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A PROBABILITY ARGUMENT IN FAVOR OF

IGNORING SMALL SINGULAR VALUES

ALBRECHT BÖTTCHER, DANIEL POTTS AND DAVID WENZEL

(communicated by Leiba Rodman)

Abstract. If the matrix of a square linear system is nonsingular but has very small singular values,
then tiny perturbations of the right-hand side may cause drastic changes in the solution. We show
that the probability for this to happen is very close to zero if sufficiently many singular values of
the matrix are bounded away from zero.

1. Introduction

Let A be a nonzero real or complex n × n matrix, A ∈ Mn(K) where K = R

of K = C . Pick p ∈ Kn and put Ap = y . Suppose p̃ ∈ Kn is a perturbation
to p and Ap̃ = ỹ . We denote by ‖ · ‖ the �2 norm on Kn . A basic question is
whether ‖δp‖ := ‖p̃ ‖/‖p‖ may be large if ‖δy‖ := ‖ỹ‖/‖y‖ is small. To tackle this
question, let A = USV be the singular value decomposition of A . We assume that
S = diag (s1, . . . , sn) with 0 � s1 � . . . � sn . The number sn/s1 ∈ (0,∞] is called
the (spectral) condition number of A and it is well known that

‖δp‖ � sn

s1
‖δy‖. (1.1)

There exist p and p̃ such that in (1.1) equality holds. Thus, if s1 is very small, then the
system Ap = y is ill-conditioned in the sense that ‖δp‖/‖δy‖ may become very large.
It is also well known that in practice theoretically ill-conditioned systems often behave
better than one would expect. The purpose of this paper is to provide a probabilistic
argument that reveals that equality in (1.1) is a rare event if the matrix dimension n is
at least moderately large.

To be more precise, fix p ∈ Kn and take p̃ randomly from the ball

�̃B
n
K

:= {z ∈ K
n : |z1|2 + . . . + |zn|2 � �̃ 2}

with the uniform distribution. We show that if K = C , then

P

(
‖δp‖
‖δy‖ � 4

sn

s[n/2]+1

)
� 1 − 1√

n

(
1
2

)n

(1.2)

Mathematics subject classification (2000): 65F35, 15A12, 60H25, 65F22.
Key words and phrases: Condition number, probability argument, linear system, singular value.

c© � � , Zagreb
Paper No. 01-02

31
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for all n � 2 , where P(E) denotes the probability of the event E . Thus, if half of the
singular values of A are separated away from zero, then ‖δp‖/‖δy‖ does not exceed
a reasonable bound with high probability.

Here are two examples. First, let A ∈ M60(C) be the Toeplitz matrix generated by
the function χ which equals 1 on [0, 2/3) and 0 on [2/3, 1) (see the left of Figure 1.1).
The singular values (in decreasing order) are shown in the right of Figure 1.1. The
smallest singular value s1 is strictly positive, but according to Matlab the quotient
sn/s1 equals 3.79 · 1016 . On the other hand, the right picture of Figure 1.1 tells us that
s[n/2]+1 is approximately equal to sn and hence (1.2) implies that

P

(
‖δp‖
‖δy‖ � 4

)
� 1 − 1√

60

(
1
2

)60
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Fig. 1.1. The graph of a function and the singular values of the 60 × 60 Toeplitz matrix

generated by this function.
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Fig. 1.2. The linogram grid generated by the parameters N = 5 , T = 10 , R = 10

and the singular values of the 121 × 121 matrix that arises in the sampling of a

bivariate trigonometric polynomial of degree 5 on the linogram grid.

In the second example we consider a matrix A ∈ M121(C) that arises in a sampling
problem on a linogram grid; see, e.g., [6], [9]. The linogram grid and the singular values
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are plotted in Figure 1.2. Matlab gives that sn/s1 is about 1.97 · 1017 , but Figure 1.2
reveals that sn/s[n/2]+1 is approximately 5.2 , so that (1.2) gives

P

(
‖δp‖
‖δy‖ � 20.8

)
� 1 − 1

11

(
1
2

)121

.

To avoid misunderstandings, we emphasize that we prove that ‖δp‖/‖δy‖ is with
high probability not a large number if sn/s[n/2]+1 is, say, not larger than 10 or 50
and the perturbation p̃ is drawn from a ball centered at the origin with the uniform
distribution. This does not exclude that in practical computations a small value of s1

may nevertheless cause the known problems.

2. The general result

We begin with a simple estimate. Recall that A = USV is the singular value
decomposition.

PROPOSITION 2.1. If sk+1 > 0 , then

‖δp‖2

‖δy‖2
� s2

n

s2
k+1

1
1 − (|(Vp̃ )1|2 + . . . + |(Vp̃ )k|2)/‖Vp̃ ‖2

.

Proof. We have

‖δy‖2 =
‖ỹ‖2

‖y‖2
=

‖U∗ỹ‖2

‖U∗y‖2
=

‖SVp̃ ‖2

‖SVp‖2

=
s2
1|(Vp̃ )1|2 + . . . + s2

n|(Vp̃ )n|2
s2
1|(Vp)1|2 + . . . + s2

n|(Vp)n|2
� s2

k+1(|(Vp̃ )k+1|2 + . . . + |(Vp̃ )n|2)
s2
n(|(Vp)1|2 + . . . + |(Vp)n|2)

=
s2
k+1

s2
n

‖Vp̃ ‖2 − |(Vp̃ )1|2 − . . . − |(Vp̃ )k|2
‖Vp‖2

and hence

‖δp‖2

‖δy‖2
=

‖p̃ ‖2

‖p‖2

‖y‖2

‖ỹ‖2
� s2

n

s2
k+1

‖Vp‖2

‖p‖2

‖p̃ ‖2

‖Vp̃ ‖2 − |(Vp̃ )1|2 − . . . − |(Vp̃ )k|2
,

which gives the assertion because ‖Vp‖ = ‖p‖ and ‖p̃ ‖ = ‖Vp̃ ‖ . �
Now suppose the perturbation p̃ is randomly taken from the ball �̃ B

n
K

with the
uniform distribution. Then Vp̃ is uniformly distributed on �̃ Bn

K
and the random vector

q := Vp̃/‖Vp̃ ‖ is uniformly distributed on

S
n−1
K

:= {z ∈ K
n : |z1|2 + . . . + |zn|2 = 1}.

In terms of q , the estimate of Proposition 2.1 reads

‖δp‖2

‖δy‖2
� s2

n

s2
k+1

1
1 − (|q1|2 + . . . + |qk|2)

.



34 ALBRECHT BÖTTCHER, DANIEL POTTS AND DAVID WENZEL

It results that, for every ε ∈ (0, 1) ,

P

(
‖δp‖2

‖δy‖2
� 1

ε2

s2
n

s2
k+1

)
� P

(
|q1|2 + . . . + |qk|2 � 1 − ε2

)
. (2.1)

We subsequently make use of the formula |Sm−1
R

| = 2πm/2/Γ(m/2) .

The following result is undoubtedly known to probabilists (see [4] for K = 1 and
see also [5, pp. 300] for a related discussion). As we have not been able to find the
result as it is stated in the literature, we cite it with a full proof.

THEOREM 2.2. If (q1, . . . , qN) is taken from S
N−1
R

with the uniform distribution,
then for 1 � K � N − 1 the density function of the random vector (q1, . . . , qK) is

|SN−K−1
R

|
|SN−1

R
|

(1 − x2
1 − . . . − x2

K)(N−K−2)/2.

Proof. For a measurable set Ω ⊂ RK , we define

Ω∗ = {(x1, . . . , xN) ∈ S
N−1
R

: (x1, . . . , xK) ∈ Ω}.

We then have

P

(
(q1, . . . , qK) ∈ Ω

)
= P

(
(q1, . . . , qN) ∈ Ω∗

)
=

1

|SN−1
R

|

∫
Ω∗

dσ,

where dσ is the surface measure on S
N−1
R

. Put

Ω′ =
{
(x1, . . . , xN−1) ∈ B

N−1
R

: (x1, . . . , xN−1,
√

1 − x2
1 − . . . − x2

N−1 ) ∈ Ω∗
}

.

The set Ω∗ is composed of two congruent pieces given by

xN = ±
√

1 − x2
1 − . . . − x2

N−1, (x1, . . . , xN−1) ∈ Ω′.

Consequently,

1

|SN−1
R

|

∫
Ω∗

dσ =
2

|SN−1
R

|

∫
Ω′

√
1 +

(
∂xN

∂x1

)2

+ . . . +
(

∂xN

∂xN−1

)2

dx1 . . . dxN−1

=
2

|SN−1
R

|

∫
Ω′

dx1 . . . dxN−1√
1 − x2

1 − . . . − x2
N−1

=
2

|SN−1
R

|

∫
Ω

⎛⎝∫
�B

N−1−K
R

dxK+1 . . . dxN−1√
1 − x2

1 − . . . − x2
N−1

⎞⎠ dx1 . . . dxK

where � :=
√

1 − x2
1 − . . . − x2

K . It follows that the density function is

2

|SN−1
R

|

∫
�B

N−1−K
R

dxK+1 . . . dxN−1√
1 − x2

1 − . . . − x2
N−1

,
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which can also be written as

2

|SN−1
R

|

∫
�B

N−1−K
R

dxK+1 . . . dxN−1√
�2 − x2

K+1 − . . . − x2
N−1

. (2.2)

To compute (2.2), we use the well known formula∫
RB

m
R

f
(√

x2
1 + . . . + x2

m

)
dx1 . . . dxm =

2 πm/2

Γ
(

m
2

) ∫ R

0
rm−1f (r) dr, (2.3)

for which see, e.g., [8, pp. 396–397]. This formula shows that (2.2) equals

2

|SN−1
R

|
2 π(N−1−K)/2

Γ
(

N−1−K
2

) ∫ �

0
rN−K−2 dr√

�2 − r2

=
2

|SN−1
R

|
2 π(N−1−K)/2

Γ
(

N−1−K
2

) Γ
(

N−1−K
2

)
Γ

(
1
2

)
2Γ

(
N−K

2

) �N−K−2

=
1

|SN−1
R

|
2 π(N−K)/2

Γ
(

N−K
2

) �N−K−2

=
1

|SN−1
R

|
|SN−K−1

R
| (1 − x2

1 − . . . − x2
K)(N−K−2)/2. �

THEOREM 2.3. Let (q1, . . . , qK) be as in the previous theorem. If ε ∈ (0, 1) ,
then

P

(
q2

1 + . . . + q2
K � 1 − ε2

)
� 1 − γ

Γ
(

N
2

)
Γ

(
N−K

2

)
Γ

(
K
2

) 2
N − K

εN−K ,

where γ = 1/
√

1 − ε2 for K = 1 and γ = 1 for 2 � K � N − 1 .

Proof. By Theorem 2.2, the probability in question is

|SN−K−1
R

|
|SN−1

R
|

∫
x2
1+...+x2

K�1−ε2

(1 − x2
1 − . . . − x2

K)(N−K−2)/2 dx1 . . . dxK ,

=
π−K/2Γ

(
N
2

)
Γ

(
N−K

2

) ∫
x2
1+...+x2

K�1−ε2

(1 − x2
1 − . . . − x2

K)(N−K−2)/2 dx1 . . . dxK. (2.4)

Formula (2.3) implies that (2.4) is equal to

2Γ
(

N
2

)
Γ

(
N−K

2

)
Γ

(
K
2

) ∫ 1−η

0
rK−1(1 − r2)(N−K−2)/2dr,

where η ∈ (0, 1) is defined by (1 − η)2 = 1 − ε2 . Taking into account that

2Γ
(

N
2

)
Γ

(
N−K

2

)
Γ

(
K
2

) ∫ 1

0
rK−1(1 − r2)(N−K−2)/2dr = 1,
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we obtain that

P

(
q2

1 + . . . + q2
K > 1 − ε2

)
= 1 − P

(
q2

1 + . . . + q2
K � 1 − ε2

)
= 2

Γ
(

N
2

)
Γ

(
N−K

2

)
Γ

(
K
2

) ∫ 1

1−η
rK−1(1 − r2)(N−K−2)/2dr. (2.5)

The change of variables r2 = x yields that the integral in (2.5) is

1
2

∫ 1

(1−η)2

x(K−2)/2(1 − x)(N−K−2)/2dx,

which does not exceed

1
1 − η

∫ 1

(1−η)2

(1 − x)(N−K−2)/2dx

for K = 1 and ∫ 1

(1−η)2

(1 − x)(N−K−2)/2dx

for K � 2 . Since∫ 1

(1−η)2

(1 − x)(N−K−2)/2dx =
(1 − (1 − η)2)(N−K)/2

(N − K)/2
=

2
N − K

εN−K ,

we arrive at the assertion. �

COROLLARY 2.4. Let ε ∈ (0, 1) and suppose sk+1 > 0 . Take p̃ randomly from
the ball �̃ Bn

K
with the uniform distribution. If K = R , then

P

(
‖δp‖2

‖δy‖2
� 1

ε2

s2
n

s2
k+1

)
� 1 − γ

Γ
(

n
2

)
Γ

(
n−k

2

)
Γ

(
k
2

) 2
n − k

εn−k,

where γ = 1/
√

1 − ε2 for k = 1 and γ = 1 for 2 � k � n − 1 . If K = C , then

P

(
‖δp‖2

‖δy‖2
� 1

ε2

s2
n

s2
k+1

)
� 1 − Γ(n)

Γ(n − k)Γ(k)
ε2(n−k)

n − k

for 1 � k � n − 1 .

Proof. This is immediate from (2.1) and Theorem 2.3 with N = n and K = k for
K = R and with N = 2n and K = 2k for K = C . �

EXAMPLE 2.5. Let K = C and take k = [n/2] , where [ · ] stands for the integral
part. Stirling’s formula tells that

Γ(n)

Γ
(

n
2

)2 ∼ 2n−1

√
n
2π

,
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whence
Γ(n)

Γ
(
n −

[
n
2

])
Γ

([
n
2

]) ε2(n−[n/2])

n −
[

n
2

] � 2n

√
n
εn (2.6)

for all n � n0 . A careful analysis shows that (2.6) is in fact true for all n � 2 . From
Corollary 2.4 we therefore deduce that

P

(
‖δp‖2

‖δy‖2
� 1

ε2

s2
n

s2
[n/2]+1

)
� 1 − 2n

√
n
εn

for all n � 2 . Choosing ε = 1/2 and ε = 1/4 we obtain in particular that

P

(
‖δp‖2

‖δy‖2
� 4

s2
n

s2
[n/2]+1

)
� 1 − 2√

n
,

P

(
‖δp‖2

‖δy‖2
� 16

s2
n

s2
[n/2]+1

)
� 1 − 1√

n

(
1
2

)n

. (2.7)

Notice that (2.7) is the same as (1.2). The choice k = [αn] with α ∈ (0, 1) gives

P

(
‖δp‖2

‖δy‖2
� 1

ε2

s2
n

s2
[αn]+1

)
� 1 −

√
α

1 − α
1√
n

(
ε2(1−α)

αα(1 − α)1−α

)n

,

for sufficiently large n , which for ε2 = 2−1/(1−α)(1 − α)αα/(1−α) becomes

P

(
‖δp‖2

‖δy‖2
� 21/(1−α)

(1 − α)αα/(1−α)

s2
n

s2
[αn]+1

)
� 1 −

√
α

1 − α
1√
n

(
1
2

)n

. (2.8)

3. Toeplitz operators

Fix a function a ∈ L∞([0, 1]d) and let {ak}k∈Zd be the sequence of its Fourier
coefficients,

ak =
∫

[0,1]d
a(x)e−2πik·xdx.

The M th Toeplitz operator TM(a) generated by a is the operator on �2({1, . . . , M}d)
defined by

(TM(a)p)j =
∑

k∈{1,...,M}d

aj−kpk (j ∈ {1, . . . , M}d).

We think of TM(a) as a linear operator on Cn with n = Md . All properties of Toeplitz
operators used in the following can be found in [2] and [3].

As the case where a is identically zero is uninteresting, we assume that a is not
the zero function. Then ‖a‖∞ > 0 . The largest singular value sn(TM(a)) does not
exceed ‖a‖∞ and converges to ‖a‖∞ as M → ∞ . The question whether the smallest
singular value s1(TM(a)) stays away from zero as M → ∞ is difficult. An answer
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is known if a ∈ C([0, 1]d) , but this answer provides an effectively verifiable criterion
only for d = 1 and some particular cases if d � 2 . We remark that the condition

ess infx∈[0,1]d |a(x)| > 0 (3.1)

is necessary but not sufficient for s1(TM(a)) to be bounded away from zero as M → ∞ .
Thus, if ess infx∈[0,1]d |a(x)| = 0 , then certainly s1(TM(a)) → 0 . The following result
shows that independently of whether (3.1) holds or not, ‖δp‖/‖δy‖ always remains
bounded with a high probability.

THEOREM 3.1. For every a ∈ L∞([0, 1]d) \ {0} there exists an α ∈ (0, 1) such
that s2

n/s2
[αn]+1 � 4 and hence

P

(
‖δp‖2

‖δy‖2
� 4 · 21/(1−α)

(1 − α)αα/(1−α)

)
� 1 −

√
α

1 − α
1√
n

(
1
2

)n

. (3.2)

for all sufficiently large n .

Proof. This follows from the (multidimensional version of the) Avram-Parter
theorem [10], which says that

lim
M→∞

1
M

M∑
j=1

ϕ(sj(TM(a))) =
∫

[0,1]d
ϕ(|a(x)|) dx (3.3)

for every continuous function ϕ : R → C . This theorem tells us that the singular values
of TM(a) are asymptotically distributed as the values of |a(x)| (which is convincingly
seen in Figure 1.1), and since |a(x)| � ‖a‖∞/2 on a set of positive measure, we
conclude that a strictly positive percentage of the singular values of TM(a) must be
greater than ‖a‖∞/2 as M → ∞ . Consequently, there is an α ∈ (0, 1) such that
s[αn]+1 � ‖a‖∞/2 for all sufficiently large M . Because sn � ‖a‖∞ , it results that
s2
n/s2

[αn]+1 � 4 if n is large enough. Given this, (3.2) is a direct consequence of (2.8).
�

REMARK 3.2. If one does not insist on (3.2) as it is stated, one can proceed more
elementary. Namely, (3.3) in the special case where ϕ(t) = t (and with sj(TM(a))
abbreviated to sj ) implies that

s1 + . . . + sn

n
>

1
2

∫
[0,1]d

|a(x)| dx =
‖a‖1

2

for all sufficiently large n . Choose α ∈ (0, 1) so that (1 − α)‖a‖∞ < ‖a‖1/4 . Then

‖a‖1

2
<

s1 + . . . + sn

n
�

([αn] + 1)s[αn]+1 + (n − [αn] − 1)sn

n

�
([αn] + 1)s[αn]+1 + (n − [αn] − 1)‖a‖∞

n
,

which shows that
‖a‖1

2
� α lim inf

n→∞
s[αn]+1 + (1 − α)‖a‖∞
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and thus

s[αn]+1 � 1
α

(
‖a‖1

4
− (1 − α)‖a‖∞

)
for all n large enough. For these n ,

s2
n

s2
[αn]+1

� 16α2

(‖a‖1/‖a‖∞ − 4(1 − α))2
,

which can now be inserted in (2.8).

EXAMPLE 3.3. One example was already cited in Section 1.. To have another
example, take d = 1 and a(x) = xσ (σ > 0 ). Then ‖a‖∞ = 1 . We have a(x) � 1/2
if and only if x � α := 1/21/σ . Thus, we can use (3.2) with this value of α . Notice
that in this and any other concrete case, one can appropriately modify the argument of
the proof of Theorem 3.1 to get less complicated constants. For instance, we can argue
that a(x) � 1/2σ for x � 1/2 , which, by the Avram-Parter theorem, implies that

s[n/2]+1 �
√

16
17

1
2σ

for all sufficiently large n . Estimate (2.7) now yields

P

(
‖δp‖2

‖δy‖2
� 17 · 4σ

)
� 1 − 1√

n

(
1
2

)n

.

4. Sampling of trigonometric polynomials

Let Πd
N := {−N, . . . , N}d and n := (2N + 1)d . We want to find the coefficients

pk ( k ∈ Πd
N ) of a trigonometric polynomial

p(x) =
∑

k∈Πd
N

pke
2πik·x

from the values vj = p(xj) at prescribed points x1, . . . , xr ∈ [0, 1]d . Thus, we have to
solve the system Up = v with

U =
(
e2πik·xj

)
j∈{1,...,r},k∈Πd

N
, p = (pk)k∈Πd

N
, v = (vj)j∈{1,...,r}.

To take into account clusters in the sampling set {x1, . . . , xr} , we introduce the diagonal
matrix W = diag (w1, . . . , wr) in which wj are certain weights satisfying

∑
j wj = 1

and consider the r × n system
√

WUp =
√

Wv . Finally, to get a square system, we
pass to the n × n system Ap = y with A = U∗WU and y = U∗Wv .

The matrix A is a Toeplitz matrix. In the notation of Section 3.,

A = T2N+1(aN) with aN(x) =
r∑

j=1

wje
2πik·(x−xj).



40 ALBRECHT BÖTTCHER, DANIEL POTTS AND DAVID WENZEL

Since both the size and the generating function of A depend on N , the results of Section
3. are not applicable. Fortunately, the argument of Remark 3.2 can be carried over to
the situation at hand.

The mesh norm ν of the set {x1, . . . , xr} is defined as

ν = 2 max
x∈[0,1]d

min
j=1,...,r

dist (x, xj)

where the distance is taken in the ‖ · ‖∞ norm and periodicity is factored in, that is,

dist (x, y) = min
k∈Zd

‖x − y + k‖∞ with ‖z‖∞ = max(|z1|, . . . , |zd|).

In [1], [7] it was shown that the spectral norm ‖A‖ admits the estimate

‖A‖ � (2 + e2πdNν)2 =: C2
n . (4.1)

THEOREM 4.1. If αn ∈ (0, 1) and 1 − αn < 1/C2
n , then

s2
n

s2
[αnn]+1

�
(

2αnC2
n

1 − (1 − αn)C2
n

)2

and hence

P

(
‖δp‖2

‖δy‖2
� 21/(1−αn)

(1 − αn)α
αn/(1−αn)
n

(
2αnC2

n

1 − (1 − αn)C2
n

)2
)

� 1 −
√

αn

1 − αn

1√
n

(
1
2

)n

(4.2)

for all sufficiently large n

Proof. The matrix A is positive semi-definite and hence its singular values s1 �
. . . � sn coincide with the eigenvalues. The sum s1 + . . . + sn equals the trace of A ,
and since A is Toeplitz, the trace of A is n(aN)0 = n

∑r
j=1 wj = n . This together with

(4.1) gives n = s1 + . . . + sn � ([αnn] + 1)s[αnn]+1 + (n − [αnn] − 1)C2
n and thus

lim inf
n→∞

s[αnn]+1 � 1
αn

(1 − (1 − αn)C2
n) > 0.

It follows that s[αnn]+1 > (1− (1−αn)C2
n)/(2αn) for all n large enough. As sn � C2

n ,
we get the desired estimate for s2

n/s2
[αnn]+1 . Inequality (2.8) now yields (4.2). �

If we choose a sequence of meshes depending on n so that ν = O(1/n) , then the
Cn in (4.1) is bounded by a constant independent of n . The αn in Theorem4.1 does then
also not depend on n , and the theorem’s message becomes that the rate ‖δp‖/‖δy‖ does
not exceed a constant K independent of n with a probability converging exponentially
fast to 1 . Whether the K delivered by Theorem 4.1 is practically acceptable or
astronomically large is another matter. The proof of (4.2) is based on very rough (but
simple) arguments that do not aim at a best possible bound K .
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EXAMPLE 4.2. Let d = 2 and let {x1, . . . , xr} be a linogram grid, which is
formed by concentric squares centered at (1/2, 1/2) . To be more precise, pick natural
numbers R and T and put

{x1, . . . , xr} =
⋃

−R/2�j�R/2−1

⋃
−T/4�t�T/4−1

{xH
t,j, x

V
t,j}

where

xH
t,j =

(
1
2

+
j
R

,
1
2

+
4t
T

j
R

)
, xV

t,j =
(

1
2
− 4t

T
j
R

,
1
2

+
j
R

)
.

We take the weights wt,j = π|j|/(TR2) . Different choices of the parameters R and T
result in matrices A with very different singular value patterns. Figure 1.2 corresponds
to the case N = 5 , T = 2N , R = 2N . Three more examples are shown in Figures 4.1
to 4.3.

0 0.5 1
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1

0 20 40 60 80 100 120
0.95

1

1.05

1.1

Fig. 4.1. The linogram grid generated by the parameters N = 5 , T = 16N , R = 8N

and the singular values of the 121 × 121 matrix that arises in the sampling of a bivariate

trigonometric polynomial of degree 5 on the linogram grid.
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Fig. 4.2. The linogram grid generated by the parameters N = 5 , T = 4N , R = 4N

and the singular values of the 121 × 121 matrix that arises in the sampling of a bivariate

trigonometric polynomial of degree 5 on the linogram grid.
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Fig. 4.3. The linogram grid generated by the parameters N = 5 , T = 4N , R = 2N

and the singular values of the 121 × 121 matrix that arises in the sampling of a bivariate

trigonometric polynomial of degree 5 on the linogram grid.

Let us embark on the case N = 5 , T = 2N , R = 2N (Figure 1.2). The number
of points in this grid is r = TR = 4 N2 = 100 . One can easily show that ν = 2/N .
Hence (4.1) holds with Cn = 2 + e8π =: C and Theorem 4.1 yields that

P

(
‖δp‖
‖δy‖ � K

)
� 1 − L

1
11

(
1
2

)121

(4.3)

with constants K and L independent of n . The determination of these constants from
Theorem 4.1 runs into a disaster. The inequality 1−α < 1/C2 is satisfied for some α
extremely close to 1 , and for this α , (4.2) gives (4.3) with K and L about 1057 and
1011 , respectively. In spite of that the right-hand side of (4.3) is greater than 0.9999 .
Thus, while theoretically the rate ‖δp‖/‖δy‖ turns out to remain bounded with high
probability, we here meet a case in which the bound K is unacceptable practically. In
Section 1., we used Figure 1.2 to see that actually 20.8 is a bound.
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