. Since 7y is a maximum value such
that (gi, — f)(p) =0, the tangent space T;I's at p to I'y coincides to T, at p to
Iy, - Therefore, g — f has a minimum point p € By, (R) satisfying [|V(¢— f)(p)[| = 0.

Secondly, we assume that p is on the boundary of I'y, namely, p = (x1, f(x1)).
Let y:[0,R] — M be a minimizing geodesic segment from xy to x;. Because y is
minimizing, y(¢) does not pass through the cut locus Cut(xy) of xo. Note that Vf(x;)
is parallel to y'(R) by the assumption of x;. We consider two cases according to the
value of &:
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1. E40
By Lemma 1, we have
G- NE0)| = Te-noo)|

= (V(g=f)(x1).Y(R))
= (Vg(x1),Y (R)) — (Vf(x1),Y (R))

= K (st Y (R) — (V) Y (R))

N
R
- VRTR
= 0.
2. £€=0
By direct computation, we have
%(gm—f)(y(t)) T (Vg(x1),Y (R)) = (Vf(x1),V(R))

= —(Vf(x1),Y(R))
=0.

Therefore, the function g — f has a minimum value at the point x| € dBy,(R) such that
IV(g=f)@x)ll=0. O

We need the following Hessian comparison theorem to compare the principal cur-
vatures of I'y and Iy (see, [11,14]):

THEOREM 6. (Hessian comparison theorem) Let M be a complete Riemannian
manifold with sectional curvature bounded below by a constant ¢ and y : [0,t] — M a
minimizing geodesic on M with y(0) = p. Let s:[0,t] — R be the smooth distance
Sunction from p to y(t) on M. Then, for any unit vector v € TyM that is perpendic-
ular to y'(t),

Veeot(y/ct), c>0,

(st)y(,) (vv) <<t c=0,

V/—ccoth(y/=ct), ¢<0.

PROPOSITION 1. Let M X Ry be a Lorentzian product space based on an n-
dimensional complete Riemannian manifold M and By, (R) a closed geodesic ball
of radius R centered at xo in M with ¢ = mingxo(R) Ky. Suppose that there is a

point x; on dBy,(R) such that f(x;) = maxyg, (g) fand |Vf(x1)|| =& for afunction
f €C*(Byy(R)). Then, there exists a point p on the spacelike graph Ty of f in M x R,
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such that principal curvatures Ai(p) for i=1,...,n of 'y satisfy

Ai(p) < %éz\/—_ccoth(\/—_cR), c<0,

Ai(p) < s

In particular, the inequalities hold if & = maxg, (g) V£l

c>0.

Proof. Let g : By, (R) — R be the function defined by

B s2(x) +r2+1, E#0,
@)= {r, £=0,

J1_E2 _
where r=R lTé . In particular, we have the following inequality for £= Maxg, () VSl

¢ ¢
\/1—52\\/1_52

Let {e;} be an orthonormal basis of I'; in M x R; and {v;} be a basis on T;M
such that dX,(v;) = e;. By Lemma 2, the function g — f has the global minimum at
point p € By, (R). If we consider & = 0, then the followings hold: for v € T;I'f,

Vf(p) = Vg(p) =0,
(V2£)p(v,v) < (V2g)p(v,v) =0,

and then for v = v;,

24(p) = @(vzﬁp(w,w) <0,

Then, we have only £ # 0. There are two cases: p =xo and p # x. In particular, the
case of p # xp can be considered as two possibilities: p € Cut(xg) and p ¢ Cut(xo).

1. p=x
By Lemmas | and 2, we have

Vf(xo) = Vg(xo) =0,

_ v

(sz)xo (V,V) < (Vzg)xo(v7v) - r 9

for v € T,,M . The equations (1) and (2) yield

v 2 xo (V. 2
—(B(dXy, (v),dXy (v)), V) = m(vzf)%(v,v)g I rH _ IIdXOr( I
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For v =v;, we have

(= __<B(dXX0(Vi)7dXx0(Vi))7v> l
Ai(p) = dXP S

~

Besides, 1 < /=ccoth(y/=cr) forany ¢ <0.

. p#xo and p ¢ Cut(xp)
By Lemmas 1 and 2, we have for any v € T,M,

Vi) = V() = L) __vi(p),

(sz)p(":") < (V2g)p(v,v)

2

= _(Vs(p).,v)* + %(st)p(‘@ v).

P0)

[N

(2 +5%(p))

507

It is easy to consider ||Vs(p)|| =1 and ||v|*> = ||[v*|]> + (v, Vs(p))? where v* is the

normal component of Vs(p). By the equation (1), we obtain

laX, ()1 = V17 + 0, Vs(p))® — (V£ (p),v)?

S2
= |2+ (0, Vs(p))? — ﬁ
= P+ mws(p)wz.

It is easy to verify that for u € T,M satisfying that u is parallel to Vs(p),

V.Vs(p)=0.
Thus, we obtain

—(B(dX(v),dXp(v)), V)

= L 2 v,V
= oy (V0
ﬂ+ﬂ@><ﬂwwmmv+¢@xwmAww>
r (2 +2(p))? r2+s%(p)

revs v 2 N
= SR 4 2 52, )
_ ||pr(V)H2 _ Hvin _’_@(V%Y)p(vl’vj_)

v 2 VL 2 Vl Vl

r r [

(Vs(p),v)*

4)
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If we assume v = 0, then the following inequality holds for v = v;:

(B(dXp(vi),dXp(vi)),v) _ 1 _ &

7a(p) = — <o =
7 AGIE PR E
In particular, the inequality % < v/—ccoth(y/—cR) for each R yields that the first

result holds. We assume v # 0. According to Hessian comparison theorem (The-
orem 6), we distinguish two cases as follows:

(a) ¢c<O0
By Hessian comparison theorem (Theorem 6), we obtain

laX, ()1
r

N

—(B(dXy(v),dXp(v)),v) <

(s(p)v/~Ccoth(v/as(p)) — 1)
4%, ()|

N

e
X ()12 (s(p)v/—ccoth(v/—=cs(p)) — 1)

v 2
_ Ms(p)\/—_ccoth(\/—_cs(m)

14X, o = coth(v/—2R)
g
— 1752”@1 X,(v)||*v/—ccoth(v/=cR).

Therefore, for v = v;, we have

(B(dX,(vi),dX,(vi)),v) < Evc coth(v/—cR).

<

Ai(p) = —
X, (vi)1? V1-&2
(b) c=0
Hessian comparison theorem (Theorem 6) implies
Az(PN) :_<B(pr(Vi)7pr(Vi)),V> g 1 . 5

ldXp(vi)[? rR1-E2

3. p#xp and p € Cut(xp)
Let y:[0,s(p)] — M be a minimizing geodesic segment from xo to p passing
through a point z = y(¢) sufficiently close to xo. We consider the distance func-
tion §(x) from z to x. Then, we have p ¢ Cut(z) and define the following function
g :Bp(Ry) — R where R, = min{s(p),R—s(p)}:

o JVEE) e+t E£0
g(X)—{O £,



CURVATURE ESTIMATES OF A GRAPH IN A LORENTZIAN SPACE 509

N1—E2 —
where r =R 15 2 In particular, for all x € B,(R)), g satisfies g(p) = g(p) and
g(x) > g(x) and then

(§—1x) = (g—Nx)=@E—1p)=(E&—p)

Itis easy to verify that if £ =0, then (Vf)(p) =0 and (V2f),(v,v) < 0. By direct
computation, we have for all v e T,M,

VI0) = Valp) = B v(p),
2iv e 2 2=
V) < (V) () — PSRV SV 5), ()
(o) < (PRplo) = 5 e e
Also, we have
VI? = v 1P+ (» V5)?,

(Vs (p),v)?
laxp 0l = -+ S

Combining the above equations yields

—(B(dX(v),dXp(v)), V)
v 2 vJ_ 2 vJ_ vJ_
< ”dXP( )” + ” H (s(p)(VZS)p (W’ W) _ 1) .

r r

In particular, if we assume vt =0, then

R D R T S
X, (v)[* S ro RY1-&2 < NG _52\/_00th(\/_R)~

According to Hessian comparison theorem (Theorem 6), we have two cases:

(@) ¢<0
It follows that
(B(dX,(v),dX,(v)),v) < ; (5(p)+€)v/—ccoth(v—cs(p))
< M(R+8)\/—_ccoth(\/—_cR).

Letting € — 0, we obtain

(B(dXp(vi),dXp(vi)), V) EvV—c -
X, (v))]2 S \/1_—5200th(\/_ R).

Ai(p) = —
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(b) ¢>0
We have Ky > 0 on By, (R) and obtain

—(B(dX,(v),dX,(v)), V) < Hprr(v)Hz (” s—fp))'

Letting € — 0, we arrive at the following result:
(B(dXp(vi),dXp(vi)),v) _ ¢
ldXp(vi)l[? Ry/1-&2
THEOREM 7. Let M x Ry be a Lorentzian product space based on an n-dimen-

sional complete Riemannian manifold M and By, (R) a closed geodesic ball of radius R
centered at xo in M with ¢ = mingx0 (r) Km . Suppose that there is a point x on dBy,(R)

such that f(x)) = maxaEYO(R)f and |[Vf(x1)| = & for a function f € C*(By,(R)).
Then, the spacelike graph T'y of f in M x Ry satisfies

Ai(p) = —

. név/—c

Hl_l‘}n ‘H| S \/ﬁcoth(\/ —CR), c< 0,
ns

R\/1-E%

In particular, the above inequalities hold if & = maxg, (g VSl

min|H| < c=0
Iy

Proof. If H changes sign, then the result follows trivially. Suppose that H does
not vanish at any point on By, (R). By Proposition 1, we have for i = 1,...,n,

Ai(p) < %coth(\/—cR), c<0,

J(p) < ——.
Ry/1—£&2

Since By, (R) is compact and the functions f and g in Lemma 1 is of C?(By,(R)), the

following inequalities are obtained:

2:(P) < f/éli V_;coth(\/_—cR), ¢ <0,

< né

T RY1-E7

REMARK 1. Salavessa [13] proved an estimate of minimum value of mean curva-

ture for a spacelike graph I'y C M x R of a function f defined on a compact domain
D C M with bp = maxj [|Vf]:

I
M=

I
—_

min|[H| < H(p)
Ff

c>0. O

I
>
R
S

Il
-

min|H| < H(p)
Ly

b Vol, (0D
min |H| < D oly (9D)

Ff /1 _ b% VOIg(D) ’

(&)
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where H is the mean curvature not divided by n. Let M, be a space form with constant
sectional curvature ¢ and D = By, (R) a closed ball of radius R centered at xo in M,.
Although & < bp, we assume & = bp to compare Theorem 7 to the inequality (5).
Then, if ¢ = —1 or 1, then the inequality (5) is sharper than Theorem 7 and if ¢ =0,
then the estimates are the same.

THEOREM 8. Let M x Ry be a Lorentzian product space based on an n-dimen-
sional complete Riemannian manifold M and By,(R) a closed geodesic ball of radius
R centered at xy in M with C = maxg, (g Ky and ¢ = miano (®) Kyr. Suppose that
there is a point x; on dBy,(R) such that f(x;) = maxyg, ) [ and ||V f(x1)|| =& for
a function f € C?(By,(R)). Then, the spacelike graph Ty of f in M x R, satisfies

_ 2¢(2n—1)(n—1)&?
H;}nIK\ < e

. 2(2n—1)(n—1)&*
K S T -y

In particular, the above inequalities hold if & = Maxg, (g) VSl

coth’(v/=cR) +n(n—1)|C|, ¢<0,

+n(n—1)C, ¢=0.

Proof. If K changes sign, then the result s trivial. Suppose that K does not change
sign and then, we first assume K < 0 on M. Let {¢;}!" , be an orthonormal basis of
T51"f in which the second fundamental form is diagonal. Since I' is an n-dimensional
spacelike hypersurface, the Gauss equation is

Kp(eire;) = —Ai(p)A;(P) + Kp(eiej), (6)

for i # j where K is the sectional curvature of M x R; at j, which yields by taking
sum on j

n

Rics(ej,ei) = — Y, Ai(P)Aj(p)+Ricy(eise;)
J=Litj
= _ZA )+ A2 (P) +Ricj(ei, ;)

— _H(p)/l( 5) + A7 (p) + Rics(es ei),

where ﬁﬁ is Ricci curvature of M x R; at p. By direct computation, we have

d d
(ever) = (3 (T 9+ (VL0 )
= <viavj>M - <Vfa Vi>M<Vfa Vj>M7

and then,

il PlvilI? = (viyvi)? = L+ (Y fidiy +(VF v = 1
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Thus, we have
Ricy(eiei)) = Y (R(ei e))ei e;)
i
= Y (Ru(vi,vj)vi,v))
=y

(Rm( Van Vt»"j> 2 2 2
= 2 TP e (= i)
7]

= D K (i,vy) (il Pllvi 1 = vi,v)?)

i#]J
> Y Ku(vi,v)).
i#j
Thus, we have
Rics(ei,ei) = —H(P)Ai(p) + A7 (P)+ (n—1)c. (7)

Taking again sum on i yields
Kp > —H*(p)+|B(P)P +n(n—1)c > —H(p) +n(n—1)c, 8)
which implies
K| < | = H?(p) +n(n—1)c| < H*(p) +n(n—1)c].

By Theorem 7, we obtain

2E2
nllin|K\ < nllin\H|2—n(n—l)c izcothz(\/ cR)—n(n—1)c, ¢<0,
! !
n2E2
nﬂn|K\ < Hllj‘n‘H|2+n(n_l)C< Riz(l—ifz) nn—1)c, ¢=0.

Secondly, we assume K > 0 and take the first touching point p. Since K; > 0 on
M, we can assume

M(P) < <A(P) <O Aq1(P) < - < (p).

By the Gauss equation (6), we have as follows:

Ks = -2 Y L(p)Aj(p)+Kp
1<i<j<n
l n
=2 3 M@AB)-2 Y AB)AB)-2), Y Mp)Ai(P)+K,
1<i<j<l I+1<i<j<n i=1 j=I+1
< —22 Z Ai(P)A;(P)+n(n—1)C.

i=1j=I+1
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‘We obtain
0<K; < 22 2 Ai(p)Ai(p)+n(n—1)C
i=1j=I+1
=—2<H(ﬁ>—2 ﬁ) > A(5)+n(n—1)C.
i=1+1 j=I+1

Then, the following inequalities hold:

Ky <2|-H@+ 3 46| 3 45 +n—1)ic]
i=l+1 j=1+1
2<H(13)+ 3 w)) S 2(p) +n(n—1)Cl.
i=1+1 j=1+1

By Proposition 1 and Theorem 7, we have

2¢(2n—1)(n—1)&?

nllin|K\< - coth?(v/—cR) +n(n—1)|C|, ¢<0,
! -
2(2n—1)(n—1)&2
K —1 >0. O
n};n| | < R(1-27) +n(n—1)C, ¢>0

THEOREM 9. Let M x Ry be a Lorentzian product space based on an n-dimen-
sional complete Riemannian manifold M and By, (R) a closed geodesic ball of radius R
centered at xo in M with ¢ = mingx0 (k) Kn - Suppose that there is a point x, on dBy,(R)

such that f(x)) = maxaEYO(R)f and |[Vf(x1)| = & for a function f € C*(By,(R)).
Then, the spacelike graph T’y of f in M x Ry with Ric < (n— 1)c satisfies

. g
n}lfn\B\ < 3(n—2)ﬁ\/—_ccoth(\/—_cR)7 c<0,

min|B| < 3(n—2) 6

——= >0
Ty R\/1—¢&2

In particular, the above inequalities hold if & = Maxg, (g) VSl

Proof. By the equation (7), we have
0> Rics(ej ei) — (n—1)c = Ai(p)(Ai(P) — H(P)). 9)

We first consider that all principal curvatures A;(p) at p are positive by replacing
f by —f if necessary. Then, we have

2
BE= 3 M) < (zm )
k=1 k=1



514 D. KM

By Proposition 1, we have

nllin\B\ < niv—ccoth(\/—cR)7 <0,
!

1-&2
min |B| < ni, c>0.
Ty Ry\/1—&2
Secondly, we assume the sign of A;(p) at p foreach i=1,...,n suchthat A (p) <
SAP) <0< A (P) < < A(p) for 2<I<n—1. By the equation (9), we

have

(o)

From the above inequality, we obtain
n 1
Y Mp)—4i(P) > — X Mlp)
k=I+1 k=1

Taking sumon i =1,...,[ yields

l
Sl < o X ),
=1

Then, we have
!

)= 3 o)l +

k=1 k=141

M
~
=
=
AN
/\

)2)Lkﬁ<32)tkﬁ

k=I1+1 k=I1+1

which implies

2 2
B> =Y M(p)’ < (2 | A (P ) <3? ( D lk(ﬁ)) .
i=1 far| '

=1+1

By Proposition 1, we have

81 < ) oty e
< 3(n—2)%\/—_ccoth(\/—_cR), c<0,
B| < 3(n—l)#_52 < 3(n—2)#\/__§27 ¢>0.
Therefore, we obtain
n%i_n\B\ < 3(n—2)ﬁ\/—_ccoth(\/—_cR), c<0,
n%in\B\ < 3@-2)#@, ¢c>0. O
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3. Estimates from Poincaré inequality and Sobolev inequality

Let (M,g) be an n-dimensional compact Riemannian manifold and let L? (M) be
the Lebesgue space on M consisting of all measurable functions f satisfying

I = (17 ave) " <

Because M is compact, we consider the Sobolev space H{ (M) for g € [1,n) defined
as the completion of C*(M) with respect to the norm

A1l e = A/ 1A 1Za + IV AN Za-

There are many types of Poincaré and Sobolev inequalities (see, [1,7,8, 12] and
references therein). In this section, we consider Poincaré and Sobolev inequalities on
a compact manifold. The Poincaré inequality (see, [7] for example) is that for an n-
dimensional compact Riemannian manifold M and g € [1,n), there exists a positive
constant ¢y such that for any function f € H{ (M),

1f = Fllzs < eml[V£lzs, (10)
where
dVy,.
Vol / /
Hebey and Vaugon [8] proved that for an n- dlmenswnal compact Riemannian manifold
M, n >3, with no boundary and 5 — -, there exists a positive number A such that
forany f € H(M),
I£11Z> < KIVAIIZ: +AllFII7 (1D)
where
4
K=—".
n(n—2)wy;

Here, we denote w, by the volume of the n-dimensional unit sphere in R**!. On
the other hand, Li and Zhu [12] proved that for an n-dimensional compact Riemannian

manifold, n > 3, with a smooth boundary and g = ( ) , there exists a positive number
B such that for any f € H3(M),

”fH%q(aM) < S”Vf”iz +B||inz(3M)7 (12)

where
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Note that the constants K and S in the inequalities (11) and (12) are optimal in such
inequalities.

The inequality (10) gives the following estimate for the L?-norm of the mean
curvature of a spacelike graph defined on a compact manifold, which is inspired by [15]:

THEOREM 10. Let M x Ry be a Lorentzian product space based on an n-dimen-
sional compact Riemannian manifold M and Ty the spacelike graph of f € C*(M)
with the mean curvature H in M X Ry. Then, f satisfies

1 _ SV
=l - my|vyHy+/< —v >d&

where cyy is a positive constant related to n and M, namely, Poincaré constant, and n
is the outward unit normal vector of dM.

Proof. Suppose that f satisfies the Poincaré inequality (10):

If — fHL2 em|VE -

Then we have

VAR,
VIZIVAR

I =PI < VA < | — (13

The mean curvature H of I'y in M X Ry is

H =div ( v/ )
=avy | —F/—= | »
VI=|VF?

where divy, is the divergence on M. The divergence theorem yields

VA _ VS
/M 1_||Vf||2dVg—/MfHdVg+/aM< ﬁ_||vf”2,n>ds, (14)

where 7 is the outward unit normal vector of dM. Using Holder’s inequality, we
obtain the following inequalities:

[ rHave < [ 171H| @V, <15l ] (15)

Combining inequalities (13), (14) and (15), the following inequality is obtained:

EE __INF
= Tz |vmem+/'< T >“
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REMARK 2. We assume that the integral in the right hand side of the above in-
equality becomes zero for some suitable boundary condition. Then, we obtain ||f —
FII22 < 3 |H|I?, . In particular, if Ty is maximal, then f is a constant function on M,
so I'y is isomorphic to M, namely, I'y is a slice in M x R;.

The following theorems are considered two types of Sobolev inequalities:

THEOREM 11. Let M xRy be a Lorentzian product space based on an n-dimen-
sional compact Riemannian manifold M, n = 3, with no boundary and T’y the space-
like graph of f € C*(M) with the mean curvature H in M x Ry and let 11—7 = % — %
Then, there exists a positive number A such that

4
17170 € ——— 1Al 2 Hll 2 + Al £ 1172

n(n—2)w;

Proof. We follow the proof of Theorem 10 for the inequality (11):
IF1IZr < KIIVfllinrAHflliz

2
<K [, A AL

By the equations (14) and (15) with the fact that M has no boundary, we have

71z < KIfl2IHllp +Alf. O

As the similar process, we have the following theorem for a compact Riemannian
manifold with a smooth boundary using the equation (12):

THEOREM 12. Let M X Ry be a Lorentzian product space based on an n-dimen-
sional compact Riemannian manifold M, n = 3, with a smooth boundary and T’y the
spacelike graph of f € C*(M) with the mean curvature H in M x Ry and let q =

% Then, there exists a positive number B such that

2 2 fVf 2
(FTIEIES m ||fHL2HHHL2+/ W ds | + B fll20m)
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