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Abstract. The classical Szegö theorems study the asymptotic behaviour of the determinants
of the finite sections PnT(a)Pn of Toeplitz operators, i.e., of operators which have constant
entries along each diagonal. We generalize these results to operators which have almost periodic
functions on their diagonals.

1. Introduction

This paper deals mainlywith operatorswhich are constituted by Laurent or Toeplitz
operators and by band-dominated operators. Sowe startwith introducing some notations
and with recalling some facts about Toeplitz and band-dominated operators and their
finite sections.

Spaces and projections. Given a non-empty subset I of the set Z of the integers,
let l2(I) stand for the Hilbert space of all sequences (xn)n∈I of complex numbers with∑

n∈I
|xn|2 < ∞ . We identify l2(I) with a closed subspace of l2(Z) in the natural way,

and we write PI for the orthogonal projection from l2(Z) onto l2(I) .
The set of the non-negative integers will be denoted by Z+ , and we write P in

place of P+
Z

and Q in place of the complementary projection I − P . Thus, Q = PZ−

where Z− refers to the set of all negative integers.
Further, for each positive integer n , set

Pn := P{0, 1, ..., n−1} and Rn := P{−n,−n+1, ..., n−1}.

The projections Rn converge strongly to the identity operator on l2(Z) , and the pro-
jections Pn converge strongly to the identity operator on l2(Z+) when considered as
acting on l2(Z+) and to the projection P when considered as acting on l2(Z) .

The C∗ -algebra of all bounded linear operators on a Hilbert space H will be
denoted by L(H) .
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Functions and operators. Let a ∈ L∞(T) , the C∗ -algebra of all essentially
bounded measurable functions on the complex unit circle T , and let

aj :=
1
2π

∫ 2π

0
a(eit)e−ijt dt.

refer to the j th Fourier coefficient of a . Then the operator on l2(Z) given by the matrix
representation (ai−j)i, j∈Z with respect to the standard basis of l2(Z) induces a bounded
linear operator L(a) on l2(Z) , the so-called Laurent operator with generating function
a . The operator T(a) := PL(a)P acting on l2(Z+) is called the Toeplitz operator with
generating function a .

Laurent operators are distinguished by their shift invariance. For k ∈ Z , define
the shift operator

Uk : l2(Z) → l2(Z), (xn) �→ (yn) with yn = xn−k.

Then A ∈ L(l2(Z)) is a Laurent operator if and only if U−kAUk = A for each k ∈ Z .
Further, each function a ∈ l∞(Z) , the C∗ -algebra of all bounded sequences on

Z , induces a multiplication operator

aI : l2(Z) → l2(Z), (xn) �→ (anxn).

Let X be a C∗ -subalgebra of L∞(T) and Y be a shift invariant C∗ -subalgebra
of l∞(Z) . The latter means that U−ka ∈ Y whenever a ∈ Y (here we allow the
operators U−k to act on L∞(Z) in the obvious way). We let AX, Y(Z) stand for
the smallest closed C∗ -subalgebra of L(l2(Z)) which contains all Laurent operators
L(a) with a ∈ X and all multiplication operators bI with b ∈ Y . Similarly, we
write AX, Y(Z+) for the smallest closed C∗ -subalgebra of L(l2(Z+)) which contains
all Toeplitz operators T(a) with a ∈ X and all operators PbP with b ∈ Y . So
AL∞(T), C(Z) is the C∗ -algebra of all Laurent operators, which is ∗ -isomorphic to the
algebra L∞(T) , and AL∞(T), C(Z+) is the smallest closed subalgebra of L(l2(Z+))
which contains all bounded Toeplitz operators.

Of particular interest are the algebra X = C(T) of the continuous functions on T

and the algebra Y = AP(Z) of the almost periodic functions. A function a ∈ l∞(Z)
is called almost periodic if the set of all multiplication operators U−kaUk with k ∈ Z

is relatively compact in the norm topology of L(l2(Z)) or, equivalently, in the norm
topology of l∞(Z) .

The operators in AC(T), l∞(Z)(Z) are usually referred to as band-dominated op-
erators, and the operators in AC(T), Y(Z) are called band-dominated operators with
coefficients in Y . To operators in AC(T), l∞(Z)(Z+) , we also refer as band-dominated
operators over Z+ . The reason for the notion band-dominated is that continuous func-
tions on T can be uniformly approximated by trigonometric polynomials, hence, oper-
ators in AC(T), l∞(Z) can be approximated by band operators in the norm of L(l2(Z)) .
We will usually write AY(Z) and AY(Z+) in place of AC(T), Y(Z) and AC(T), Y(Z+) ,
respectively, which is consistent with the notations in [33, 36]. It is easy to see that
PAP ∈ AY(Z+) whenever A ∈ AY(Z) .
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Szegö theorems for Toeplitz matrices. There are several ways to express the
so-called first Szegö limit theorem, and there are several kinds of hypotheses under
which the theorem holds. A version which is convenient for us is via stability of the
finite sections method. The n th finite section of the operator A is the operator PnAPn .
Unless otherwise stated, we will consider this operator as acting on imPn . Thus, PnAPn

can be represented by an n× n matrix. Instead of PnT(a)Pn we will also write Tn(a) .
The sequence (PnAPn)n∈N of the finite sections of an operator A acting on l2(Z+)

is said to be stable if the matrices PnAPn are invertible for sufficiently large n and if
the norms of their inverses are uniformly bounded.

THEOREM 1.1. (First Szegö limit theorem) Let a ∈ L∞(T) and suppose that the
finite sections sequence (Tn(a))n∈N is stable. Then T(a) is invertible and

lim
n→∞

detTn(a)
det Tn−1(a)

= G[a] (1)

where
G[a] := 1/(P1T(a)−1P1)

and, of course, P1T(a)−1P1 stands for the 00 th entry of T(a)−1 .

If a ∈ L∞(T) is real-valued and T(a) is invertible, then the (compact) essential
range of a is contained in the open interval (0, ∞) by the Hartman-Wintner theorem
(see 2.36 in [12] or Theorem 1.27 in [13]). Thus, the function a has a real-valued
logarithm log a ∈ L∞(T) , and it is not hard to show that

G[a] = exp

(
1
2π

∫ 2π

0
(log a)(eit) dt

)
= exp(log a)0. (2)

Szegö [40] proved (1) under the assumptions that a ∈ L1(T) , a � 0 and log a ∈ L1(T) .
The following theorems provide statements about the eigenvalue distribution of Toeplitz
matrices. One has to distinguish between real-valued generating functions a , in which
case the function f has to be merely continuous, whereas in case of arbitrary bounded
functions a , one needs holomorphy of f .

They can be derived from Szegö’s first limit theorem (compare the proofs of
Theorems 5.9 and 5.10 in [13]). Although this derivation is not without effort, they are
also referred to as First Szegö limit theorems. In the present paper we will call them the
distributive versions of Theorem 1.1.

For each n× n -matrix B , let λi(B) with i = 1, . . . , n refer to the eigenvalues of
B . The order of enumeration is not of importance.

THEOREM 1.2. (First Szegö limit theorem, distributive version I)
Let a ∈ L∞(T) be a real-valued function, and let g be any continuous function on the
convex hull of the essential range of a . Then

lim
n→∞

g(λ1(Tn(a)) + · · · + g(λn(Tn(a))
n

=
1
2π

∫ 2π

0
g(a(eit)) dt. (3)

THEOREM 1.3. (First Szegö limit theorem, distributive version II)
Let a be an arbitrary function in L∞(T) , and let g be analytic on an open neighborhood
of the convex hull of the essential range of a . Then (3) holds again.
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It is one thing to settle the convergence (1) and another one to describe the precise
asymptotic behaviour of the determinants det Tn(a) . The latter is the contents of the
so-called strong Szegö limit theorem, proved by Szegö [41] for positive generating
functions with Hölder continuous derivative. In the formulation below, there occurs an
algebra, W0, 0 ∩B1/2, 1/2

2, 2 , of continuous functions on T which is defined in [12], 10.21.

THEOREM 1.4. (Strong Szegö limit theorem) Let a ∈ W0, 0 ∩ B1/2, 1/2
2, 2 have no

zeros on T and winding number 0 with respect to the origin. Then

lim
n→∞

detTn(a)
G[a]n

= E[a] (4)

where

E[a] = exp
∞∑
k=1

k(log a)k (log a)−k. (5)

We will not go into the long and rich history of the Szegö limit theorems here
and refer to [12, 13] and to Chapter 2 of [38] instead. Let us only mention that E.
Basor, G. Baxter, A. Böttcher, A. Devinatz, T. Ehrhardt, I. Gohberg, I. Feldman, I. I.
Hirschman, M. Kac, M. G. Krein and H. Widom are among the main contributors and
that [6, 17, 18, 19, 21, 24, 42, 45, 46] mark some milestones in this field.

About this paper. This paper is devoted to generalizations of the classical Szegö
limit theorems to several classes of operatorswith variable coefficients (whereasToeplitz
and Laurent operators are considered as operators with constant coefficients). Particular
attention is paid to operators with almost periodic coefficients for which we will obtain
themost satisfying generalizations ofTheorems 1.1 – 1.3. These resultswill be discussed
in Sections 3. and 4. below. On the other hand, we have to report that the precise
asymptotic behaviour of the determinants of an operator with almost periodic diagonals
still remains mysterious for us. Thus, the question of a possible generalization of the
strong Szegö limit theorem is still open (although Torsten Ehrhardt’s wonderful paper
[19] seems to offer a comfortable way to attack this problem).

We prepare our discussion in Section 2 by recalling some facts about algebras
generated by sequences of finite sections and about band-dominated operators and their
finite sections. The results cited in this section can be found in [34, 36]. The concluding
fifth section is devoted to some applications of our general Szegö limit theorems.

The asymptotic behaviour of the determinants of a sequence of finite sections can
and should be considered in two different settings: for operators acting on the two-sided
infinite sequences (with the Laurent operators as an example) and for operators on
one-sided infinite sequences (for instance, the Toeplitz operators). In order to make our
results comparable with the classical Szegö theorems, we will focus our attention on
operators on l2(Z+) . But many of the presented results have their counterparts in the
world of operators on two-sided sequences.
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2. Preliminaries

2.1. Algebras related with finite sections

Let P := (Pn)n∈N where the projections Pn are defined as in the introduction.
Write FP for the set of all sequences (An) of operators An : imPn → im Pn for
which the strong limits

s-lim AnPn and s-lim A∗
nPn

exist, and G for the subset of FP consisting of all sequences (Gn) with ‖Gn‖ → 0 .
Provided with the operations

(An) + (Bn) := (An + Bn), λ (An) := (λAn), (An) (Bn) := (AnBn), (6)

the involution (An)∗ := (A∗
n) and with the norm

‖(An)‖ := sup
n∈N

‖An‖,

the set FP becomes a C∗ -algebra, and G is a closed ideal of FP . We will often
use boldface letters to refer to elements of FP . For A := (An) ∈ FP , we denote the
strong limit s-limAnPn by W(A) . Thus, W is a ∗ -homomorphism from FP onto
L(l2(Z+)) .

A sequence (An) ∈ FP is called stable if the operators An : imPn → imPn

are invertible for sufficiently large n and if the norms of their inverses are uniformly
bounded. The following simple result is the basis for the algebraization of several
problems from numerical analysis.

PROPOSITION 2.1. (Kozak) A sequence A ∈ FP is stable if and only if the coset
A + G is invertible in the quotient algebra FP/G .

The spectrum of the coset A+G in FP/G will be denoted by σFP /G (A+G )
or simply by σ(A + G ) . It is also called the stability spectrum of the sequence A
and will occur in the formulation of several results below. Here we only mention the
following fact.

PROPOSITION 2.2. Let A = (An) ∈ FP . Then

σL(l2(Z+)) (W(A)) ⊆ σFP/G (A + G ),

and for each open neighborhood U of σFP/G (A + G ) one has

σL(im Pn) (An) ⊆ U

for all sufficiently large n .

The proof of the first assertion is a consequence of Polski’s theorem (Theorem 1.4
in [22]), and the second one follows easily from the inclusion

lim supσ(An) ⊆ σFP /G (A + G ) (7)

stated in Theorem 3.19 in [22], where lim sup is the set-theoretical limes superior.



6 STEFFEN ROCH AND BERND SILBERMANN

Indeed, suppose there are an open neighborhood U of σFP /G (A + G ) , a strongly
monotonically increasing sequence η : N → N , and points λn ∈ σ(Aη(n)) with
λn 	∈ U . Since (An) is a bounded sequence, the sequence (λn) is bounded, too. Hence,
it possesses a partial limit λ ∗ which belongs to lim supσ(An) (by definition) but not
to U (since U is open). This contradicts (7). �

It what follows we will have to consider several subalgebras of FP . For X and
Y as in the introduction, let SX, Y(Z+) stand for the smallest closed C∗ -subalgebra
of FP which contains all sequences (PnAPn) of finite sections of operators A ∈
AX, Y(Z+) . Further we will often write SY(Z+) in place of SC(T), Y(Z+) .

2.2. Band-dominated operators, their Fredholmness and finite sections

Here is a summary of the results from [31] needed in what follows. A comprehen-
sive treatment of this topic is in [33]; see also the references mentioned there.

Fredholmness of band-dominated operators. An operator A on a Hilbert space
H is called Fredholm if both its kernel kerA := {x ∈ H : Ax = 0} and its cokernel
cokerA := H/(AH) are finite dimensional linear spaces. There is a Fredholm criterion
for a general band-dominated operator A which expresses the Fredholm property in
terms of the limit operators of A . To state this result, we will need a few notations.

Let H stand for the set of all sequences h : N → Z which tend to infinity in
the sense that given C > 0 , there is an n0 such that |h(n)| > C for all n � n0 . An
operator Ah ∈ L(l2(Z)) is called the limit operator of A ∈ L(l2(Z)) with respect to the
sequence h ∈ H if U−h(n)AUh(n) tends ∗ -strongly to Ah as n → ∞ . (By definition,
a sequence (An) of operators converges ∗ -strongly to A if An → A and A∗

n → A∗

strongly.) Notice that every operator can possess at most one limit operator with respect
to a given sequence h ∈ H . The set σop(A) of all limit operators of a given operator
A is the operator spectrum of A .

We write L$(l2(Z)) for the set of all operators A ∈ L(l2(Z)) which own the
following compactness property: Every sequence h ∈ H possesses a subsequence
g for which the limit operator Ag exists. Thus, operators in L$(l2(Z)) possess, in a
sense, many limit operators. They are also called operators with rich operator spectrum
(therefore the notation).

PROPOSITION 2.3. (a) L$(l2(Z)) is a C∗ -subalgebra of L(l2(Z)) .
(b) AL∞(T), l∞(Z)(Z) ⊆ L$(l2(Z)) .

Assertion (a) is Proposition 1.2.6 (a) in [33]. Since L$(l2(Z)) is a closed algebra,
assertion (b) will follow once it has been shown that all bounded Laurent operators and
all bounded multiplication operators belong to L$(l2(Z)) . The first inclusion is evident
due to the shift invariance of Laurent operators, and the second one is Theorem 2.1.16
in [33]. �

It is not hard to see that every limit operator of a compact operator is 0 and that
every limit operator of a Fredholm operator is invertible. A basic result of [31] (see also
Theorems 2.2.1 and 2.5.7 in [33]) claims that the operator spectrumof a band-dominated
operator is rich enough in order to guarantee the reverse implications.
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THEOREM 2.4. Let A ∈ L(l2(Z)) be a band-dominated operator. Then the
operator A is Fredholm if and only if each of its limit operators is invertible and if
the norms of their inverses are uniformly bounded. If A is a band operator, then A is
Fredholm if and only if each of its limit operators is invertible.

An analogous result holds for band-dominated operators on Z+ in which case one
has to take into account all limit operators with respect to sequences h tending to +∞ .
(Simply apply Theorem 2.4 to the operator PAP + Q , now acting on all of Z .) We
let σ±(A) collect the set of all limit operators of A which are taken with respect to a
sequence tending to ±∞ .

Finite sections of band-dominated operators. One way to attack stability prob-
lems is based on the following observation. Associate to the sequence A = (An) ∈ FP

the block diagonal operator

Op (A) := diag (A1, A2, A3, . . .) (8)

considered as acting on l2(Z+) . It is easy to check that the sequence A is stable
if and only if the associated operator Op (A) is Fredholm. In general, this stability
criterion seems to be of less use. But if one starts with the sequence A = (PnAPn)
of the finite sections method of a band-dominated operator A , then one ends up with
a band-dominated operator Op (A) on l2(Z+) , and Theorem 2.4 applies to study the
Fredholmness of Op (A) . Basically, one has to compute the limit operators of Op (A) ,
which leads to the following result (which is Theorem 3 in [32]). See also Chapter 6 in
[33] and the detailed account on the finite sections method of band-dominated operators
given in [36].

THEOREM 2.5. Let A ∈ L(l2(Z)) be a band-dominated operator. Then the finite
sections method (RnARn)n�1 is stable if and only if the operator A , all operators

QAhQ + P with Ah ∈ σ+(A)

and all operators

PAhP + Q with Ah ∈ σ−(A)

are invertible on l2(Z) , and if the norms of their inverses are uniformly bounded.
The condition of the uniform boundedness of the inverses is redundant if A is a band
operator.

If now A is a band-dominated operator on l2(Z+) , then PAP + Q is a band-
dominated operator on l2(Z) . Moreover, the finite sections sequence (PnAPn) is stable
if and only if the finite sections sequence (Rn(PAP + Q)Rn) is stable. Specifying
Theorem 2.5 to the case of band operators on l2(Z+) we get the following result, where
J refers to the unitary operator

l2(Z) → l2(Z), (Jx)m := x−m−1,

and where we define σ+(A) as σ+(PAP + Q) .
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THEOREM 2.6. Let A ∈ L(l2(Z+)) be a band-dominated operator. Then the finite
sections method (PnAPn)n�1 is stable if and only if the operator A and all operators

JQAhQJ with Ah ∈ σ+(A)

are invertible on l2(Z+) and if the norms of their inverses are uniformly bounded.
The condition of the uniform boundedness of the inverses is redundant if A is a band
operator.

There are generalizations of Theorems 2.5 and 2.6 which can be verified in the
same vein as their predecessors. We mention the result for the finite sections (PnAPn)
only.

THEOREM 2.7. Let A ∈ L(l2(Z+)) be a band-dominated operator, and let
η : N → N be a strongly monotonically increasing sequence. Then the sequence
(Pη(n)APη(n))n�1 is stable if and only if the operator A and all operators JQAhQJ
where Ah is a limit operator of A with respect to a subsequence h of η are invertible
on l2(Z+) and if the norms of their inverses are uniformly bounded. The condition of
the uniform boundedness of the inverses is redundant if A is a band operator.

Thus, instead of taking all limit operators of A with respect to monotonically
increasing sequences h , one has to consider only those with respect to subsequences of
η .

COROLLARY 2.8. Let A ∈ L(l2(Z+)) be a band-dominated operator, and let
h : N → N be a strongly monotonically increasing sequence for which the limit
operator Ah exists. Then the sequence (Ph(n)APh(n))n�1 is stable if and only if the
operators A and JQAhQJ are invertible.

2.3. Band-dominated operators with almost periodic coefficients

Here we collect some basic facts from [34] which show that the conclusion of
Corollary 2.8 can be essentially simplified if the sequence h is chosen appropriately.
These results will only be needed in Subsection 5.1. (after Theorem 5.4) below.

It is one peculiarity of band-dominated operators A ∈ AAP(Z) that there is a
strongly monotonically increasing sequence h : N → N such that

‖U−h(n)AUh(n) − A‖ → 0 as n → ∞. (9)

Thus, A is its own limit operator with respect to h , and it is a limit operator in the
sense of norm convergence. We shall prove this fact in Section 5.3. in a more general
context. Each sequence h with the properties mentioned above is called a distinguished
sequence for A . If h is a distinguished sequence for A , then we call (Ph(n)PAPPh(n))
the associated distinguished finite sections method for PAP and (Rh(n)ARh(n)) the
associated distinguished finite sections method for A .

THEOREM 2.9. Let A ∈ AAP(Z) and let h be a distinguished sequence for A .
Then the sequence (Ph(n)PAPPh(n)) is stable if and only if the operators PAP and
JQAQJ are invertible.
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Of course, this follows immediately from Corollary 2.8. But there is also an
elementary proof based on (9) which mimics the proof of the stability of the finite
sections method for invertible Toeplitz operators with continuous generating function
(see [10], Theorem 4.102 in [29] and Section 1.4.2 in [22] for the proof in the Toeplitz
setting and [34] for band-dominated operators with almost periodic coefficients).

It is not always easy to find a distinguished sequence for a given operator in
AAP(Z) . But sometimes it is, and here are two examples taken from [34].

EXAMPLE 2.10. (Multiplication operators) For each real number α ∈ [0, 1) , the
function

a : Z → C, n �→ e2πiαn (10)

is almost periodic. Indeed, for every integer k , U−kaUk is the operator ofmultiplication
by the function ak with ak(n) = a(n + k) = e2πiαka(n) , i.e.,

U−kaUk = e2πiαka. (11)

Let (U−k(n)aUk(n)) by any sequence in {U−kaUk : k ∈ Z} . Due to the compactness
of T , there are a subsequence (e2πiαk(n(r)))r�1 of (e2πiαk(n))n�1 and a real number β
such that

e2πiαk(n(r)) → e2πiβ as r → ∞.

Thus, the functions ak(n(r)) = e2πiαk(n(r))a converge in the norm of l∞(Z) to e2πiβa ,
whence the almost periodicity of a . Thus, every function as in (10) belongs to AP(Z) .
Conversely, AP(Z) is the closure in l∞(Z) of the span of all functions of the form (10)
with α ∈ [0, 1) ([16], Theorems 1.9 – 1.11 and Theorem 1.27).

For the operator spectrum of the operator aI one finds

σop, s(aI) = σop, n(aI) =
{

{e2πil/q a : l = 1, 2, . . . , q} if α = 2p/q ∈ Q,
{eit a : t ∈ R} if α 	∈ Q,

Here, p and q are relatively prime integers with q > 0 . Indeed, the inclusion ⊆
follows immediately from (11). The reverse inclusion is evident in case α ∈ Q . If
α 	∈ Q , then it follows from a theorem by Kronecker which states that the set of all
numbers e2πiαk with integer k lies dense in the unit circle T .

Next we are looking for distinguished sequences for the operator of multiplication
by the sequence 10 . From (11) we infer that a sequence h is distinguished for aI if
and only if

lim
n→∞

e2πiαh(n) = 1

In case α = p/q ∈ Q , the sequence a is q -periodic. Thus, h(n) := qn is a
distinguished sequence for aI . For non-rational α ∈ (0, 1) , expand α into its
continued fraction

α = lim
n→∞

1

b1 +
1

b2 +
1

. . .

bn−1 +
1
bn
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with uniquely determined positive integers bi . Write this continued fraction as pn/qn

with positive and relatively prime integers pn, qn . These integers satisfy the recursions

pn = anpn−1 + pn−2, qn = anqn−1 + qn−2 (12)

with p0 = 0, p1 = 1, q0 = 1 and q1 = a1 , and one has for all n � 1∣∣∣∣α − pn

qn

∣∣∣∣ <
1

qnqn+1
<

1
q2

n
. (13)

Thus,

|αqn − pn| � qn

∣∣∣∣α − pn

qn

∣∣∣∣ � 1
qn

→ 0,

whence
e2πiαqn = e2πi(αqn−pn) → 1.

Since moreover q1 < q2 < . . . due to the recursion (12), this shows that the sequence
h(n) := qn belongs to HA, n and that Ah = A , i.e. h is a distinguished sequence for
the operator aI with a as in (10). �

EXAMPLE 2.11. (Almost Mathieu operators) These are the operators Hα, λ , θ on
l2(Z) given by

(Hα, λ , θx)n := xn+1 + xn−1 + λxn cos 2π(nα + θ)

with real parameters α, λ and θ . Thus, Hα, λ , θ is a band operatorwith almost periodic
coefficients, and

Hα, λ , θ = U−1 + U1 + aI with a(n) = λ cos 2π(nα + θ).

For a treatment of the spectral theory of almostMathieu operators see [9] and the recently
published papers [4, 30] where the long-standing Ten Martini problem is solved.

As in Example 2.10 one gets

U−kHα, λ , θUk = U−1 + U1 + akI

with

ak(n) = a(n + k) = λ cos 2π((n + k)α + θ)
= λ (cos 2π(nα + θ) cos 2πkα − sin 2π(nα + θ) sin 2πkα). (14)

We will only consider the non-periodic case, i.e., we let α ∈ (0, 1) be irrational. As in
the previous example, we write α as a continued fraction with n th approximant pn/qn

such that (13) holds. Then

cos 2παqn = cos 2π(αqn − pn) = cos 2πqn(α − pn/qn) → cos 0 = 1

and, similarly, sin 2παqn → 0 . Further we infer from (14) that

|(aqn − a)(n)| � |λ | |1 − cos 2παqn| + |λ | | sin παqn|.
Hence, aqn → a uniformly. Thus, h(n) := qn defines a distinguished sequence for the
Almost Mathieu operator Hα, λ , θ . Notice that this sequence depends on the parameter
α only. �

Theorem 2.9 implies the following.
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COROLLARY 2.12. Let A := Hα, λ , θ be an Almost Mathieu operator and h a
distinguished sequence for A . Then the following conditions are equivalent:
(a) the distinguished finite sections method (Ph(n)PAPPh(n)) for PAP is stable;
(b) the distinguished finite sections method (Rh(n)ARh(n)) for A is stable;
(c) the operators PAP and QAQ are invertible.

If θ = 0 , then the Almost Mathieu operator A = Hα, λ , 0 is flip invariant, i.e.,
JAJ = A . So we observe in this case that the third condition in Corollary 2.12 is
equivalent to the invertibility of PAP alone.

For a different numerical treatment of Almost Mathieu and other operators in
irrational rotation algebras consult [15].

3. The first Szegö limit theorem

3.1. Operators with rich spectrum

Let A be an operator on l2(N) for which the finite sections sequence (PnAPn) is
stable. Then the matrices PnAPn are invertible for n large enough, and it makes sense
to consider the sequence

n �→ det(PnAPn)
det(Pn−1APn−1)

. (15)

In case A = T(a) is an invertibleToeplitz operatorwith continuous generating function,
the sequence (15) converges, and its limit is equal to

G[a] := 1/(P1T(a)−1P1) (16)

by the first Szegö limit theorem 1.1. For general A , one cannot expect convergence of
(15) as already the band operator

A := diag

((
2 1
1 2

)
,

(
2 1
1 2

)
,

(
2 1
1 2

)
, . . .

)
shows. In this case we denote by ω(A) the set of all partial limits of the sequence (15).
It turns out that this set can be described via limit operators in case A is an operator
with rich operator spectrum for which the finite sections method is stable. We prepare
the precise statement of this result by the following proposition.

PROPOSITION 3.1. Let A ∈ L$(l2(Z+)) be an operator for which the finite
sections sequence (PnAPn) is stable, and let Ah be a limit operator of A with respect
to a sequence h tending to +∞ . Then the operator JQAhQJ is invertible on l2(Z+) .

For band-dominated operators A , this result has been already stated in Theorem
2.6. In fact, it is the elementary of the two implications of the equivalence stated in that
theorem. It is easy to see that this implication holds for arbitrary operators with rich
spectrum (see also Proposition 1.2.10 in [33]). �

The previous observation justifies to set (in analogy to (16))

G[Ah] := 1/(P1(JQAhQJ)−1P1) (17)
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which has to be read as follows: P1(JQAhQJ)−1P1 can be understood as an 1 × 1 -
matrix, and we identify this matrix with its only entry, which is a complex number. The
fact that this number cannot be zero is part of the assertion of the following theorem.

THEOREM 3.2. Let A ∈ L$(l2(Z+)) be an operator for which the finite sections
sequence (PnAPn) is stable. Then P1(JQAhQJ)−1P1 	= 0 for all limit operators Ah of
A , and

ω(A) = {G[Ah] : Ah ∈ σ+(A)} (18)

with G[Ah] defined by (17) .

Proof. First we show that P1(JQAhQJ)−1P1 	= 0 for every limit operator Ah of
A . Let Ah be a limit operator of A . Equivalently, we have to show that the operator

B1 := P1(JQAhQJ)−1P1 : imP1 → im P1

is invertible. By Kozak’s identity (Proposition 7.15 in [12]) this happens if and only if
the operator

B2 := (P − P1)JQAhQJ(P − P1) : im (P − P1) → im (P − P1)

invertible. We multiply the operator B2 from both sides by the flip operator J and take
into account that J(P − P1)J = (I − R1)Q to obtain that B2 is invertible if and only if

B3 := (I − R1)QAhQ(I − R1) : im Q(I − R1) → imQ(I − R1)

is invertible. Since U1(I − R1)QU−1 = Q , the invertibility of B3 is equivalent to the
invertibility of the shifted operator

B4 := U1B3U−1

= U1(I − R1)QU−1U1AhU−1U1Q(I − R1)U−1

= QU1AhU−1Q : imQ → imQ.

It is finally obvious that B4 is invertible if and only if the operator

B5 := QU1AhU−1Q + P : l2(Z) → l2(Z)

is invertible. Since U1AhU−1 is also a limit operator of A (with respect to the sequence
h′(n) := h(n) − 1 ), the invertibility of B5 follows from the stability of the finite
section method (PnAPn) and from Proposition 3.1. This settles the first assertion of the
theorem.

For the second assertion, let n a positive integer and consider the operators

Wn : l2(Z+) → l2(Z+), (x0, x1, . . .) �→ (xn−1, xn−2, . . . , x0, 0, 0, . . .). (19)

If the finite sections method (PnAPn) is stable, then the operators WnAWn , considered
as acting on imWn = im Pn , are invertible for large n , and

det(Pn−1APn−1)
det(PnAPn)

=
det(Wn−1AWn−1)

det(WnAWn)
=: βn.
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By Cramer’s rule, βn equals the first component of the solution x(n) to the equation

WnAWnx
(n) = (1, 0, 0, . . . , 0)T .

Let now α ∈ ω(A) , and let h : N → N be a sequence tending to infinity such that
α−1 = lim βh(n) . Since A has a rich operator spectrum, there is a subsequence g of h
such that the limit operator

Ag = s-limU−g(n)AUg(n) ∈ L(l2(Z))

exists. Then also the strong limit on l2(N)

s-lim JU−g(n)Pg(n)APg(n)Ug(n)J

= s-lim J(U−g(n)Pg(n)Ug(n)) (U−g(n)AUg(n)) (U−g(n)Pg(n)Ug(n))J

exists and is equal to JQAgQJ . Since JU−nPn = Wn and PnUnJ = Wn , this
shows that the strong limit s-lim Wg(n)AWg(n) exists and that this limit is equal to
JQAgQJ ∈ L(l2(N)) . So one can consider (Wg(n)AWg(n))n∈N as a stable and conver-
gent approximation sequence for the operator JQAgQJ . In particular, the solutions x(n)

to the equation
Wg(n)AWg(n)x

(n) = (1, 0, 0, . . . , 0)T (20)

converge in the norm of l2(N) to the solution x to the equation

JQAgQJx = (1, 0, 0, . . . )T . (21)

Thus, the first component βg(n) of the solution x(n) to equation (20) converges to the
first component of the solution x to equation (21). Since the latter one is equal to

P1x = P1(JQAgQJ)−1P1,

we arrive at α = (P1(JQAgQJ)−1P1)−1 = G[Ag] . This settles the inclusion ⊆ in (18).
The reverse inclusion can be proved by similar arguments. �

3.2. Operators in the Toeplitz algebra

By Proposition 2.3 (b) , the assertion of Theorem 3.2 holds in particular for
operators in the algebra AL∞(T), l∞(Z)(Z+) and, thus, for all band-dominated operators
A ∈ Al∞(Z)(Z+) and for all operators A in the Toeplitz algebra AL∞(T), C(Z+) . The
statement for band-operators has been already proved in [36], Theorem 7.23, whereas
the Toeplitz case was the subject of Section 7.2.3 in [22]. In the Toeplitz case, one
can complete the assertion of Theorem 3.2 essentially. The point is the following
observation.

PROPOSITION 3.3. Let A ∈ AL∞(T), C(Z+) .
(a) Consider A as an operator on l2(Z) which acts as the zero operator on l2 over the
negative integers. Then the sequence (U−nAUn)n∈N converges ∗ -strongly on l2(Z) .
Its limit is a bounded Laurent operator, i.e., it is of the form L(a) with a ∈ L∞(T) .
(b) The sequence (WnAWn)n∈N converges ∗ -strongly on l2(Z+) . Its limit is a bounded
Toeplitz operator, i.e., it is of the form T(b) with b ∈ L∞(T) .
Moreover, b(t) = ã(t) := a(1/t) a.e. on T .
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The function a is also called the symbol of the operator A ∈ AL∞(T), C(Z+) . We
denote it by sA .

For a proof of assertion (a) , write T(a) as PL(a)P . Clearly, U−nL(a)Un = L(a) ,
and one easily checks that U−nPUn → I strongly. Thus,

U−nT(a)Un → L(a) as n → ∞.

Assertion (b) follows from (a) since

WnAWn = JQU−nAUnQJ.

For another proof of (b) (and some facts around it) see Sections 4.3.3 and 7.2.3 in
[22]. �

It follows from Proposition 3.3 that the only limit operator at +∞ of A ∈
AL∞(T), C(Z+) is the Laurent operator L(sA) . Hence, the set ω(T(a)) is the sin-
gleton {G[T(s̃A)]} in this case, whence the convergence of the sequence (15) to this
value.

COROLLARY 3.4. Let A ∈ AL∞(T), C(Z+) be an operator for which the finite
sections sequence (PnAPn) is stable. Then the sequence (15) converges, and its limit
is

G[T(s̃A)] = 1/(P1(T(s̃A))−1P1).

COROLLARY 3.5. Let a ∈ L∞(T) be such that the finite sections sequence
(PnAPn) for the Toeplitz operator A = T(a) is stable. Then the sequence (15)
converges, and its limit is

G[T(ã)] = 1/(P1(T(ã))−1P1).

In order to show that this corollary indeed reproduces the first Szegö limit theorem
1.1 we have to verify that

P1T(a)−1P1 = P1(T(ã))−1P1. (22)

Let C : l2(Z+) → l2(Z+) denote the operator of conjugation (xn) �→ (xn) (which is
linear over the field of the real numbers only). One easily checks that

T(ã) = CT(a)∗C for each function a ∈ L∞(T).

Hence, T(a) is invertible if and only if T(ã) is invertible, and if B is the inverse of
T(a) , then CB∗C is the inverse of T(ã) . The 00th entries of B and CB∗C coincide
obviously, whence (22). �

There are two obstacles for the application of Corollary 3.5. The first one concerns
the stability of the finite sections sequence (PnT(a)Pn) for which there is no general
criterion known. But there are at least special classes of generating functions a ∈ L∞(T)
(e.g., piecewise continuous or piecewise quasicontinuous functions) for which one
knows that the finite sections sequence for the Toeplitz operator T(a) is stable if and
only the operator T(a) is invertible, and for which effective criteria for the invertibility
of T(a) are available. Details can be found in Section IV.3 in [21], Section 4.2 in
[22] and Section 2.4 in [13] for Toeplitz operators with piecewise continuous generating
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functions and in Chapter 7 in [12] where a heavy machinery is developed to attack
stability problems.

The second point concerns the constant G[a] = (P1T(a)−1P1)−1 for which one
wants to have an effective way of computation. Under suitable assumptions for the
generating function a (e.g., belonging to the Wiener algebra or being locally sectorial)
one can identify the number G[a] with 1/ exp(log a)0 with b0 referring to the 0th
Fourier coefficient of the function b (details can be found in Section 5.4 of [13], for
example).

The latter observation offers also a way to determine the constant G[Ah] in some
further instances. Recall that a function b ∈ l∞(Z) is called slowly oscillating if the
difference b(n + 1) − b(n) tends to zero as n → ±∞ . Let A ∈ L(l2(Z+)) be a
band-dominated operator with slowly oscillating coefficients. It is shown in [26] (see
also Theorem 2.9 in [36]) that the finite sections method for A is stable if and only if
the operator A is invertible. Moreover, being band-dominated, the operator A has a
rich operator spectrum by Proposition 2.3 (b) . Thus, every invertible band-dominated
operator A with slowly oscillating coefficients satisfies the assumptions of Theorem
3.2.

Moreover, in the case at hand, all limit operators of A are shift invariant (Propo-
sition 2.4.1 in [33]); hence, all partial limits in ω(A) are of the form P1T(ãh)−1P1

with a certain continuous function ah . If, moreover, A =
∑

akVk satisfies the Wiener
condition

∑
‖ak‖∞ < ∞ , then all functions ah belong to the Wiener algebra, and one

has
P1T(ãh)−1P1 = P1T(ah)−1P1 = 1/ exp(log ah)0.

4. Distributive versions of the first Szegö limit theorem

The goal of this section is to prove versions of Theorems 1.2 and 1.3 for operators
in AL∞(T), AP(Z)(Z+) . For their formulation, we need some preparations.

It will be convenient to put the proof into some algebraic framework which has
been developed by Arveson, Bédos, and SeLegue [1, 2, 7, 8, 37] (see also Section 7.2.1
in [22]) and which we are going to recall first. For the reader’s convenience, we include
the proofs.

4.1. The Følner algebra

For each operator A ∈ L(l2(Z+)) , let |A| denote its absolute value, i.e., the
non-negative square root of A∗A . Let further tr refer to the canonical trace on the
finite rank/trace class operators on l2(Z+) , and abbreviate the sequence (Pn) to P .
Evidently, tr Pn = n .

PROPOSITION 4.1. The set F (P) of all operators A ∈ L(l2(Z+)) with

lim
n→∞

tr (|PnA − APn|)
tr Pn

= 0 (23)

is a C∗ -subalgebra of L(l2(Z+)) .
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We refer to F (P) as the Følner algebra associated with P .

Proof. Recall that the set N1 := {A ∈ L(l2(Z+)) : tr (|A|) < ∞} of the trace class
operators is a two-sided (non-closed) ideal of L(l2(Z+)) , that the mapping A �→ tr (|A|)
defines a norm on N1 which makes this set to a Banach space, and that

|tr (A)| � tr (|A|), (24)

tr (|A + B|) � tr (|A|) + tr (|B|), (25)

max {tr (|AC|), tr (|CA|)} � ‖C‖ tr (|A|), (26)

tr(|A|) = tr (|A∗|) (27)

for arbitrary operators A, B ∈ N1 and C ∈ L(l2(Z+)) . For details see [35], Section
VI.6. Let now A, B ∈ F (P) . Then

tr (|Pn(A + B) − (A + B)Pn|) � tr (|PnA − APn|) + tr (|PnB − BPn|)

and

tr (|Pn(AB) − (AB)Pn|) = tr (|(PnA − APn)B + A(PnB − BPn)|)
� ‖B‖ tr (|PnA − APn|) + ‖A‖ tr (|PnB − BPn|)

by (25) and (26), which implies that A + B and AB are in F (P) again. Further, if
Am ∈ F (P) and Am → A in the norm of L(l2(Z+)) , then

tr (|PnA − APn|) � tr (|Pn(A − Am) − (A − Am)Pn|) + tr (|PnAm − AmPn|)
� 2 trPn ‖A − Am‖ + tr (|PnAm − AmPn|),

which gives the closedness of F (P) in L(l2(Z+)) . The symmetry of F (P) is a
consequence of (27). �

Recall from Section 2.1. the definitions of the algebra FP and of the strong
limit homomorphism W . Let S (F (P)) stand for the smallest closed subalgebra of
FP which contains all finite sections sequences (PnAPn) where A is in F (P) . The
following result is the key to several generalizations of the first Szegö limit theorem.

THEOREM 4.2. Let A := (An) ∈ S (F (P)) . Then

1
n
tr (|An − PnW(A)Pn|) → 0 (28)

as n → ∞ .

Proof. By (26), the functionals

L(im Pn) → C, An �→
1
n
tr (|An|)

are uniformly bounded with respect to n (by the constant 1). Hence, it is sufficient to
prove (28) for sequences A in a dense subalgebra of S (F (P)) .
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Every sequence in S (F (P)) can be approximated as closely as desired (with
respect to the norm in FP ) by sequences of the form

B :=
∑

j

∏
i

(PnBijPn) where Bij ∈ F (P).

Clearly,

W(B) =
∑

i

∏
j

Bij.

Thus, and by (25), it is sufficient to prove (28) for sequences of the form B :=∏
i(PnBiPn) where Bi ∈ F (P) , i.e., to verify that

1
n
tr(|PnB1PnB2Pn . . .PnBkPn − PnB1B2 . . . BkPn|) → 0 (29)

as n → ∞ . We prove (29) in case k = 2 from which the case of general k follows by
induction. Assertion (29) for k = 2 will follow as soon as we have shown that

tr (|PnB1PnB2Pn − PnB1B2Pn|)
� max {‖B2‖ tr (|PnB1 − B1Pn|), ‖B1‖ tr (|PnB2 − B2Pn|)}

for arbitrary operators B1, B2 ∈ L(l2(Z+)) . This estimate is a consequence of

tr (|PnB1PnB2Pn − PnB1B2Pn|) = tr (|PnB1(I − Pn)B2Pn|)
� ‖B1‖ tr (|(I − Pn)B2Pn|)

and of

tr (|(I − Pn)B2Pn|) = tr (|(I − Pn)(B2Pn − PnB2)|)
� ‖I − Pn‖ tr (|PnB2 − B2Pn|)

where we used (26). �

From (24) and (28) we conclude that

1
n
|tr (An − PnW(A)Pn)| → 0.

Thus, if (wij)∞i, j=0 refers to the matrix representation of W(A) with respect to the
standard basis of l2(Z+) , then (28) implies(

λ1(An) + . . . + λn(An)
n

− w00 + . . . + wn−1, n−1

n

)
→ 0 (30)

as n → ∞ for every sequence A := (An) ∈ S (F (P)) .
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RREMARK 4.3. It is evident that the notion of a Følner algebra is not restricted to the
context considered in this section. Indeed, for every sequence P = (Pn) of orthogonal
projections of finite rank acting on a certain Hilbert space and tending strongly to
the identity operator, there is an associated Følner algebra. This observation allows
one to derive distributive versions of the first Szegö limit theorem also in the higher
dimensional context, by employing exactly the same ideas which will be pointed out in
the following sections. In this way, the results of [27, 39] can be both easily obtained
and generalized.

4.2. Operators and their diagonals

A further utilization of (28) and (30) requires to examine the trace tr (PnW(A)Pn)
which clearly depends on the main diagonal of the operator W(A) only. In this section
we show that the main diagonal of operators in AL∞(T), AP(Z)(Z+) behaves quite well.

Let A ∈ L(l2(Z)) be an operator with matrix representation (aij)i, j∈Z with respect
to the standard basis of l2(Z) . Since

|aii| = ‖P{i}AP{i}‖ � ‖A‖,

the sequence (aii)i∈Z belongs to l∞(Z) . Hence, it defines a multiplication operator on
l2(Z) which we call the main diagonal of A and which we denote by D(A) . Similarly,
the main diagonal of an operator B ∈ L(l2(Z+)) is defined. It acts as a multiplication
operator on l2(Z+) , and we denote it also by D(B) (which will not rise confusion if
one takes into account where A and B live). In each case, ‖D(A)‖ � ‖A‖ .

THEOREM 4.4. If A ∈ AL∞(T), AP(Z)(Z) , then D(A) ∈ AP(Z) .

Of course, then every diagonal which is parallel to the main diagonal is almost
periodic, too.

Proof. Since D : L(l2(Z)) → l∞(Z) is a continuous linear mapping, and since
AP(Z) is a closed subalgebra of l∞(Z) , it is sufficient to prove the assertion for the case
when A is a finite product of Laurent operators with generating functions in L∞(T)
and of operators of multiplication by almost periodic functions. Thus, we can assume
that

A = L(a1) b1 L(a2) b2 . . . L(ak) bkI

with ai ∈ L∞(T) and bi ∈ AP(Z) . Consider the diagonal D(A) and let h : N → Z

be an arbitrary sequence. We have to show that (U−h(n)D(A)Uh(n))n∈N has a norm
convergent subsequence. Since

U−h(n)D(A)Uh(n) = D(U−h(n)AUh(n))

it is sufficient to show that (U−h(n)AUh(n))n∈N has a convergent subsequence. Now one
has

U−h(n)AUh(n)

= L(a1) (U−h(n)b1Uh(n)) L(a2) (U−h(n)b2Uh(n)) . . . L(ak) (U−h(n)bkUh(n)).
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Since b1 is almost periodic, there is a subsequence h1 of h such that the sequence
(U−h1(n)b1Uh1(n))n∈N converges. Analogously, there is a subsequence h2 of h1 such that
the sequence (U−h2(n)b2Uh2(n))n∈N converges. We proceed in this way. After k steps
we arrive at a subsequence g of h for which each of the sequences (U−g(n)biUg(n))n∈N

and, thus, the sequence (U−g(n)AUg(n))n∈N converges. �

Let c0(Z+) stand for the set of all sequences a : Z+ → C with a(n) → 0 as
n → ∞ , and write AP(Z+) for the set of all functions PaP where a ∈ AP(Z) ,
considered as functions on Z+ . Evidently, both c0(Z+) and AP(Z+) are closed
subalgebras of l∞(Z+) .

THEOREM 4.5. If A ∈ AL∞(T), AP(Z)(Z+) , then D(A) ∈ AP(Z+) + c0(Z+) .

Proof. As is the proof of the previous theorem, it is sufficient to verify the assertion
for operators of the form

A = T(a1) b1 T(a2) b2 . . . T(ak) bkI

= PL(a1)Pb1PL(a2)Pb2 . . . PL(ak)PbkP

with ai ∈ L∞(T) and bi ∈ AP(Z+) . We replace all inner projections P by I −Q and
factor out to get

A = PBP + R where B ∈ AL∞(T), AP(Z)(Z+) (31)

and where R is a finite sum, with each item in this sum being a product of Laurent oper-
ators, multiplication operators, projections P and at least one projection Q . Evidently,
the projections P and Q have a rich operator spectrum, and σ+(Q) = {0} . Since the
set L$(l2(Z)) forms an algebra we conclude that the operator R has a rich operator
spectrum, too, and the algebraic properties of limit operators stated in Proposition 1.2.2
in [33] yield that also σ+(R) = {0} .

We claim that the main diagonal D(R) =: diag (rnn) of R is in c0(Z+) . Suppose
it is not. Then there is a C > 0 and a strongly monotonically increasing sequence
h : N → N such that |rh(n),h(n)| � C for all n ∈ N . Since R ∈ L$(l2(Z)) there is a
subsequence g of h for which the limit operator Rg exists. Since h (thus, g ) tends to
+∞ , one has Rg ∈ σ+(R) , whence Rg = 0 . This implies in particular that

rg(n),g(n) = P1U−g(n)RUg(n)P1 → 0,

a contradiction. Thus, D(R) ∈ c0(Z+) , and passing to the main diagonals in (31) yields

D(A) = PD(B)P + D(R) ∈ AP(Z+) + c0(Z+)

due to Theorem 4.4. �

PROPOSITION 4.6. Each function a ∈ AP(Z+) + c0(Z+) has a unique represen-
tation in the form a = Pf P + c where f ∈ AP(Z) and c ∈ c0(Z+) .
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Proof. Let f 1, f 2 ∈ AP(Z) and c1, c2 ∈ c0(Z+) be such that Pf 1P + c1 =
Pf 2P + c2 . Then Pf 1P − Pf 2P = c2 − c1 , i.e., c2 − c1 ∈ c0(Z+) is the restriction
of an almost periodic function. We claim that this implies c1 = c2 and, consequently,
Pf 1P = Pf 2P . The latter identity further implies f 1 = f 2 by Corollary 3.3 in [34].

To get the claim, let f ∈ AP(Z) and c := Pf P ∈ c0(Z+) . Suppose that c 	= 0 .
Then there are an n0 ∈ Z+ and a positive constant δ with |c(n0)| = |f (n0)| = δ . Let
h → +∞ be a distinguished sequence for f . Then

‖f − U−h(n)f ‖∞ � |(f − U−h(n)f )(n0)|
= |f (n0) − f (n0 + h(n))|
= |f (n0) − c(n0 + h(n))| → δ as n → ∞,

which is in contradiction to the definition of a distinguished sequence. �

Thus, for each operator A ∈ AL∞(T), AP(Z)(Z+) , there is a uniquely determined
function f ∈ AP(Z) such that D(A) − Pf P ∈ c0(Z+) . We call this function the
almost periodic part of the main diagonal of A and denote it by Dap(A) . Note that
Dap(PAP) = D(A) for each operator A ∈ AL∞(T), AP(Z)(Z) .

4.3. The first Szegö limit theorem

We are now going to formulate a general version of the first Szegö limit theorem
which will imply all other versions of Szegö limit theorems as particular instances. This
version is based on a fundamental property of every almost periodic function a , namely
that the arithmetic means

1
n

n−1∑
r=0

a(r) (32)

tend to some value M(a) called the mean value of a (see [16], Theorem 1.28 or [23],
Example (b) in Section (18.15)).

THEOREM 4.7. Let A = (An) ∈ SL∞(T), AP(Z)(Z+) . Then

lim
n→∞

λ1(An) + · · · + λn(An)
n

= M(Dap(W(A))). (33)

Proof. It is shown in Corollary 1 in [37] and in Section 7.2.1 of [22] that the
Følner algebra F (P) contains all Laurent operators and all band-dominatedoperators.
Hence, AL∞(T), AP(Z)(Z+) is a subalgebraof the Følner algebra, and (28) and (24) imply

1
n
|tr (An − PnW(A)Pn)| =

1
n
|tr (An) − tr (PnW(A)Pn)| → 0. (34)

Evidently, tr (An) = λ1(An) + · · · + λn(An) , and it remains to show that

1
n
tr (PnW(A)Pn) → M(Dap(W(A))). (35)
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Since A ∈ SL∞(T), AP(Z)(Z+) , one has W(A) ∈ AL∞(T), AP(Z)(Z+) . Then, by Propo-
sition 4.6,

1
n
tr (PnW(A)Pn) =

1
n
tr (PnD(W(A))Pn) =

1
n

(
n∑

k=1

Dap(W(A))(k) +
n∑

k=1

c(k)

)

with a certain function c ∈ c0(Z+) . Since 1
n

∑n
k=1 c(k) → 0 , and by what has been

said before Theorem 4.7, the convergence (35) follows. �

Note that it is exactly the mean value property of the almost periodic functions
which allows us to prove the existence of the limit in (33).

RREMARK 4.8. For Toeplitz operators, the block case is considered as being of
particular interest. In order to see how the block case follows from Theorem 4.7 we
mention an obvious generalization of that theorem. Let η : N → N be a strongly mono-
tonically increasing sequence. In place of the sequence A = (An) ∈ SL∞(T), AP(Z)(Z+)
we consider its subsequence (Aη(n)) . Then the limit

lim
n→∞

tr (Aη(n))
tr (Pη(n))

= lim
n→∞

λ1(Aη(n)) + · · · + λη(n)(Aη(n))
η(n)

exists and is equal to M(Dap(W(A))) . The block case follows if one allows for d -
periodic coefficients only and if one chooses η(n) := dn .

5. Special cases

5.1. Szegö-type theorems

Continuous functions of sequences. Here we are going to derive versions of
Theorem 4.7 which hold for functions of sequences in SL∞(T), AP(Z)(Z+) . Of course,
they cannot yield anything which is substantially new since continuous functions of
normal elements of this algebra belong to SL∞(T), AP(Z)(Z+) again. But they will bring
us closer to the formulation of the classical Szegö limit theorems.

THEOREM 5.1. Let A = (An) be a normal sequence in SL∞(T), AP(Z)(Z+) , and
let g be any function which is continuous on a neighborhood of the stability spectrum
σ(A + G ) . Then

lim
n→∞

g(λ1(An)) + · · · + g(λn(An))
n

= M(Dap(g(W(A)))). (36)

Proof. Let U be a neighborhood of σ(A+G ) in R and g continuous on U . By
Proposition 2.2, for large n ,

σ(An) ⊆ U and σ(W(A)) ⊆ U,

and An and W(A) are normal. Thus, g(An) and g(W(A)) are well-defined via the
continuous functional calculus for normal elements of a C∗ -algebra (Theorem 6.2.7 in
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[3]). Without loss we can also assume that σFP (A) ⊆ U such that g(A) is well-
defined. Indeed, the spectrum of A in FP is the union of all spectra σ(An) with the
stability spectrum of A . Thus, there is a finitely supported sequence G such that the
spectrum of (Bn) = B := A + G lies in U . Since Bn = An for sufficiently large n
and since W(B) = W(A) , one can replace A by B without loss. Clearly, one also has
Bn = g(An) for sufficiently large n .

Applying (33) to the sequence g(A) yields

lim
n→∞

λ1(g(An)) + · · · + λn(g(An))
n

= M(Dap(W(g(A)))). (37)

The continuous functional calculus for normal elements (or the Gelfand-Naimark theory
for commutative C∗ -algebras) further tells us that

σ(g(An)) = g(σ(An)) (38)

for all n with σ(An) ⊆ U . Thus,

λ1(g(An)) + · · · + λn(g(An)) = g(λ1(An)) + · · · + g(λn(An)). (39)

Finally one has
W(g(A)) = g(W(A)). (40)

This equality is evidentwhen g(λ ) = p(λ , λ ) where p is a polynomial in two variables,
in which case one has

g(W(A)) = p(W(A), W(A)∗),

and it follows for general g since every compactly supported continuous function can
be uniformly approximated by polynomials of the form λ �→ p(λ , λ) due to the Stone-
Weierstraß theorem (Theorem IV.10 in [35]). The equalities (37), (39) and (40) imply
the assertion. �

Holomorphic functions of sequences. Next we will discuss a version for non-
normal elements which has to be based on the holomorphic functional calculus. Recall
that, for each element b of a Banach algebra B with identity e and for each function
g which is holomorphic in a neighborhood U of σB(b) , the element g(b) is defined
by

g(b) :=
1

2πi

∫
Γ
g(ζ)(ζe − b)−1 dζ (41)

where Γ is a smooth oriented Jordan curve in U \ σB(b) which surrounds σB(b) .
This definition is independent of the choice of Γ , and it settles a homomorphism from
the algebra of the holomorphic functions on U into B which is continuous in the
sense that if a sequence (gn) converges to g uniformly on compact subsets of U , then
g(b) = lim gn(b) in the norm of B . Moreover,

σB(g(b)) = g(σB(b)). (42)

For details see [3], Section III.3.
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THEOREM 5.2. Let A = (An) be a sequence in SL∞(T), AP(Z)(Z+) , and let g be
any function which is holomorphic on a neighborhood U in C of the stability spectrum
σ(A + G ) . Then

lim
n→∞

g(λ1(An)) + · · · + g(λn(An))
n

= M(Dap(g(W(A)))). (43)

Proof. The proof runs completely parallel to that of Theorem 5.1. As there one
checks that all occurring terms as well as the sequence g(A) are well defined (the latter
after modification by a finitely supported sequence if necessary). Thus, the analogue
of (37) holds.

Further, the equality (42) implies the analogue of (38) which, on its hand, yields
the analogue of (39). Finally, the analogue of (40) follows by applying the (continuous
and unital) homomorphism W to the contour integral (41): approximate this integral
by a sequence of Riemann sums rn(A) and use that W(rn(A)) = rn(W(A)) . �

Another approach to this theorem employs Runge’s approximation theorem ([20],
Theorem 2 in Section III.1) in place of the holomorphic functional calculus. Runge’s
theorem yields approximations of g(b) by linear combinations of (ζie − b)−1 with
simple poles ζi in U \ σ(b) . (Note that the Riemann sums for (41) also yield such
approximations.)

Finite sections sequences. Next we specify these results to finite sections se-
quences (PnAPn) where A is a normal operator in AL∞(T), AP(Z)(Z+) .

THEOREM 5.3. Let A be a normal operator in AL∞(T), AP(Z)(Z+) and let g be
any continuous function on the convex hull of the spectrum of A . Then

lim
n→∞

g(λ1(PnAPn)) + · · · + g(λn(PnAPn))
n

= M(Dap(g(A))). (44)

Proof. The interesting new point is that g is merely assumed to be continuous on
the convex hull I of the spectrum of the operator A . Of course, the operator g(A) is
still well defined. Further one knows that all eigenvalues of PnAPn belong to I , too.
This can be most easily seen by introducing the numerical range

N(B) := {〈Bx, x〉 : x ∈ l2(Z+), ‖x‖ = 1}

of an operator B ∈ L(l2(Z+)) . It is well known that

convσ(A) ⊆ closN(A)

for each operator A ∈ L(l2(Z+)) and that equality holds in this inclusion if A is normal
(see [14] or Section 3.4.1 in [22]). Here, convM stands for the convex hull of the set
M ⊂ C . Consequently, for each normal operator A ,

σ(PnAPn) ⊆ closN(PnAPn) ⊆ closN(A) = convσ(A)

where the second inclusion holds since each unit vector in imPn is also a unit vector in
l2(Z+) . Thus, g(PnAPn) is also well-defined. The inclusions σ(PnAPn) ⊆ I holding
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for every n ∈ N together with the property of being normal further imply that the
stability spectrum of the finite sections sequence (PnAPn) is in I , too. �

In a similar way, one derives the following special case of Theorem 5.2.

THEOREM 5.4. Let A ∈ AL∞(T), AP(Z)(Z+) and A = (PnAPn) . Further, let g be
any function which is holomorphic on a neighborhood U in C of the stability spectrum
σ(A + G ) . Then

lim
n→∞

g(λ1(PnAPn)) + · · · + g(λn(PnAPn))
n

= M(Dap(g(A))). (45)

Let now A ∈ AAP(Z)(Z+) be a band-dominated operator with almost periodic
coefficients. Thenwe can determine the stability spectrumof the finite sections sequence
(PnAPn) by means of Theorem 2.6. If we pass from (PnAPn) to a subsequence
(Ph(n)APh(n)) then the stability spectrum will decrease in accordance with Theorem 2.7
and, thus, the set of the holomorphic functions g for which (45) holds will become
larger. The minimal possible stability spectrum (thus, the maximal set of holomorphic
functions g for which (45) holds) is obtained ifwe choose h as a distinguished sequence
of A . In this case, the stability spectrum of the sequence (Ph(n)APh(n)) is equal to

σ(PAP) ∪ σ(JQAQJ)

by Theorem 2.9.

Operators in the Toeplitz algebra. Let now A be a normal operator in the
Toeplitz algebra AL∞(T), C(Z+) and let g be continuous. Then Dap(g(A)) coincides
with the 0th Fourier coefficient g(sA)0 of the function g(sA) where the symbol sA

of A is defined after Proposition 3.3. This equality follows by a similar reasoning as
in the proofs of Theorems 4.4 and 4.5. Since Dap(g(A)) is a constant function, one
clearly has M(Dap(g(A))) = g(sA)0 . Thus, specifying Theorem 5.3 to operators in the
Toeplitz algebra yields the following version of Szegö’s first limit theorem which is due
to SeLegue [37].

COROLLARY 5.5. (SeLegue) Let A be a normal operator in AL∞(T), C(Z+) and
let g be any continuous function on the convex hull of the spectrum of A . Then

lim
n→∞

g(λ1(PnAPn)) + · · · + g(λn(PnAPn))
n

= g(sA)0 =
1
2π

∫ 2π

0
g(sA(eit)) dt. (46)

In particular, if A = T(a) is a Toeplitz operator with a generating function
a ∈ L∞(T) , then sA = a . Thus, a further specification of Corollary 5.5 to the case of
normal Toeplitz operators yields the following.

COROLLARY 5.6. Let a ∈ L∞(T) be such that the Toeplitz operator T(a) is
normal, and let g be any continuous function on the convex hull of the essential range
of a . Then

lim
n→∞

g(λ1(Tn(a)) + · · · + g(λn(Tn(a))
n

=
1
2π

∫ 2π

0
g(a(eit)) dt. (47)



SZEGÖ LIMIT THEOREMS FOR OPERATORS WITH ALMOST PERIODIC DIAGONALS 25

In this form, one finds the first Szegö theorem in [13], Theorem 5.10, for instance.
Note that a Toeplitz operator T(a) is normal if and only if it is a complex linear
combination of a self-adjoint Toeplitz operator and the identity and, thus, if and only if
the essential range of a is contained in a line segment (the Brown-Halmos theorem, see
Section 3.3 in [13]. Thus, for Toeplitz operators, there is no basic difference between
the normal and the self-adjoint case. Note also that the finite sections PnT(a)Pn are
normal for a normal Toeplitz operator.

A final specification of Corollary 5.6 to self-adjoint Toeplitz operators yields
precisely Theorem 1.2. Its holomorphic version Theorem 1.3 follows by a similar
specification of Theorem 5.2.

Operators in algebras with unique tracial state. We finish this section with a
few remarks on subalgebras B of the Følner algebra which own a unique tracial state,
i.e., a state τ with τ(AB) = τ(BA) for each pair of operators A, B ∈ B . Their
importance for generalized Szegö theorems rests on the following result. For its proof
and all further facts cited here see [1, 7] or Sections 7.2.1 and 7.2.4 in [22].

THEOREM 5.7. (Arveson, Bédos) Let B be a unital C∗ -subalgebra of the Følner
algebra F (P) . For every n � 1 , let ρn be the state of B defined by

ρn(A) :=
1
n
tr (PnAPn),

and let Rn be the ∗ -weak-closed convex hull of the set {ρn, ρn+1, ρn+2, . . . } . Then
R∞ := ∩n�1Rn is a non-empty set of tracial states of B .

Thus, if B has a unique tracial state τ then the ρn converge ∗ -weakly to τ . In
particular,

lim
n→∞

ρn(g(A)) = τ(g(A))

for each self-adjoint operator A ∈ B and each continuous function g . This implies
easily the following version of the first Szegö limit theorem.

THEOREM 5.8. (Arveson, Bédos) Let B be a unital C∗ -subalgebra of the Føl-
ner algebra F (P) which possesses a unique tracial state τ . Let further A ∈ B
be a self-adjoint operator. Then, for every compactly supported continuous function
g : R → R ,

lim
n→∞

g(λ1(PnAPn)) + · · · + g(λn(PnAPn))
n

= τ(g(A)).

Note that, for each self-adjoint operator A ∈ B , the state τ gives rise to a natural
probability measure μA on R via∫ ∞

−∞
g(x) dμA(x) := τ(g(A)). (48)

A particular example of a C∗ -subalgebra of the Følner algebra with a unique
tracial state is the irrational rotation algebra. The operators in this algebra can be also
considered as band-dominated operators with almost periodic coefficients. Thus, they
are subject both to the Arveson-Bédos Theorem 5.8 and to our Theorem 5.3. This
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observation allows one to identify the tracial state τ of the irrational rotation algebra as
well as the measures associated with τ by (48) via∫ ∞

−∞
g(x) dμA(x) = τ(g(A)) = M(Dap(g(A))),

which holds for each compactly supported continuous function g .

5.2. Avram-Parter-type theorems

The Avram-Parter theorem establishes a formula for the trace of

g(PnT(a)PnT(a)Pn) with a ∈ L∞(T)

and is, thus, immediately related with products of finite sections sequences and with
algebras generated by them. Indeed, we will see that this theorem can be considered as
another simple special case of Theorem 4.7. For each n × n -matrix B , let σi(B) with
i = 1, . . . , n refer to the singular values of B , i.e., to the non-negative square roots of
the eigenvalues of B∗B . The order of enumeration is again not of importance.

Let A = (An) ∈ FP . Then the entries of the sequence B := (A∗A)1/2 are the
matrices Bn := (A∗

nAn)1/2 , and

σj(An) = λj(Bn) for j = 1, . . . , n

under suitable enumeration. Thus, application of Theorem 5.1 to the sequence B yields
the following.

THEOREM 5.9. Let A = (An) be a sequence in SL∞(T), AP(Z)(Z+) , and let g
be any function which is continuous on a neighborhood in R of the stability spectrum
σ(B + G ) with B := (A∗A)1/2 . Then

lim
n→∞

g(σ1(An)) + · · · + g(σn(An))
n

= M(Dap(g(W(B)))). (49)

COROLLARY 5.10. Let A := (PnAPn) with A ∈ AL∞(T), AP(Z)(Z+) , and let g
be any function which is continuous on a neighborhood in R of the stability spectrum
σ(B + G ) with B := (A∗A)1/2 . Then

lim
n→∞

g(σ1(An)) + · · · + g(σn(An))
n

= M(Dap(g(B))) (50)

with B := (A∗A)1/2 .

Further specification to the case of operators in the Toeplitz algebra yields the
following version of SeLegue’s result (Corollary 5.5).

COROLLARY 5.11. Let A := (PnAPn) with A ∈ AL∞(T), C(Z+) , and let g be
any function which is continuous on a neighborhood in R of the stability spectrum
σ(B + G ) with B := (A∗A)1/2 . Then

lim
n→∞

g(σ1(An)) + · · · + g(σn(An))
n

= g(sB)0 =
1
2π

∫ 2π

0
g(sB(eit)) dt (51)

with B := (A∗A)1/2 .
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Finally, if A = T(a) is a Toeplitz operator with generating function a ∈ L∞(T) ,
then

sB = s(A∗A)1/2 = (aa)1/2 = |a|.
COROLLARY 5.12. (Avram/Parter) Let A := (PnT(a)Pn) with a ∈ L∞(T) , and

let g be any function which is continuous on a neighborhood in R of the stability
spectrum σ(B + G ) with B := (A∗A)1/2 . Then

lim
n→∞

g(σ1(An)) + · · · + g(σn(An))
n

=
1
2π

∫ 2π

0
g(|a(eit)|) dt. (52)

This result was established by Parter [28] for locally self-adjoint (= products of
continuous and real-valued) generating functions a , and Avram [5] proved it for general
L∞(T) -functions. The algebraic approach to the Avram/Parter theorem goes back to
Böttcher and one of the authors (Section 5.6 in [13]). There (Section 4.5) one also finds
a short illustrated history of the Avram/Parter theorems which were aimed to explain
Moler’s phenomenon concerning the singular value distribution of Toeplitz matrices.

We would also like to mention that Tyrtyshnikov [43, 44] was able to show that
Corollary 5.12 remains valid for arbitrary functions a ∈ L2(T) (in which case the
Toeplitz operator T(a) is no longer bounded and our techniques do not seem to apply).

5.3. Böttcher-Otte-type theorems

The continuous and holomorphic functional calculus can also be applied to the
sequences considered in Theorem 4.2 and in (30). It seems that Böttcher and Otte [11]
were interested in results of that type for the first time. The following two corollaries
to Theorem 4.2 follow by a straightforward application of the functional calculus as in
Subsection 5.1..

COROLLARY 5.13. Let A = (An) be a normal sequence in S (F (P)) , and
let g be any function which is continuous on a neighborhood of the stability spectrum
σ(A + G ) . Then

lim
n→∞

1
n

(tr g(An) − tr (Png(W(A))Pn)) = 0. (53)

COROLLARY 5.14. Let A = (An) be a sequence in S (F (P)) , and let g be
any function which is holomorphic on a neighborhood U in C of the stability spectrum
σ(A + G ) . Then (53) holds.
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