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WEAK CONTRACTIONS AND TRACE CLASS PERTURBATIONS

HARI BERCOVICI AND DAN TIMOTIN

(communicated by Leiba Rodman)

Abstract. An absolutely continuous contraction is said to be in the class A if it has isometric
H∞ functional calculus. We present evidence in favor of the conjecture that the class A is
invariant under trace-class perturbations.

1. Introduction

The class A was defined in [6] to consist of those absolutely continuous con-
tractions T on a Hilbert space for which the Sz.-Nagy—Foias functional calculus is
isometric, i.e.,

‖u(T)‖ = ‖u‖∞ for every u ∈ H∞.

The work in this paper was motivated by the desire to understand the effect of trace-class
perturbations on operators in the class A . A related question was already mentioned in
[6] (see Problem10.9), and we formulated in an earlier note [7] the following conjecture.

CONJECTURE. Assume that T and T ′ are absolutely continuous contractions, and
T−T ′ is a trace-class operator. Then T belongs to the class A if and only if T ′ does.

The result of [7] verifies this statement in case T and T ′ are diagonalizable, in
which case they are automatically of class C00 (i.e., limn→∞(‖Tnx‖ + ‖T∗nx‖) = 0
for every vector x ). In this paper we will show that the conjecture is also true in case
I − T∗T is a trace-class operator. For such operators, the C00 part does not contribute
anything towards making the functional calculus an isometry; indeed, this C00 part is
actually of class C0 , so that its functional calculus has nontrivial kernel [22, Theorem
VIII.1.1]. Thus the context of this paper is quite removed from that of [7], and the
methods we use need to be very different.

The result of [7] is essentially a measure theoretical observation. The main tech-
nical tool we use in this paper is a remarkable relationship between the characteristic
operator function of the contraction T on the one hand, and the unitary part in the polar
decomposition of T on the other. More precisely, if V is a unitary operator such that
V∗T = |T| = (T∗T)1/2 , let us denote by

H(z) = (V + z)(V − z)−1, |z| < 1,

Mathematics subject classification (2000): 47L45, 47A45, 47A55, 47B10.
Key words and phrases: Weak contraction, perturbation, trace class, characteristic function, functional

calculus.
The first author was supported in part by a grant from the National Science Foundation.

c© � � , Zagreb
Paper No. 01-05

71



72 HARI BERCOVICI AND DAN TIMOTIN

the Herglotz integral of the spectral measure of V , and set

B = (I + |T|)−1/2(I − |T|)1/2.

The analytic operator-valued function

ϑ(z) = (BH(z)B + I)−1(BH(z)B − I), |z| < 1, (1)

is contractive, and its purely contractive part is (or, more accurately, coincides in the
sense of Sz.-Nagy and Foias with) the characteristic function of T .

Different forms of this formula have appeared in the literature, though generally
V is taken to be a more general (preferably small) perturbation of T . The applicability
of our formula is perhaps more restrictive, but there seems to be additional information
encoded in it.

We would like to take this opportunity to clarify the history of this type of formula.
The first appearance of this calculation is in the work of M. S. Livšic [15]. In this paper,
Livšic considers a partially isometric, completely nonunitary contraction T with defect
indices dT = dT∗ = 1 , introduces the concept of the characteristic function of T , and
relates it with a unitary V such that V−T has rank 1 via a formula essentially equivalent
to (1). He extended this work to partial isometries with dT = dT∗ < ∞ in [16], and
this is further extended by Yu. L. Smul’yan [19] to operators with infinite indices. The
Livšic formula was independently rediscovered by L. de Branges [8] (see particularly
Lemmas 2, 11 and their proofs). The notion of characteristic function is not used in
this work. Instead, de Branges works with what is now called a de Branges space or,
alternatively, the functional model associated with an inner and *-inner function which
vanishes at zero. Therefore, his result applies to partially isometric contractions of class
C00 with arbitrary defect indices. The case of C00 contractions with dT = dT∗ = 1
was yet again independently rediscovered by D. N. Clark [10]. In this work, T is not
assumed to be partially isometric, and Clark also produces an explicit identification of
the underlying Hilbert space with the space of square integrable functions relative to a
measure on the circle. This measure is explicitly related to the characteristic function
via a Herglotz integral. Clark’s results were extended to arbitrary contractions by J. A.
Ball [2] (see also [3]). Related results were also proved by P. A. Fuhrman [12] and C.
Benhida and Timotin [4]. Some function theoretical implications of these formulas are
explored in D. Sarason’s monograph [18].

For the present work, the significance of (1) is that it provides a rather explicit
method for calculating the spectral measure of V in terms of the characteristic function
of T . In turn, under the hypothesis that I − T∗T is of trace class, whether T belongs
to the class A depends exclusively on the absolutely continuous part of V . Finally,
the conjecture follows (under the trace-class hypothesis) from the Kato-Rosenblum
invariance of the absolutely continuous spectrum under trace class perturbations.

The extreme case of a purely singular unitary V was considered earlier by P. Y.
Wu [24]. He showed that for a contraction T = V|T| with dT = dT∗ < ∞ , the unitary
operator V is purely singular if and only if T is the direct sum of a C0 operator with a
purely singular unitary. Our methods allow us to extend this result to operators T for
which I − T∗T is in the trace class.
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The remainder of this paper is organized as follows. In Section 2 we review
functional models and prove (1). In Section 3 we demonstrate a relationship between
the spectral radius of operators of the form u(T) and the characteristic function of
T . This allows us to show in Section 4 that T ∈ A if and only if V has a large
absolutely continuous part. Our main result is in Section 4, along with the extension
mentioned above of the result of Wu. We conclude in Section 5 with a few examples
and a discussion of the singular unitary dilations considered by Wu and K. Takahashi
[25].

We wish to thank the referee, who helped us correct numerous inaccuracies.

2. Functional Models

We begin by recalling one of the main results in the theory of functional models.
For a contraction T ∈ L (H) acting on the complex, separable Hilbert space H , we
denote by DT = (I − T∗T)1/2 the defect operator, by DT = (DTH)− the defect
space, and by dT = dim(DT) the defect index of T . One defines an analytic function
ϑT : D → L (H) on the unit disk D by setting

ϑT(z) = −T + zDT∗(I − zT∗)−1DT , z ∈ D.

The function ϑT is contractive, i.e. ‖ϑT(z)‖ � 1 for all z ∈ D . Conversely, given
Hilbert spaces F, G , and a contractive analytic function ϑ : D → L (F, G) , one
constructs a contraction S(ϑ) ∈ L (H(ϑ)) as follows. First one defines a measurable
function Δ : T = ∂D → L (F) by

Δ(ζ) = (I − ϑ(ζ)∗ϑ(ζ))1/2, ζ ∈ T,

and the space
H(ϑ) = K+ � {ϑv ⊕ Δv : v ∈ H2(F)},

where K+ = H2(G)⊕(ΔL2(F))− . Multiplication by the variable on K+ is an isometric
operator U+ such that U∗

+H(ϑ) ⊂ H(ϑ) , and the operator S(ϑ) is defined by the
requirement that

S(ϑ)∗ = U∗
+|H(ϑ).

The operator S(ϑ) is usually known as the functional model associated with ϑ .
Now, every contractive analytic function ϑ can be written as a direct sum ϑ =

ϑ0 ⊕ ϑ1 , ϑj ∈ L (Fj, Gj) , such that ϑ0 is purely contractive (i.e., ‖ϑ0(0)f ‖ < ‖f ‖
for all f ∈ F0 \ {0}) , while ϑ1 is a constant unitary operator. It is easy to see that
S(ϑ0) is unitarily equivalent to S(ϑ) . Similarly, every contraction T ∈ L (H) can be
decomposed as T = T0 ⊕ T1 , Tj ∈ L (Hj) , such that T1 is unitary, and T0 has no
nontrivial unitary restriction; T0 is said to be completely nonunitary or cnu.

It is proved in [22, Chapter VI] that S(ϑT) is unitarily equivalent to the cnu
summand T0 of T . Analogously, the purely contractive parts of ϑS(ϑ) and ϑ must
coincide; two operator-valued analytic functions are said to coincide if one is obtained
from the other via multiplication on both sides by constant unitary operators.
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Thus, the theory of functional models establishes a bijective correspondence be-
tween unitary equivalence classes of cnu contractions, and coincidence classes of purely
contractive operator-valued analytic functions. The purely contractive part of ϑT is
called the characteristic function of T , and is denoted by ΘT . Thus the function
ΘT : D → L (DT , DT∗) is given by ΘT(z) = ϑT(z)|DT . Implicit in this statement is
the fact that T maps D⊥

T isometrically onto D⊥
T∗ .

We will now prove (1) under somewhat more general assumptions. We start
with two simple results, whose proofs are easy computations. We use the notation
	X = (X + X∗)/2 for the real part of an operator X .

LEMMA 2.1. Consider a contraction C ∈ L (E) , and the analytic function HC :
D → L (E) defined by

HC(z) = (I + zC∗)(I − zC∗)−1, z ∈ D.

We have then

	HC(z) = (I − zC)−1(I − |z|2CC∗)(I − zC∗)−1 � 0

for all z ∈ D .

LEMMA 2.2. Given elements A, B in a Banach algebra, I + B2A is invertible if
and only if I + BAB is invertible. When this is the case, we have

B(I + BAB)−1 = (I + B2A)−1B.

In the following result we will use a decomposition T = V|T| = V(T∗T)1/2 with
V a partial isometry. This is not necessarily the unique polar decomposition of T , but
the action of V is uniquely determined on ker(T)⊥ , which it maps isometrically onto
ker(T∗)⊥ . Also observe that V|D⊥

T = T|D⊥
T maps D⊥

T isometrically onto D⊥
T∗ , and

thus V∗DT∗ ⊂ DT for all such partial isometries U .

THEOREM 2.3. Consider a contraction T ∈ L (H) , and a partial isometry
V ∈ L (H) such that T = V|T| . Define an analytic function H : D → L (H) by

H(z) = (I + zV∗)(I − zV∗)−1, z ∈ D,

and set B = (I + |T|)−1/2(I − |T|)1/2. Then the operator BH(z)B + I is invertible for
all z ∈ D , and we have

V∗ϑT(z) = (BH(z)B + I)−1(BH(z)B − I), z ∈ D. (2)

Proof. In terms of the decomposition T = V|T| we have

DT = (I − |T|2)1/2, DT∗ = I − VV∗ + V(I − |T|2)1/2V∗.

We obtain therefore

V∗ϑT(z) = −V∗T + zV∗DT∗(I − zT∗)−1DT

= −|T| + zV∗V(I − |T|2)1/2V∗(I − zT∗)−1(I − |T|2)1/2 (3)
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for all z ∈ D . Observe now that V∗V|T|kV∗ = |T|kV∗ for all k � 0 ; indeed, this is
true when k = 0 because V is a partial isometry, while for k � 1 it is a consequence of
the fact that V∗V = I on the support of |T| . We can then replace |T|k by an arbitrary
continuous function of |T| in this relation. In particular,

V∗V(I − |T|2)1/2V∗ = (I − |T|2)1/2V∗.

Therefore (3) can be rewritten as

V∗ϑT(z) = −|T| + zDTV∗(I − zT∗)−1DT , z ∈ D. (4)

Note now that

zV∗(I − zV∗)−1 =
1
2
(H(z) − I), I − |T| = 2(I + B2)−1B2, DT = 2(I + B2)−1B,

as can be seen by simple calculations. Next we observe that

I − zT∗ = I − zV∗ + (I − |T|)zV∗

= (I + (I − |T|)zV∗(I − zV∗)−1)(I − zV∗)

= (I + (I + B2)−1B2(H(z) − I))(I − zV∗)

= (I + B2)−1(I + B2H(z))(I − zV∗).

The first lemma above shows that H(z) , and hence BH(z)B , has nonnegative real part,
and therefore I +BH(z)B is invertible. The second lemma then implies that I +B2H(z)
is also invertible for all z ∈ D , and then (4) yields

V∗ϑT(z) = −|T| + DTzV∗(I − zV∗)−1(I + B2H(z))−1(I + B2)DT

= −|T| + DT
1
2
(H(z) − I)(I + B2H(z))−12B

= −|T| + DT(H(z) − I)B(I + BH(z)B)−1,

where we used the identity in the lemma with H(z) in place of A . We deduce the
equality

V∗ϑT(z)(I + BH(z)B) = −|T|(I + BH(z)B) + DT(H(z) − I)B

= (I + B2)−1[(B2 − I)(I + BH(z)B) + 2B(H(z) − I)B]
= BH(z)B − I,

which is equivalent to the one in the statement. �

It is easy to see that the purely contractive part of V∗ϑT acts on the space DT ,
and it is given by equation (2) provided that BH(z)B and I are interpreted as operators
on this space. Clearly, V∗ϑT(z)h = −h for h ∈ D⊥

T .
Formula (2) yields the equality I − V∗ϑT(z) = 2(BH(z)B + I)−1 , so that in

particular I − V∗ϑT(z) is invertible for all z ∈ D , and

BH(z)B = (I + V∗ϑT(z))(I − V∗ϑT(z))−1, z ∈ D. (5)
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Note that the function ϑT coincides with V∗ϑT when V is a unitary operator;
such a unitary operator can only be chosen when ker(T) and ker(T∗) have the same
dimension. Assume that this condition is satisfied, V is chosen to be unitary, and E is
the spectral measure of V . Using the notation

μh(σ) = 〈E(σ)h, h〉

for the scalar measure corresponding with a vector h ∈ H , (5) yields the following
formula for the Herglotz integral of μBh :

〈 (I + V∗ϑT(z))(I − V∗ϑT(z))−1h, h〉 =
∫

T

ζ + z
ζ − z

dμBh(ζ), z ∈ D, h ∈ H. (6)

Taking real parts we obtain the Poisson integral of μBh :

‖Δ(z)(I − V∗ϑT(z))−1h‖2 =
∫

T

	ζ + z
ζ − z

dμBh(ζ). (7)

It may seem surprising that I − V∗ϑT(z) is invertible for all z . This fact can also
be proved directly as follows.

LEMMA 2.4. Let ϑ : D → L (H) be a contractive analytic function such that
ϑ(0) � 0 . Then I + ϑ(z) is invertible for every z ∈ D .

Proof. The Schwarz lemma implies that an analytic function g : D → D maps
the disk |z| � r to the disk bounded by the circle (z − g(0))/(1 − g(0)z) = r . In
particular, if g(0) � 0 , then 	g(z) � −|z| for all z . Applying this observation to the
functions gh(z) = 〈ϑ(z)h, h〉 with ‖h‖ = 1 , we deduce that 	(I + ϑ(z)) � 1 − |z| ,
and invertibility follows. �

3. Functional Calculus and Spectrum

As mentioned in the introduction, a contraction T ∈ L (H) is said to be absolutely
continuousprovided that T = T0⊕T1 , with T0 completely nonunitary, and T1 a unitary
operator with absolutely continuous spectral measure (relative to normalized arclength
measure m on T ). The reason for this terminology is that a contraction is absolutely
continuous if and only if its minimal unitary dilation U has absolutely continuous
spectrum. For such contractions, the polynomial functional calculus u �→ u(T) can
be extended to arbitrary elements of the algebra H∞ of bounded analytic functions
defined in D . The operator u(T) is simply the compression to H of u(U) , and u(U)
is defined using the spectral measure of U . The absolutely continuous operator T
belongs to the class A if the map u �→ u(T) is an isometry from H∞ into L (H) . It
is known [6, Proposition 7.3] that for T in the class A , the essential norm ‖u(T)‖e is
also equal to ‖u‖∞ for every u ∈ H∞ . Moreover, H∞ is a function algebra in the
technical sense that the norm of each element is equal to its spectral radius. We deduce
that for T ∈ A and u ∈ H∞ we have

|u(T)|sp = ‖u(T)‖ = ‖u(T)‖e,
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where |X|sp denotes the spectral radius of X . It is well-known (see, for instance, [11])
that

σ(u(T)) ⊃ u(σ(T) ∩ D), u ∈ H∞.

It follows that T ∈ A provided that σ(T) ⊃ D or, more generally, if σ(T) ∩ D is a
dominating set in the sense of [9].

We will describe some necessary, and some sufficient, conditions for a cnu contrac-
tion to belong to A in terms of characteristic functions. As mentioned in the preceding
section, every cnu contraction is unitarily equivalent to a functional model. We will
therefore consider a contraction T = S(ϑ) ∈ L (H(ϑ)) , where ϑ : D → L (F, G) is a
purely contractive analytic function, and we will continue to use the notation Δ, U+ , K+
from the preceding section. We need to introduce some further notation to facilitate the
statement of a form of the commutant lifting theorem. We will denote by H∞(L (G))
the Banach algebra of all bounded analytic functions F : D → L (G) . The elements in
this algebra determine (by pointwise action) operators on H2(H) which commute with
the operator of multiplication by the variable. The operator determined by a function
F will also be denoted by F . We will denote by L∞(L (G, F)) the Banach algebra of
weak operator measurable functions F : T → L (G, H) which are essentially bounded
(relative to m ). The elements in this algebra determine operators in L (L2(G), L2(F)) ,
again by pointwise application. These operators can be restricted to H2(G) to yield
elements in L (H2(G), L2(F)) .

LEMMA 3.1. Consider a cnu contraction T = S(ϑ) . For every operator X ∈
{T}′ , there exist functions X11 ∈ H∞(L (G)), X21 ∈ L∞(L (G, F)) , X22 ∈ L∞(L (F)) ,
and Ψ ∈ H∞(L (F)) with the following four properties:

1. X11ϑ = ϑΨ ,
2. X21ϑ + X22Δ = ΔΨ ,
3. the range of X22(ζ) is contained in (Δ(ζ)F)− for almost every ζ ∈ T ,
4. X = PH(ϑ)X̂|H(ϑ),where

X̂ =
[

X11 0
X21 X22

]
.

Conversely, given functions X11, X21, X22 and Ψ satisfying conditions (1-3), the oper-
ator X defined by (4) belongs to the commutant {T}′ . The operator X is equal to zero
if and only if there exists a function Φ ∈ H∞(L (G, F)) such that

X11 = ϑΦ, X21 = ΔΦ, and X22 = 0.

Proof. As mentioned above, this is merely a formulation of the commutant lifting
theorem [22]. �

Given a function u ∈ H∞ , the preceding lemma shows that u(T) is invertible
if and only if there exist functions Xij , Ψ and Φ satifying conditions (1-3) in the
statement, and in addition

uX11 − I = ϑΦ, (8)

uX21 = ΔΦ, (9)



78 HARI BERCOVICI AND DAN TIMOTIN

and
uX22 = I. (10)

Let us set ω = ωT = {ζ ∈ T : Δ(ζ) �= 0} , and note that X21 and X22 are always zero
on the complement of ω . Therefore, if X11 and Φ can be found to satisfy (8), then
X21, X22 , and Ψ are uniquely determined as

X21 =
1
u
ΔΦ, X22 =

1
u
I, and Ψ =

1
u
(I + Φϑ).

In order for X22 to be bounded, it is necessary that u be essentially bounded away from
zero on ω , and in this case the function X21 is bounded as well. We summarize these
observations in the following statement, first proved in [23, Proposition 5.2].

PROPOSITION 3.2. Consider a cnu contraction T = S(ϑ) , a function u ∈ H∞ ,
and a scalar λ ∈ C . The operator λ − u(T) is invertible if and only if the following
conditions are satisfied:

1. the function λ − u is essentially bounded away from zero on ω ,
2. there exist functions X ∈ H∞(L (G)) and Φ ∈ H∞(L (F, G)) with the follow-

ing properties:

(a) (u − λ )X − ϑΦ = I ,
(b) the meromorphic function (I + Φϑ)/(u − λ ) is bounded in D .

Proof. The function X plays the role of X11 in the above discussion, where we
replace the function u by u−λ . Condition (b) amounts to the existence of the bounded
analytic function Ψ . �

The invertibility test in the preceding proposition is easily extended to absolutely
continuous contractions. Indeed, if T = T0 ⊕ T1 with T0 cnu and T1 unitary with
spectral measure E , then the spectrum of u(T1) is simply the E -essential range of the
function u . It will be convenient to introduce the notation ΣT1 for the support of E ;
this is a set of minimum arclength measure such that E(ΣT1) = I . We will also use the
more general notation

ΣT = ωT0 ∪ ΣT1 .

These sets are well defined up to a set of arclength measure equal to zero.
We obtain now a first test for T ∈ A .

PROPOSITION 3.3. Consider an absolutely continuous contraction T , and a
function u ∈ H∞ . We have then

‖u(T)‖ � |u(T)|sp � ess sup{|u(ζ)| : ζ ∈ ΣT}.

In particular, if m(ΣT) = 1 , it follows that T ∈ A .

Proof. By the preceding proposition, the spectrum of u(T0) contains the essential
range of u|ωT0 , while the spectrum of u(T1) is precisely the essential range of u|ΣT1 .
The proposition follows immediately from these observations since u(T) = u(T0) ⊕
u(T1) . �
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This result has a converse in one case which is important for us. Let us recall from
[22] that a contractive analytic function ϑ ∈ H∞(L (F, G)) is said to have a scalar
multiple f ∈ H∞\{0} if there exists a contractive analytic function τ ∈ H∞(L (G, F))
such that

ϑ(z)τ(z) = f (z)IG, and τ(z)ϑ(z) = f (z)IF (11)

for every z ∈ D . When this happens, the spaces F and G must have the same
dimension, so that ϑ coincides with a function in H∞(L (F)) .

THEOREM 3.4. Assume that T is an absolutely continuous contraction such that
the characteristic function ΘT has a scalar multiple. Then T ∈ A if and only if
m(ΣT) = 1 .

Proof. In view of Proposition 3.3, it suffices to show that T /∈ A if m(T\ΣT) > 0 .
Assume that this last condition is satisfied, let ϑ ∈ H∞(L (F)) coincide with ΘT , and
let f ∈ H∞ \ {0} be a scalar multiple of ϑ . We can then find a function u ∈ H∞

which is a multiple of f , such that ‖u‖∞ = 1 and |u(ζ)| � 1/2 for almost every
ζ ∈ ΣT . Indeed, such a function can be obtained as the product of f with an appropriate
outer function. We will show that T /∈ A by proving that |u(T)|sp < 1 = ‖u‖∞ .
Since |u(T)|sp � 1 , it will suffice to show that λ − u(T) is invertible for every λ ∈ T .
If we use the decomposition T = T0 ⊕ T1 into cnu and unitary parts, we have

‖u(T1)‖ = ess sup{|u(ζ)| : ζ ∈ ΣT1} � 1
2
,

so it suffices to show that λ − u(T0) is invertible. Fix then λ ∈ T , and observe that

inf{|u(z) − λ | + |f (z)| : z ∈ D} > 0.

The scalar corona theorem implies the existence of functions x,ϕ ∈ H∞ such that

x(u − λ ) − ϕf = 1.

Fix a function τ satisfying (11), and set

X = xI, Φ = ϕτ.

Condition (1) of Proposition 3.2 is clearly satisfied because ωT0 ⊂ ΣT , and X and Φ
satisfy part (a) of condition (2). Part (b) is also satisfied because ϑ and Φ commute,
and therefore

I + Φϑ
u − λ

=
I + ϑΦ
u − λ

= X.

We conclude that λ − u(T0) is invertible, as claimed. �
We conclude this section with a simpler criterion for T ∈ A .

PROPOSITION 3.5. An absolutely continuous contraction T belongs to A if either
of the following two conditions is satisfied:

1. dT �= dT∗ ;
2. I − T∗T is a compact operator and dimker(T) �= dimker(T∗).
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Proof. If (1) holds, then ΘT(z) cannot be invertible for any z ∈ D , and therefore
σ(T) = D by the characterization of the spectrum in terms of the characteristic function
[22]. If (2) holds, then T is either essentially unitary with nonzero index, in which case
its Fredholm spectrum is D , or it is a nununitary essential isometry, in which case D is
contained in the essential spectrum. Thus, under either hypothesis we have σ(T) = D ,
and this implies that T ∈ A . �

4. Polar Decomposition and the Class A

In this section we will only consider contractions T such that I − T∗T is a trace
class operator. We will denote by Sp the Schatten p -class of compact operators, so
that S1 is the trace class.

Let us recall that, in the terminology of [22, Chapter VIII], a contraction T is called
a weak contraction if I − T∗T ∈ S1 and σ(T) �= D .

LEMMA 4.1. Assume that T ∈ L (H) satisfies I − T∗T ∈ S1 , and V ∈ L (H) a
unitary operator such that T = V|T| .

1. We have 1 − |T| = I − V∗T ∈ S1 and V − T ∈ S1.

2. The function I − V∗ϑT has a scalar multiple.
3. If T is completely nonunitary, then DT is *-cyclic for V , i.e. H =

∨
n∈Z

VnDT .
4. If, in addition, T is a weak contraction, then ϑT also has a scalar multiple.

Proof. Part (1) follows from the identities

I − |T| = (I − T∗T)(I + |T|)−1, V − T = V(I − |T|).

The existence of the unitary V implies that ker(T) and ker(T∗) have the same finite
dimension, and this implies that both DT and DT∗ belong to S2 . Thus

DT∗(I − zT∗)−1DT ∈ S1, z ∈ D,

so that
1
2
(I − V∗ϑT) = I + Ψ,

where Ψ(z) ∈ S1 for all z ∈ D . Since I − V∗ϑT(z) is invertible for all z ∈ D , it
follows that the function det(I + Ψ) is not zero, and hence it is a scalar multiple of
I + Ψ and I − V∗ϑ ; see the discussion in [5, Section VI.2].

In order to verify (3), consider the reducing space

M = H �
∨
n∈Z

Vn
DT

for V . Since M is orthogonal to DT , V|M = T|M , and hence M = {0} if T is cnu.
Finally, the fact that ϑT has a scalar multiple is equivalent to the fact that ΘT has

a scalar multiple, and this is known [22, Theorem VIII.1.1] for weak contractions. �
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The preceding lemma allows us to transform information about T into information
about V . Let us write V = Vc ⊕ Vs , with Vc absolutely continuous and Vs singular
(relative to arclength measure). We will use the notation ΣV = ΣVc .

THEOREM 4.2. Let T be a cnu contraction with I − T∗T ∈ S1 , and let V be a
unitary operator such that T = V|T| . Then ΣV = ωT up to a set of m -measure zero.

Proof. Let u ∈ H∞ \ {0} be a scalar multiple of I − V∗ϑT , so that we have

ϕ(z)(I − V∗ϑT(z)) = (I − V∗ϑT(z))ϕ(z) = u(z)I, z ∈ D,

for some function ϕ ∈ H∞(L (H)) . Equivalently, ϕ(z)/u(z) = (I − V∗ϑT(z))−1 for
all z ∈ D for which u(z) �= 0 . Functions in H∞(L (H)) have radial limits in the
strong operator topology, and we deduce that (I − V∗ϑT(z))−1 must also have such
radial limits. Now,

ϕ(ζ)
u(ζ)

(I − V∗ϑT(ζ)) = (I − V∗ϑT(ζ))
ϕ(ζ)
u(ζ)

= I

for almost every ζ ∈ T . Therefore the radial limit of (I−V∗ϑT(z))−1 at ζ is precisely
the inverse of I − V∗ϑT(ζ) .

Use now the notation of Section 2, and take radial limits in (7) to obtain for each
h ∈ H

‖Δ(ζ)(I − V∗ϑT(ζ))−1h‖2 =
dμBh

dm
(ζ) (12)

almost everywhere on T ; here Δ(ζ) = (I − ϑT(ζ)∗ϑT(ζ))1/2 , and this function is
equal to zero almost everywhere on T \ ωT . By part (3) of the preceding lemma, the
vectors {DTh : h ∈ H} form a *-cyclic set for V . We conclude that for the spectral
measure Ec of Vc we have Ec(T \ ωT) = 0 , and therefore σV ⊂ ωT (up to a set of
m -measure zero). To conclude the proof we consider the set ω0 = ωT \ σT . Since
I − V∗ϑT(ζ) is invertible for almost every ζ , equation (12) implies that Δ(ζ)k = 0
almost everywhere on ω0 for every k ∈ H . This implies that Δ(ζ) = 0 almost
everywhere on ω0 (because the space H is separable), and therefore m(ω0) = 0 . �

The particular case of Theorem 4.2 in which m(ΣV) = 0 yields the following
extension of [24, Theorem 2.1].

THEOREM 4.3. Let T be a weak contraction, and V a unitary operator such that
T = V|T| . The following are equivalent:

1. V is purely singular; and
2. T = T0 ⊕ T1 , where T0 is an operator of class C0 and T1 is a purely singular

unitary operator.

Proof. Decompose T = T0⊕T1 into its cnu and unitary components. We can also
write V = V0 ⊕ T1 , where V0 is a unitary operator such that T0 = V0|T0| . Assertion
(1) is equivalent to m(ΣV0) = 0 , while (2) is equivalent to m(ωT0) = 0 ; cf. [22,
Theorem VIII.2.1]. The result follows because m(ΣV0) = m(ωT0) by Theorem 4.2. �

Whether T is in A can now also be determined in terms of V .
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THEOREM 4.4. Let the absolutely continuous contraction T ∈ L (H) satisfy I −
T∗T ∈ S1 , and assume that T = V|T| for some unitary operator V ∈ L (H) . Then
T ∈ A if and only if m(ΣV) = 1 .

Proof. We consider first the case of a weak contraction T . As mentioned above,
in this case ϑT has a scalar multiple, and therefore Theorem 3.4 applies: T ∈ A if and
only if m(ΣT) = 1 . It will suffice to show that ΣT = ΣV up to a set of measure zero.
To do this, we write the decomposition T = T0 ⊕ T1 into cnu and unitary parts, and the
corresponding decomposition V = V0 ⊕ T1 . The desired equality follows immediately
from Theorem 4.2 applied to T0 and V0 .

Assume now that T is not a weak contraction, i.e. σ(T) = D . In this case
we know that T ∈ A from the first paragraph in Section 3, and we must show that
m(ΣV) = 1 as well. Assume to the contrary that m(T\ΣV) > 0 . As shown in [17], this
hypothesis implies that σ(V + K) \ σ(V) contains only isolated Fredholm eigenvalues
if K ∈ S1 ; in particular σ(V + K) �⊃ D for such K . This contradicts the fact that

σ(V + (T − V)) = σ(T) ⊃ D,

while T − V ∈ S1 . �

Our main result on perturbations of operators in A is now easy to prove.

THEOREM 4.5. Let T, T ′ ∈ L (H) be absolutely continuous contractions such
that I − T∗T ∈ S1 and T − T ′ ∈ S1 . Then T ∈ A if and only if T ′ ∈ A .

Proof. Observe first that I − T ′∗T ′ must also belong to S1 . In case σ(T) =
σ(T ′) = D both T and T ′ belong to A . Therefore it will suffice to prove the
theorem under the additional assumption that one of the two contractions is weak. As
the difference T − T ′ is compact and T is semi-Fredholm, we have the equality of
Fredholm indices

dim ker(T) − dimker(T∗) = dim ker(T ′) − dimker(T ′∗).

One of these differences is zero, and hence the other is zero as well. We deduce that
there exist unitary operators V, V ′ such that T = V|T| and T ′ = V ′|T ′| . Note that

V − V ′ = (V − T) + (T − T ′) + (T ′ − V)

belongs to S1 , and the Kato-Rosenblum theorem implies that ΣV = ΣV′ up to a set
of measure zero. In particular, m(ΣV) = 1 if and only if m(ΣV′) = 1 , and the desired
conclusion follows immediately from the preceding theorem. �

The preceding result can be viewed as an instance of the following invariance result
for the set ΣT .

THEOREM 4.6. Let T, T ′ ∈ L (H) be two absolutely continuous contractions
such that I − T∗T ∈ S1, dimker(T) = dimker(T∗) , and T − T ′ ∈ S1 . Then
ΣT = ΣT′ up to a set of m -measure zero.
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Proof. Note that we also have dim ker(T ′) = dimker(T ′∗) , and therefore T =
V|T| and T ′ = V ′|T ′| for some unitary operators V and V ′ such that V − V ′ ∈ S1 .
By the Kato-Rosenblum theorem, it will suffice therefore to show that ΣT = ΣV and
ΣT′ = ΣV′ . Write then T = T1 ⊕ T2 with T1 cnu and T2 unitary, and consider the
corresponding decomposition V = V1 ⊕ T2 . It suffices then to show that ωT1 = ΣV1 ,
and this equality follows from Theorem 4.2. �

5. Miscellaneous Examples

One may inquire whether the methods presented here will eventually yield our
conjecture. Unfortunately, several of the ingredients fail in general. Consider, for
instance, a diagonalizable operator T ∈ A , and its polar decomposition T = V|T| . In
this case the operator V itself is diagonalizable, hence purely singular: m(ΣV) = 0 .
Thus one cannot hope to characterize the class A in terms of polar decompositions.

In the diagonalizable case, it is still true that T is of class C00 . There exist however
operators T = V|T| of class C00 for which V is absolutely continuous, thus violating
the equality ωT = ΣV . An example is obtained as follows. Let {en : n ∈ Z} be an
orthonormal basis in H , and define a weighted shift T by the requirement that

Ten =
(
|n| + 1
|n| + 2

)
en+1, n ∈ Z.

For this T , the unitary V is a bilateral shift. Thus ΣV = T , while ωT = ∅ .
We would like to conclude with a discussion of unitary operators on H⊕K of the

form

V =
[

T X
Y Z

]
,

in other words, unitary dilations of T in the sense of Halmos [13] (as opposed to the
power dilations considered by Sz.-Nagy [21]). As seen, for instance, in [1], the operators
X, Y, Z can be written as

X = DT∗B, Y = ADT , Z = −AT∗B + W,

where A, B∗ ∈ L (H, K) and W ∈ L (K) are partial isometries such that

A∗A = PDT , BB∗ = PD∗
T
, W∗W = I − B∗B, and WW∗ = I − AA∗.

Since V is unitary, the operator

T̃ =
[

T 0
ADT 0

]

is partially isometric, and it has the decomposition T̃ = V|T̃| , with

|T̃| =
[

I 0
0 0

]
.
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Easy calculations show that

D
T̃

=
[

0 0
0 I

]
, D

T̃∗ =
[

D2
T∗ −TDTA∗

−ADTT∗ WW∗ + AT∗TA∗

]
,

(I − zT̃∗)−1D
T̃

=
[

0 z(I − zT∗)−1DTA∗

0 I

]
,

and finally

ϑ
T̃
(z) =

[
−T zDT∗ϑT(z)A∗

−ADT −zAT∗ϑT(z)A∗ + zWW∗

]
for z ∈ D . Therefore

V∗ϑ
T̃
(z) =

[
I 0
0 zB∗ϑT(z)A∗ + zW∗

]
, z ∈ D.

In this formula, ϑT could be replaced by ΘT if we view A as an element in L (DT , K)
and B as an element in L (K, DT∗ ) . This formula, along with Theorem 2.3, gives
us in principle the spectral measure of V . As seen earlier in this paper, it may be
difficult to exploit this formula in the absence of certain scalar multiples. The existence
of such scalar multiples is guaranteed if dim(K) < ∞ , which is only possible when
dT = dT∗ < ∞ . In this case we deduce easily that V is purely singular if and only
if T is the orthogonal sum of an operator of class C0(N) (N = dT) with a singular
unitary operator. The fact that an operator of class C0(N) has a singular unitary dilation
was first proved in [25]. Wu and Takahashi also prove a converse of this result: if a
contraction with finite defect indices has a singular unitary dilation (even with K of
infinite dimension), then the operator is the direct sum of a C0(N) operator with a
singular unitary. Our methods do not yield this implication.
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