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Abstract. In this paper, two new skew geometric constants are introduced. These constants are
used to characterize Hilbert spaces. Some basic properties of these constants in Banach spaces
are derived, and the values of the constants in specific spaces are calculated. On this basis,
the relationships between the new geometric constants and other famous constants are studied.
Finally, based on these identities, the relationship between the new geometric constants and the
geometric properties in Banach spaces is discussed, such as uniform non-square and normal
structure.

1. Introduction

It is well known to all that the geometric theory of Banach spaces plays an im-
portant role in functional analysis. This theory has been fully developed, and many
scholars have defined some special constants to study some abstract properties of Ba-
nach spaces. For example, Clarkson introduced the concept of convexity modules to
describe uniformly convex spaces [13], and the von Neumann constant to describe inner
product spaces and uniform non-square spaces [4]. We also mention the von Neumann-
Jordan constant CNJ(X) , and the James constant J(X) defined by Gao and Lau [8].
After the appearance of these constants, many others were introduced. For more pa-
pers on geometric constants, refer to [1,7,14,15,17,18,20]. These constants become a
simple and intuitive tool to quantify the properties of a given Banach space.

In inner product spaces, there are various concepts of orthogonality that result to be
equivalent to the traditional orthogonality relation. For example, James [10] introduced
isosceles orthogonality stating that x ⊥I y if and only if ‖x + y‖ = ‖x− y‖ . Roberts
[16] introduced his concept of orthogonality: x ⊥R y if and only if ∀t ∈ R,‖x+ ty‖ =
‖x− ty‖ .

In recent years, the orthogonal geometric constants have been extended by sev-
eral scholars. Inspired by the above two orthogonality relationships, we propose new
geometric constants A− (X) and A′

− (X) by incorporating a special skew orthog-
onality relationship. They are an important tool for studying Banach spaces. These
new constants aim to more accurately characterize the spatial structure from various
perspectives.
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In Section 2, as a preparation, lists some classical studies and their conclusions.
In Section 3, we introduce the constant A− (X) . Simultaneously, we discuss

some basic properties it possesses, such as its range, how to characterize Hilbert spaces,
and comparisons with other classic constants. Furthermore, we presented some exam-
ples in specific spaces and provided results related to uniform non-square and normal
structure.

In Section 4, we introduce the constant A′
− (X) by examining the influence of

isosceles orthogonality on the previously defined constant A− (X) . We also discuss
its range, how to characterize Hilbert spaces, and compare it with the James constant.
Finally, we demonstrate through a counterexample that the constants A′

− (X) and
A− (X) are generally different.

2. Preliminaries

Throughout the article, X will denote a real Banach space and X∗ will denote the
dual of X ; BX = {x ∈ X : ‖x‖ � 1} and SX = {x ∈ X : ‖x‖ = 1} will denote the unit
ball and the unit sphere of X , respectively. We will assume that the dimension of X is
at least 2. Now, we recall the notion of some well-known constants in Banach spaces.

The James non-square constant of a Banach space X was introduced by Gao can
be used to characterize uniformly non-square spaces.

DEFINITION 1. [8] Let X be a Banach space, the James constant is defined as

J(X) = sup{min{‖x+ y‖,‖x− y‖} : x,y ∈ SX}.

We have collected some common conclusions as follows that
(1)

√
2 � J(X) � 2. If X is a Hilbert space, then J(X) =

√
2.

(2) J(X) = sup{min{‖x+ y‖,‖x− y‖} : x,y ∈ BX} .
(3) X is uniformly non-square if and only if J(X) < 2.
(4) J(X) = sup{J(Y ) : Y is a subspace of X , dimY = 2} .
We need to point out that a Banach space satisfies J(X) =

√
2 if and only if X is

a Hilbert space, only holds in the Banach space of dimX � 3 [12].
The von Neumann-Jordan constant CNJ(X) was defined in 1937 by Clarkson as

DEFINITION 2. [4] Let X be a Banach space, the von-Neumann constant and
the modified von-Neumann constant are defined as

CNJ(X) = sup

{‖x+ y‖2 +‖x− y‖2

2(‖x‖2 +‖y‖2)
: x,y ∈ X ,(x,y) 	= (0,0)

}
,

and

C′
NJ(X) = sup

{‖x+ y‖2 +‖x− y‖2

4
: x,y ∈ SX

}
.
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It has the following well-known conclusions that
(1) 1 � CNJ(X) � 2 for all Banach spaces X , X is a Hilbert space if and only if

CNJ(X) = 1.
(2) X is uniformly non-square if and only if CNJ(X) < 2.

(3) If X < 1+
√

3
2 , then X has normal structure.

The modulus of convexity introduced by Clarkson as

DEFINITION 3. [5] Let X be a Banach space, the modulus of convexity is defined
as

X() = inf

{
1−

∥∥∥∥x+ y
2

∥∥∥∥ : x,y ∈ SX ,‖x− y‖ = 
}

, 0 �  � 2.

In addition, M. Baronti, E. Casini and P.L. Papini [2] introduced the constant
A2(X) .

DEFINITION 4. Let X be a Banach space, A2(X) is defined as

A2(X) = sup

{‖x+ y‖+‖x− y‖
2

: x,y ∈ SX

}
.

The geometric constant A2(X) in Banach spaces satisfies:
(1) 1 � A2(X) � 2.
(2) If X is a Hilbert space, then A2(X) =

√
2.

(3) X is uniformly non-square if and only if A2(X) < 2.
The above famous constants help to understand some of the geometric properties

of Banach spaces such as uniformly non-square and uniform normal structure. We
recall now some important properties of Banach spaces.

DEFINITION 5. [11] A Banach space X is called uniformly non-square if there
exists  ∈ (0,1) such that for any x,y ∈ SX , then

‖x+ y‖
2

� 1−  or
‖x− y‖

2
� 1−  .

DEFINITION 6. [3] A Banach space X is said to have a (weak) normal structure,
if for every (weakly compact) closed bounded convex subset K of X containing more
than one point, there exists a point x0 ∈ K such that

sup{‖x0− y‖ : y ∈ K} < sup{‖x− y‖ : x,y ∈ K}.
Moreover, a Banach space X is said to have uniform normal structure, if there

exists 0 < c < 1 such that for any closed bounded convex subset K of X containing
more than one point, there exists a point x0 ∈ K such that

sup{‖x0− y‖ : y ∈ K} < csup{‖x− y‖ : x,y ∈ K}.
For a reflexive Banach spaces X , normal structure and weak normal structure

coincide.



330 Q. NI, Q. LIU AND Y. ZHOU

3. The constant A− (X)

In this section, inspired by Roberts orthogonality, we consider the following con-
stant: let , > 0,

A− (X) = sup

{‖x+y‖+‖x−y‖
2

: x,y ∈ SX

}
.

To better understand the geometric picture, see Figure 1.
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Figure 1: x ,y vector diagram of fixed parameters  and  .

Next, we compute the value of the constant A− (X) in a Hilbert space, and based
on this, we give the upper and lower bounds of the constant A− (X) .

PROPOSITION 1. If X is a Hilbert space, then for all , > 0 , we have A− (X)
=

√
2 + 2 .

Proof. Since X is a Hilbert space, then for any x,y ∈ SX and , > 0, we have

‖x+y‖+‖x−y‖
2

=

√
‖x+y‖2 +

√
‖x−y‖2

2

=

√
2‖x‖2 + 2‖y‖2 +2 〈x,y〉+√

 2‖x‖2 +2‖y‖2−2 〈x,y〉
2

where the supremum is attained for x ⊥ y . Therefore, by taking x0,y0 ∈ SX such that
x0 ⊥ y0 , we get A− (X) =

√
2 + 2 . �

PROPOSITION 2. Let X be an infinite dimensional Banach space. Then√
2 + 2 � A− (X) � + .
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Proof. First, according to Dvoretzki’s theorem [9] (see Theorem 10.43 of the ref-
erence), given  > 0, if the dimension of X is large enough (in particular, if dim(X) =
 ), then there exists a subspace Y of X , with dim(Y ) = 2, such that∣∣∣A− (Y )−

√
2 + 2

∣∣∣ < ,

which implies that
A− (Y ) �

√
2 + 2.

On the other hand,
‖x+y‖+‖x−y‖

2
�  + ,

as desired. �
Now, we will compute the values of the constant A− (X) for some specific

spaces.

EXAMPLE 1. Let X = (R2,‖ · ‖) , then A− (X) =  + .
Let x = (1,1) , y = (−1,1) satisfying x,y ∈ SX . We have

‖x+y‖ = ‖x−y‖ =  + .

Thus,
‖x+y‖+‖x−y‖

2
=  + .

EXAMPLE 2. Let X = R
2 ,  �  , and assign the following l− l1 norm

‖x‖ = ‖(x1,x2)‖ =
{‖x‖1, x1x2 � 0,
‖x‖, x1x2 � 0.

Thanks to Krein-Milman theorem, we only need to consider extremal points. We
may assume without loss of generality that x = (a,b) , y = (c,d) ∈ ext(BX) . We
consider a,c � 0, b,d � 0. (In the other cases, the discussion is similar). Since
x,y ∈ SX , we have a−b = 1 and c−d = 1. Then ‖x+y‖ =  + , ‖x−y‖ =
‖(a−c,a−c−+)‖ .

Case 1: a−c � 0. We have

‖x+y‖+‖x−y‖
2

�  +

2

,

Case 2: a−c− + � 0. We have

‖x+y‖+‖x−y‖
2

=
 + +c−a

2

�  +

2

.
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Case 3: a−c < 0, a−c− + � 0, we have

‖x+y‖+‖x−y‖
2

= .

To sum up, for any x,y ∈ ext(BX) , we have

‖x+y‖+‖x−y‖
2

�  +

2

.

On the other hand, for x = (1,1) , y = (−1,0) , we have

‖x+y‖+‖x−y‖
2

=  +

2

.

Thus,

A− (X) =  +

2

.

REMARK 1. In Example 2, we chose the l − l1 norm to demonstrate that the
constants A− (X) and A′

− (X) (see Section 4) are generally not equal.

After having obtained upper and lower bounds for A− (X) and having computed
the constant A− (X) in some specific space, we further analyse the relation between
the constant A− (X) and other famous constants such as J(X) , CNJ(X) , C′

NJ(X) ,
A2(X) , X () .

THEOREM 1. Let X be a Banach space. Then

max{,}J(X)−|− |� A− (X) � 1
2
J(X)+1+ |1−|+ |1− |.

Proof. For x,y ∈ SX and , > 0, we have

min{‖x+ y‖,‖x− y‖}= min{‖x+y‖,‖x−y‖}
� min{‖x+y‖+ |− |,‖x−y‖+ |− |}
= min{‖x+y‖,‖x−y‖}+ |− |

� ‖x+y‖+‖x−y‖
2

+ |− |,

and

 min{‖x+ y‖,‖x− y‖}= min{‖x+y‖,‖x−y‖}
� min{‖x+y‖+ |− |,‖x−y‖+ |− |}
= min{‖x+y‖,‖x−y‖}+ |− |

� ‖x+y‖+‖x−y‖
2

+ |− |.
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This shows that max{,}J(X)−|− | � A− (X) .
On the other hand, we have

‖x+y‖+‖x−y‖
2

� ‖x+ y‖+‖x− y‖
2

+ |1−|+ |1− |

=
J(X)

2
+1+ |1−|+ |1− |,

as desired. �
In the following Remark 2, we only consider Banach spaces X with dimX � 3.

REMARK 2. In Proposition 1, we stated that for Hilbert spaces, it holds A− (X)
=

√
2 + 2 . Let us assume now that A− (X) =

√
2 + 2 . According to Theo-

rem 1, we have

J(X) �
√
2 + 2 + |− |

max{,} .

We know that when J(X) =
√

2, the space X is a Hilbert space [12]. Thus, if√
2 + 2 + |− |

max{,} �
√

2,

we have J(X) =
√

2. In this way, we might deduce that X is a Hilbert space by means
of some lower bound for the constant A− (X) and some constraints on  and  . In
fact, set

Z(, ) =

√
2 + 2 + |− |

max{,} −
√

2.

Assuming  �  without losing generality, we will simply obtain
√

2+ 2+|− |
max{ ,} �√

2+|− |
 . The function Z(, ) attains its minimum value of 0 only when  =  .

Figure 2: Plots of
√
2+ 2+|− |
max{ ,} �

√
2.
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Figure 2 provides a more intuitive geometric image, we plot Z as a function of 
and  .

According to the figure, it is also not difficult to see that when the parameters ,
are equal, we have that Z(, ) = 0, then J(X) =

√
2, and we infer that X is a Hilbert

space; if  	=  , then Z(, ) > 0, we cannot infer that X is a Hilbert space.

Now, from Theorem 1 and the fact that X is uniformly non-square if and only if
J(X) < 2, we get a simple corollary.

COROLLARY 1. Let X be a Banach space. Then the following three conditions
are equivalent:

(1) X is uniformly non-square.
(2) For all , � 1 , we have A− (X) < + .
(3) There exist , � 1 such that A− (X) <  + .

S. Dhompongsa, A. Kaewkhao and S. Tasena [6] introduced the following lemma.
We will use this lemma to discuss the relationship between A− (X) and the uniform
normal structure.

LEMMA 1. Let X be a Banach space. If J(X) < 1+
√

5
2 , then X has uniform

normal structure.

COROLLARY 2. For any non-trivial Banach space X and for any , > 0 , if

A− (X) <
(1+

√
5)

2
max{,}− |− |,

then X has uniform normal structure.

Proof. The proof is obtained combining Theorem 1 and Lemma 1. �

Now, we will compare the constant A− (X) with other well-known constants
such as CNJ(X),C′

NJ(X),A2(X),X () in turn. First, we introduce the following lemma
to compare the constant A− (X) and CNJ(X) .

LEMMA 2. [19] Let X be a Banach space. Then

CNJ(X) � 1+
J(X)2

4
.

PROPOSITION 3. Let X be a Banach space. Then

CNJ(X) � 1+
(

A− (X)+ |− |
2max{,}

)2

.

Proof. Apply Lemma 2 and Theorem 1, it’s easy to get this result. �
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THEOREM 2. Let X be a Banach space. Then

max{,}C′
NJ(X)−|− |

� A− (X)

�
√

2max{2, 2}C′
NJ(X)+2

√
2max{,}|− |

√
C′

NJ(X)+ |− |2.

Proof. For any x,y ∈ SX , we have(‖x+y‖+‖x−y‖
2

)2

� ‖x+y‖2 +‖x−y‖2

2

� (‖x+ y‖+ |− |‖y‖)2 +(‖x− y‖+ |− |‖x‖)2

2

� 22C′
NJ(X)+2

√
2|− |

√
C′

NJ(X)+ |− |2.
Similarly, the following inequality holds:(‖x+y‖+‖x−y‖

2

)2

� 2 2C′
NJ(X)+2

√
2 |− |

√
C′

NJ(X)+ |− |2.

On the other hand, since C′
NJ(X) � J(X) and combining Theorem 1, we can obtain that

C′
NJ(X) �

A− (X)+ |− |
max{,} ,

as desired. �
Next, we will compare the constant A− (X) with the constant A2(X) . We first

prove the following lemma.

LEMMA 3. (1) The function f (t) = ‖x+ ty‖+ ‖tx− y‖ is a convex function of t
on R .

(2) The function g(t) = ‖tx+ y‖+‖x− ty‖ is a convex function of t on R .

Proof. (1) Let t1,t2 ∈ R ,  ∈ (0,1) , we have

‖x+( t1 +(1− )t2)y‖+‖( t1 +(1− )t2)x− y‖
�  (‖x+ t1y‖+‖t1x− y‖)+ (1− )(‖x+ t2y‖+‖t2x− y‖)

which implies that

f ( t1 +(1− )t2) �  f (t1)+ (1− ) f (t2).

(2) Obviously. �
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PROPOSITION 4. Let X be a Banach space. Then

A− (X)
min{,} � A2(X) �

A− (X)
max{,} .

Proof. Consider the function f : R → R defined as

f (t) = ‖x+ ty‖+‖tx− y‖.
Then for any x,y ∈ SX , we have

f (0) = ‖x‖+‖y‖= 2

and
f (1) = f (−1) = ‖x+ y‖+‖x− y‖� 2.

Combined with Lemma 3, f (t) is a convex function, then f (  ) � f (1) for 
 � 1 and

f (  ) � f (1) for 
 � 1. Using the same technique, we also have g( ) � g(1) for


 � 1 and g( ) � g(1) for 

 � 1.
Hence, for any x,y ∈ SX and  �  , we obtain that

(‖x+ 
 y‖+‖ 

 x− y‖)
2

� ‖x+ y‖+‖x− y‖
2

.

In addition, we can also obtain that

 (‖ x+ y‖+‖x− 
 y‖)

2
� ‖x+ y‖+‖x− y‖

2
.

Thus
A− (X)


� A2(X) �

A− (X)


.

Similarly, for any x,y ∈ SX and  �  , we have

A− (X)


� A2(X) �
A− (X)


.

In summary, we have

A− (X)
min{,} � A2(X) �

A− (X)
max{,} . �

Finally, we compare the constant A− (X) with the modulus of convexity.

PROPOSITION 5. Let X be a Banach space. Then

A− (X) � max{,}+ sup

{
max{,}(−2X())

2
; ∈ [0,2]

}
+ |− |.
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Proof. Taking x ∈ SX , if y∈ SX and ‖x−y‖=  , then ‖x+y‖
2 � 1− X () . So we

obtain, for any y ∈ SX ,

‖x+y‖+‖x−y‖
2

� (‖x+ y‖+ |− |‖y‖)+ (‖x− y‖+ |− |‖x‖)
2

� (‖x+ y‖+‖x− y‖)
2

+ |− |

� ( +2(1− X()))
2

+ |− |.
By taking the supremum for x,y ∈ SX , we have

A− (X) � sup

{
( +2(1− X()))

2
; ∈ [0,2]

}
+ |− |

=  + sup

{
(−2X())

2
; ∈ [0,2]

}
+ |− |.

Similarly, the following inequality holds:

A− (X) �  + sup

{
 (−2X())

2
; ∈ [0,2]

}
+ |− |.

Hence we have the thesis. �
Now, we shall give an estimate concerning the difference in the values of the con-

stant A− (X) on X and A− (X∗) on X∗.

THEOREM 3. Let X be a Banach space. Then

2A− (X)− (+ ) � A− (X∗) � 2A− (x)−|− |.
Proof. First, according to the definition of A− (X) , for any  > 0, there exist

x,y ∈ SX such that

‖x+y‖+‖x−y‖
2

+  � A− (X).

In addition, according to Hahn-Banach theorem, there exist f ,g ∈ SX∗ such that

f (x+y) = ‖x+y‖, g(x−y) = ‖x−y‖.
Then, we have

A− (X∗) � min{‖ f +g‖,‖ f −g‖}
= ‖ f +g‖+‖ f −g‖−max{‖ f +g‖,‖ f −g‖}
� ‖ f +g‖+‖ f −g‖− (+ )
� ( f +g)(x)+ ( f −g)(y)− (+ )
= f (x+y)+g(x−y)− (+ )
= ‖x+y‖+‖x−y‖− (+ )
� 2A− (X)−2− (+ ).
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Let  → 0, we get
A− (X∗) � 2A− (X)− (+ ).

On the other hand, let u,v ∈ SX∗ , then for any  > 0, there exist x,y ∈ SX such that

(u+v)(x) > ‖u+v‖− , (u−v)(y) > ‖u−v‖− .

Thus,

‖u+v‖+‖u−v‖
2

� max{‖u+v‖,‖u−v‖}
= ‖u+v‖+‖u−v‖−min{‖u+v‖,‖u−v‖}
� ‖u+v‖+‖u−v‖− |− |
< (u+v)(x)+ (u−v)(y)+2−|− |
= u(x+y)+ v(x−y)+2−|− |
� ‖x+y‖+‖x−y‖+2−|− |
� 2A− (X)+2−|− |.

Let  → 0, we get

A− (X∗) � 2A− (X)−|− |. �

4. The constant A′
− (X)

Taking into account the impact of orthogonality on the constant A− (X) , we
impose a condition where x and y adhere to the principle of isosceles orthogonality.
This leads us to introduce the following new constant: let , > 0, dimX � 3,

A′
− (X) = sup

{‖x+y‖+‖x−y‖
2

: x,y ∈ SX ,x ⊥I y

}
.

REMARK 3. Since

J(X) = sup{min{‖x+ y‖,‖x− y‖} : x,y ∈ SX ,x ⊥I y}
= sup{‖x+ y‖ : x,y ∈ SX ,x ⊥I y},
= sup{min{‖x+ y‖,‖x− y‖} : x,y ∈ SX}.

If A′
1−1(X) =

√
2, we can infer that

sup{min{‖x+ y‖,‖x− y‖} : x,y ∈ SX ,x ⊥I y}

� sup

{‖x+ y‖+‖x− y‖
2

: x,y ∈ SX ,x ⊥I y

}
�
√

2,

which implies J(X) =
√

2. Hence X is a Hilbert space (see page 328).
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REMARK 4. It is easy to get that

A′
− (X) = A′

−(X).

Below, we compute the value of the constant A′
− (X) in a Hilbert space, and

based on this, we give the upper and lower bounds of the constant A′
− (X) .

PROPOSITION 6. If X is a Hilbert space, then for all , > 0 , we have A′
− (X)

=
√
2 + 2 .

Proof. The proof is obtained with the same technique as in Proposition 1. �

PROPOSITION 7. Let X be an infinite dimensional Banach space. Then√
2 + 2 � A′

− (X) � + .

Proof. The proof is obtained with the same technique as in Proposition 2. �

Next, we compute the relationship between the constant A′
− (X) and the James

constant J(X) .

THEOREM 4. Let X be a Banach space. Then

max{,}J(X)−|− |� A′
− (X) � 1

2
J(X)+1+ |1−|+ |1− |.

Proof. The proof is obtained with the same technique as in Theorem 1. �

Finally, we show with a counterexample that the constants A′
− (X) and A− (X)

are generally different. Isosceles orthogonality condition plays an important role in the
constant structure.

EXAMPLE 3. Let X = R
2 ,  �  , and assign the following l− l1 norm

‖x‖ = ‖(x1,x2)‖ =
{‖x‖1, x1x2 � 0,
‖x‖, x1x2 � 0.

Then

A′
− (X) =

{
3
4 + 3

4 0 <  �  � 2 ,

 + 1
4 2 < .

If x = (y1,1+y1) , y = (y2,1+y2) , where −1 � y1 � y2 � 0; x = (y1,y1−1) , y =
(y2,y2−1) , where 0 � y1 � y2 � 1. For both cases, by x⊥I y , we can get |y1−y2|= 2,
which is contradictory. In order to estimate the constant value, only the following two
cases need to be considered.
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Case 1: Assuming that x = (x1,1) , y = (1,y2) , 0 � x1 � y2 � 1. Since x ⊥I y ,
we have

1+ y2 = (1− x1)+ (1− y2) ,

and hence x1 +2y2 = 1, y2 ∈
[

1
3 , 1

2

]
.

Assuming that 1
2 � 

 , we have

‖x+y‖+‖x−y‖
2

=
2 +(3 −)y2

2

� 3
4
 +

3
4
 .

Taking the maximum at x = (0,1) , y =
(
1, 1

2

)
satisfies ‖x+ y‖= ‖x− y‖= 3

2 .

Assuming that 1
3 � 

 � 1
2 .

• When 1
3 � y2 � 

 , ‖x−y‖=  +2y2−y2

‖x+y‖+‖x−y‖
2

=
2 +(3 −)y2

2

<
3
4
 +

3
4
 .

• When 
 < y2 � 1

2 , ‖x−y‖= −x1,

‖x+y‖+‖x−y‖
2

=
2+ (3y2−1)

2

�  +
1
4
 .

Taking the maximum at x = (0,1) , y =
(
1, 1

2

)
satisfies ‖x+ y‖= ‖x− y‖= 3

2 .

Assuming that 1
3 � 

 , we have

‖x+y‖+‖x−y‖
2

=
2+ (3y2−1)

2

�  +
1
4
 .

Case 2: Assuming that x =(x1,1) , y = (y1,1+ y1) satisfies −1� y1 � 0 � x1 � 1.
Since x ⊥I y , we have ‖(x1 + y1,2+ y1)‖ = ‖(x1− y1,−y1)‖ .

If −x1 � y1 , then 2+ y1 = x1− y1 is true, hence x1−2y1 = 2, y1 ∈
[− 2

3 ,− 1
2

]
.

Assuming that  �  � 2 , we have

‖x+y‖+‖x−y‖
2

� +3 +(3 −)y1

2

� 3
4
 +

3
4
 .

Taking the maximum at x = (1,1) , y =
(− 1

2 , 1
2

)
satisfies ‖x+ y‖= ‖x− y‖= 3

2 .
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Assuming that 2 <  < 3 .
• When − 2

3 � y1 � −
 , ‖x−y‖= x1−y1

‖x+y‖+‖x−y‖
2

� +3 +(3 −)y1

2

<
3
4
 +

3
4
 .

• When −
 < y1 � − 1

2 , ‖x−y‖= − +x1

‖x+y‖+‖x−y‖
2

� 2 +2 +3y1

2

� +
1
4
 .

Assuming that  � 3 , we have

‖x+y‖+‖x−y‖
2

� 2 +2 +3y1

2

� +
1
4
 .

Similarly, if y1 � −x1 , as discussed in Case 2, the proof is omitted.
Combining the above two cases, we have

A′
− (X) =

{
3
4 + 3

4 0 <  �  � 2 ,

 + 1
4  > 2 .

Combining Example 2, we get that for X in the space above, A− (X) >A′
− (X)

for any  �  > 0. Therefore, the introduction of the constant A′
− (X) in this section

is valuable.
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