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LOCATION OF THE SPECTRUM OF OPERATOR MATRICES

WHICH ARE ASSOCIATED TO SECOND ORDER EQUATIONS

BIRGIT JACOB AND CARSTEN TRUNK

Abstract. In this paper, second order equations of the form z̈(t) + A0z(t) + Dż(t) = 0 are

studied, where A0 is a uniformly positive operator and A
−1/2
0 DA

−1/2
0 is a bounded non-

negative operator in a Hilbert space H . This equation is equivalent to the standard first-order
equation ẋ(t) = Ax(t) , where A has the domain

D(A) =
{[ z

w

]
∈ D(A1/2

0 ) × D(A1/2
0 ) | A0z + Dw ∈ H

}
and is given by

A =

[
0 I

−A0 −D

]
.

The location of the spectrumand the essential spectrumof the semigroupgenerator A is described
under various conditions on the damping operator D . By means of an example it is shown that
in general the spectrum can be quite arbitrary in the closed left half plane.
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