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(communicated by Douglas Farenick)

Abstract. We determine conditions under which closed, topologically transitive, matrix semi-
groups must be transitive.

In this paper we shall consider (multiplicative) semigroups in Mn(C) (or Mn(R) ).
Such a semigroup S is transitive if for any two vectors x and y in Cn (or Rn ) with
x �= 0 , there exists S in S such that Sx = y , and is topologically transitive if for any
two vectors x and y in Cn (or Rn ) with x �= 0 , there exists a sequence Sn in S such
that Snx converges to y . We shall investigate the properties and structure of closed,
topologically transitive matrix semigroups, and shall be particularly interested in the
question: “What extra conditions must be imposed on such semigroups to guarantee
transitivity?”

We say a vector x in Cn is cyclic for a set X in Mm×n(C) if X x = {Xx : X ∈ X}
is dense in Cm , and strictly cyclic if X x = Cm . So a set X in Mm×n(C) is topologically
transitive if every nonzero vector in Cn is cyclic for X , and is transitive if every nonzero
vector in Cn is strictly cyclic for X . (In contexts where topological transitivity is being
considered, transitivity is sometimes referred to as strict transitivity.)

We use standard notation and let SL(n, C) (resp. SL(n, R) ) denote the special
linear group of determinant 1 matrices in Mn(C) (resp.Mn(R) ) and let U(n) (resp.
O(n) ) denote the unitary (resp. orthogonal) group in Mn(C) (resp. Mn(R) ). It is well
known that all these groups are closed and that the special linear group is transitive.
(There is a slight technical problem with the definition here as invertibles cannot map
a non-zero vector to zero, so we shall assume 0 is adjoined to all our groups and
semigroups.) While the unitary group is not transitive, if we consider the semigroup of
all multiples of unitaries, this is transitive.

We begin with some preliminary results connecting transitivity and topological
transitivity.
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LEMMA 1. If S is a closed, topologically transitive matrix semigroup and there
exists a rank-one matrix in S then S is transitive.

Proof. If S0 = x0 ⊗y0 is in S with S0 �= 0, then x0 �= 0 so for any z there exists
Sk in S with Skx0 → z . Then SkS0 = (Skx0) ⊗ y0 → z ⊗ y0 so z ⊗ y0 is in S for all
z . Given any x �= 0 and y , choose S in S such that Sx is not orthogonal to y0 , and
let z = y

〈 Sx,y0〉 . Then (z ⊗ y0) S is in S and

(z ⊗ y0) Sx = 〈 Sx, y0〉 z = y

so S is transitive. �

In general, to deduce transitivity from topological transitivity, given any x �= 0
and y , we will need enough information about the possible sequences Sk in S with
Skx → y , to be able to find a single S in S with Sx = y. In the above lemma, that is
done by controlling the range. In the case where S consists of multiples of unitaries,
this can be done by using compactness.

LEMMA 2. If S is a closed, topologically transitive set of matrices, and every
element of S is a multiple of a unitary, then S is transitive.

Proof. Given x �= 0 and y there exists Sk = rkUk in S with Skx → y (where rk

is scalar and Uk is unitary). Then ‖Skx‖→‖y‖ so |rk| → ‖y‖
‖x‖ . By compactness we

can pass to a subsequence so that rk → r and Uk → U , and so Sk → S = rU , so that
S is in S and Sx = y . �

The fact that S is a semigroup will be key in cases where we can show that closed
and topologically transitive imply transitive. If S is just a set, very few if any results
along these lines can be obtained as the following theorem illustrates.

THEOREM 3. For, each k = 1, 2, . . . , let Mk be a finite 1
k mesh for the unit sphere

in Cn , and Xk =
{√

ku ⊗ v : u, v ∈ Mk

}
. Then X =

⋃∞
k=1 Xk is such that

(1) X is closed (actually discrete)
(2) X is topologically transitive but not transitive.

Proof. Note that each Xk is finite and each
√

k u⊗ v in Xk has norm
√

k so that
X is discrete and hence closed.

If x and y are non-zero vectors, and ε > 0 , we can choose k large enough that
‖y‖√
k‖x‖ � 1 and 2‖x‖√

k
< ε . Then choose u in Mk such that

∥∥∥∥u − y
‖y‖

∥∥∥∥ <
1
k

and choose v in Mk such that∣∣∣∣
〈

x
‖x‖ , v

〉
− ‖y‖√

k‖x‖

∣∣∣∣ � 1
k
.
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We can do this since, for a fixed unit vector z in Cn , the map from the unit sphere in
Cn to D , the unit disk in C , given by x → 〈 z, x〉 is a contractive surjection and so
{〈 z, u〉 : u ∈ Mk} is a 1

k mesh for D . Then

‖
(√

k u ⊗ v
)

x − y‖ = ‖
√

k 〈 x, v〉 u − y‖

= ‖
√

k 〈 x, v〉 u −
√

k 〈 x, v〉 y
‖y‖ +

√
k 〈 x, v〉 y

‖y‖ − y‖

� ‖
√

k 〈 x, v〉 u −
√

k 〈 x, v〉 y
‖y‖‖ + ‖

√
k 〈 x, v〉 y

‖y‖ − y‖

�
√

k |〈 x, v〉 | ‖u − y
‖y‖‖ +

∣∣∣∣
〈

x
‖x‖ , v

〉
− ‖y‖√

k‖x‖

∣∣∣∣√k‖x‖

� ‖x‖√
k

+
‖x‖√

k
< ε

hence X is topologically transitive. However, X is countable and so cannot be transi-
tive. �

The above theorem can be modified to give a similar example in Mn(R) , and if we
arrange that 〈u, v〉 �= ± 1√

k
when u, v are in Mk (which can be done by perturbations),

then the above proof need only be slightly adapted to show that
∞⋃
k=1

{
I +

√
k u ⊗ v : u, v ∈ Mk

}
is a set of invertible matrices which is discrete and topologically transitive, but not
transitive.

Recall that an ideal of a semigroup S is a subsemigroup I such that SI⊆S and
IS⊆S .

LEMMA 4. If I is a non-zero ideal of a transitive (resp. topologically transitive)
semigroup S in Mn(C) or Mn(R) then I is transitive (resp. topologically transitive).

Proof. Let x �= 0 and y be vectors in Cn . Fix a non-zero element X in I . Since
Sx is either Cn (in the transitive case) or dense in Cn (in the topologically transitive
case), there must be an element T of S such that Tx is not in the kernel of X . Then in
the transitive case there exists S in S which maps XTx to y so SXT , which is in I ,
maps x to y . In the topologically transitive case there exists a sequence Sn in S such
that Sn(XTx) converges to y , so SnXT is a sequence in I which, when applied to x ,
converges to y . �

In any closed semigroup S , if r is the the minimal rank of non-zero elements of S ,
the set Ir = {S ∈ S : rank(S) = r or 0} is a closed ideal which shares the transitivity
(or topological transitivity) properties of S . Because of this we will often be able to
assume S has constant rank. A natural question is what minimal ranks are possible
in topologically transitive semigroups. The semigroup of all rank-ones shows that
minimal rank one is realizable in a topologically transitive semigroup. The special
linear group shows minimal rank n is realizable in a topologically transitive semigroup.
The following shows that all other minimal ranks r between 2 and n are also realizable.
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THEOREM 5. For a fixed r ∈ N with 2 � r < n , let L ⊆ Mr×(n−r)(R) and M ⊆
M(n−r)×r(R) be non-zero closed sets containing the zero matrices of the appropriate
sizes, with L having the property that for each non-zero vector x in Rn−r , the set
Lx is not a singleton, and M having the property that it has a dense set of cyclic
vectors. Assume, in addition, that L and M are such that LM consists of nilpotents
(for example: if elements of L have non-zero entries only in the last row and elements
of M have non-zero entries only in the first column). Define

Sr =
{[

A AL
MA MAL

]
: A ∈ SL(r, R), L ∈ L, M ∈ M

}
,

then
(1) Sr is a closed semigroup
(2) Sr has constant rank r
(3) Sr is topologically transitive but not transitive.

Proof. Note that[
A AL
MA MAL

]
=
[

I 0
M 0

] [
A 0
0 0

] [
I L
0 0

]

which gives immediately that elements of Sr have constant rank r , and also shows that
Sr is a semigroup since any product of two elements in Sr can be written as follows:[

A1 A1L1

M1A1 M1A1L1

] [
A2 A2L2

M2A2 M2A2L2

]

=
[

I 0
M1 0

] [
A1 0
0 0

] [
I L1

0 0

] [
I 0
M2 0

] [
A2 0
0 0

] [
I L2

0 0

]

=
[

I 0
M1 0

] [
A1 0
0 0

] [
I + L1M2 0
0 0

] [
A2 0
0 0

] [
I L2

0 0

]
.

Now the hypotheses of the theorem gives that the middle three terms have an element of
SL(r, R) in the (1, 1) entry and so the product is also in Sr and so Sr is a semigroup.

To show that Sr is closed, suppose that Sn is a sequence in Sr such that Sn

converges to some X . Then

Sn =
[

An AnLn

MnAn MnAnLn

]
→ X =

[
A B
C D

]

and so An → A . Hence A is in SL(r, R) and so A−1
n is a bounded sequence which

converges to A−1 . Thus∥∥Ln − A−1B
∥∥ =

∥∥A−1
n (AnLn − B) +

(
A−1

n − A−1
)
B
∥∥

�
∥∥A−1

n

∥∥ ‖AnLn − B‖ +
∥∥A−1

n − A−1
∥∥ ‖B‖

converges to zero, so A−1B is in L and hence B is of the required form of the (1, 2)
entry of an element of Sr . Similarly, it can be shown the remaining entries are of the
required form and so Sr is closed.
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The above decomposition of an element of Sr also shows that a vector in the range
of an element of Sr is of the form [

x
Mx

]
for some element M of M , and so no vector can be mapped to[

0
y

]

for nonzero y , so Sr is not transitive.
On the other hand, given ε > 0 , a nonzero vector[

x
y

]

and a vector [
u
v

]
,

we can choose L in L such that x + Ly �= 0 , then choose A in SL(r, R) such that
A (x + Ly) = m is a cyclic vector for M within ε

2 of u , then choose M in M such
that Mm is within ε

2 of v . Then∥∥∥∥
[

A AL
MA MAL

] [
x
y

]
−
[

u
v

]∥∥∥∥ < ε

so Sr is topologically transitive. �
In the above theorem, in the case where L consists of matrices (of the appropriate

size) which have non-zero entries only in the last row and M consists of matrices
which have nonzero entries only in the first column, we can see from symmetry that S∗

r
is also topologically transitive. We say a set S in Mn(C) (or Mn(R) ) is bitransitive
if both S and S∗ (or S t ) are transitive. Topological bitransitivity is defined similarly.
So the semigroups Sr serves as examples of topologically bitransitive semigroups with
arbitrary minimal rank.

Some other examples of bitransitive semigroups follow.

EXAMPLE 1. Over R ,{
[zij]

n
i,j=1 : zij =

[
a b
−b a

]
for some a, b ∈ R

}

is a bitransitive semigroup (actually algebra) of minimal rank 2.

EXAMPLE 2. Over C ,{
[zij]

n
i,j=1 : zij =

[
α β
−β α

]
for some α, β ∈ C

}

is a bitransitive semigroup (actually an R algebra) of minimal rank 2.
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DEFINITION 1. A set S in Mn (C) ( or Mn (R) ) is homogeneous if S is closed
under multiplication by R+ (the non-negative real numbers).

For homogeneous topologically transitive semigroups, we have the following re-
sult.

THEOREM 6. If S ⊆ Mn (C) is a closed, topologically transitive homogeneous
semigroup then S is transitive.

Proof. First note that for any x �= 0 and y �= 0 , there is a nonzero S in S with
either Sx = y or Sx = 0. To see this, choose Sk in S with Skx → y. If {Sk} is bounded
then by passing to a subsequence (using the Bolzano-Weierstrass Theorem) we may
assume that Sk → S (in S since S is closed), but then Sx = lim Skjx = y. If, on the
other hand {Sk} is unbounded then by passing to a subsequence we may assume that
‖Skj‖ → ∞ . Passing to a further subsequence (again using the Bolzano-Weierstrass
Theorem) we may assume that 1

‖Sk‖Sk converges to some S in S (since S is closed

and homogeneous) where S has norm one. Then Sx = lim 1
‖Sk‖Skx = lim 1

‖Sk‖y = 0 .
Let r denote the minimal rank of a non-zero element of S . By Lemma 3.1.6 of [3]

there exists an idempotent E of rank r in S and (after a similarity) ESE|Ran(E) consists
of multiples of unitaries. So by Lemma 2 we may assume E �= I . Given x �= 0 and y ,
we must find S in S with Sx = y. First, by topological transitivity we can find S1 in S
with S1x not in the kernel of E . By considering ES1x in place of x we can assume x
is in Ran(E) . Now there exists Sk in S with Skx → y so SkEx → y . Consider 2 × 2
block matrix representations of linear maps on Cn with respect to the decomposition
Ran(E)⊕ ker(E) . Then

E =
[

I 0
0 0

]
and SkE =

[
rkUk 0
Xk 0

]
.

Writing x =
[

x1

0

]
and y =

[
y1

y2

]
we see that rkUkx1 → y1 and Xkx1 → y2 . Hence,

as in Lemma 2 by passing to a subsequencewe may assume that rkUk → rU . If y2 = 0 ,
use ESkE , and we are done as in Lemma 2, so with no loss of generality assume y2 �= 0.
Consider the possibilities: the set {‖Xk‖} is either bounded or unbounded. If the set is
unbounded, by passing to a subsequence we may assume that ‖Xk‖ → ∞ . But then,
by passing to a subsequence again we may assume that Xk

‖Xk‖ → X �= 0 and so

1
‖Xk‖SkE =

[
rkUk
‖Xk‖ 0
Xk

‖Xk‖ 0

]
→
[

0 0
X 0

]
.

But also, from above

[
0 0
X 0

] [
x1

0

]
=
[

0
0

]
, so Xx1 = 0 but this implies that the

rank of X is less than r which is a contradiction. Hence {‖Xk‖} is bounded, and by

passing to a subsequencewe can assume Xk → X . But then SkE →
[

rU 0
X 0

]
= S ∈ S

and Sx = y. �
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In contrast to Theorem 5, which shows that there are no restrictions on the minimal
(non-zero) rank in a closed transitive semigroup, if the semigroup is also homogeneous,
then the possible minimal ranks are restricted, as the following Corollary shows.

COROLLARY 7. If S is a closed, topologically transitive, homogeneous semigroup
then the minimal rank divides the spatial dimension.

Proof. In [1] it is shown that the minimal rank of a transitive semigroup in Mn(C)
divides n . This result, along with Theorem 6 establishes the Corollary. �

A natural example of a constant rank r closed transitive semigroup, where r
divides the spatial dimension, is the set of all n

r × n
r block matrices with the property

that any element in the set has only one block column with non-zero entries, and
those entries are chosen independently from the set of all multiples of elements of a
closed transitive unitary group. Other homogeneous examples can be constructed using
block matrices where the entries are independently chosen from multiples of a closed,
transitive, orthogonal or unitary group. However, as the following example shows, there
are more unusual examples.

EXAMPLE 3. Fix a unitary V in U(n) and consider

SV =
{

r

[
U UX
YU YUX

]
, r

[
0 0
U UX

]
:

X = 0 or V , Y = V−1 (sW − I)
U, W ∈ U(n), r, s ∈ R+

}
.

This semigroup is homogeneous, closed and transitive, but blocks cannot be chosen
independently.

Homogeneity of a semigroup ensures that the semigroup contains many strict
contractions. Evenwithout homogeneity, the existence of even a single strict contraction
in a topologically transitive semigroup in Mn (C) (or Mn (R) ) ensures the existence
of some cyclic vectors, and, in conjunction with additional weak hypotheses, gives
transitivity. The following simple lemma is key in proving the two theorems that follow.

LEMMA 8. If {Zk}k∈N is a sequence of matrices in Mn (C) (resp. Mn (R) ) such
that {‖Zk‖}k∈N is unbounded, and A is an invertible strict contraction in Mn (C) (resp.
Mn (R) ), then there exist strictly increasing sequences {ki}∞i=1 and {mi}∞i=1 such that
for i = 1, 2, . . . , ‖ZkiA

mi‖ lies in the interval (1, ‖A−1‖] .

Proof. Choose k1 such that ‖Zk1‖ > ‖A−1‖ and consider {‖Zk1A
m‖}∞m=1 . Since

‖Zk1A
m‖ � ‖Zk1‖‖A‖m , this sequence converges to 0, but 1

‖A−1‖‖Zk1A
m‖ � ‖Zk1A

m+1‖ ,

so as we increase m , ‖Zk1A
m‖ will eventually drop into the interval (1, ‖A−1‖] and

cannot jump over it. Let

m1 = min
{
m ∈ N : ‖Zk1A

m‖ ∈ (1, ‖A−1‖]} .

Now choose k2 such that, k2 > k1 and ‖Zk2A
m1‖ > ‖A−1‖ and repeat the above

argument to get m2 > m1 with ‖Zk2A
m2‖ in (1, ‖A−1‖] . We can continue in this

fashion to construct the desired sequences. �
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Note, by considering adjoints, we can obtain the same result for sequences
‖BmiZki‖ . Also, the hypotheses of this lemma could be weakened in this case, by
assuming only that B is invertible on its range, and that each {Zk}k∈N leaves the range

of B invariant. In this case we obtain that ‖BmiZ
ki‖ lies in the interval

(
1, 1

mB

]
, where

mB = min {‖Bx‖ : ‖x‖ = 1, x ∈ Ran(B)} .

THEOREM 9. If S is a closed, topologically transitive, semigroup in Mn (C) (resp.
Mn (R) ) and there exists a nonzero element A of S such that

(1) the rank of A is minimal among the nonzero elements of S
(2) A is similar to a strict contraction
(3) Ae = αe where α �= 0 and e is a non-zero vector in Mn (C) (resp. Mn (R) );

then Se = Cn (resp. Rn ).

Proof. Let r denote the rank of A . If r = 1 , then by passing to the rank-one
ideal the result follows from Lemma 1, so with no loss of generality r > 1 . After a
similarity, we may assume that there exists ρ such that ‖A‖ < ρ < 1 , and then, via
the Jordan Canonical Form, we can assume that

A =

⎡
⎣ α a 0

0 A0 0
0 0 0

⎤
⎦

with respect to a decomposition Cn = (Ce) ⊕ M ⊕ N , where 0 < |α| < ρ , ‖a‖ < ρ ,
‖A0‖ < ρ and A0 is invertible. Then, by topological transitivity, for any y in Cn there
exists Rk in S such that Rke → 1

α y and we may write Rk with respect to the above
decomposition, as

Rk =
[

uk Vk Wk
]

where uk → 1
α y as k → ∞ . Then Sk = RkA has the property that Ske → y and Sk

has the form
Sk =

[
yk Zk 0

]
where yk → y . If the sequence ‖Zk‖ for k = 1, 2, . . . is bounded, we may choose a
convergent subsequence of the Sk converging to some S in S such that Se = y .

We claim that ‖Zk‖ cannot be unbounded. To prove this by contradiction, suppose
it is bounded. Note that

SkA
m =

[
yk Zk 0

]⎡⎣ αm am 0
0 Am

0 0
0 0 0

⎤
⎦ =

[
αmyk ykam + ZkAm

0 0
]

where ‖am‖ < ρm as it is a submatrix of a strict contraction of norm less than ρm .
Applying Lemma 8 to {Zk} and A0 , there exists increasing sequences {ki} and

{mi} such that ‖ZkiA
mi
0 ‖ is in (1, ‖A−1

0 ‖] for all i = 1, 2, . . . . Let Xi = SkiA
mi , then

by construction Xi is bounded, so by passing to a subsequence we may assume that
Xi → X �= 0 . However, clearly αmiyki and ykiami converge to 0 but then, the existence
of X contradicts the minimality of non-zero rank r and so our assumption that ‖Zk‖ is
unbounded was incorrect and the theorem is proven. �



TOPOLOGICALLY TRANSITIVE MATRIX SEMIGROUPS 173

COROLLARY 10. If G is a group in Mn (C) (resp. Mn (R) ), G ∪ {0} is closed
and topologically transitive and there exists an element A of G which is similar to a
strict contraction and has Ae = αe where e is non-zero and α ∈ C (resp. R ), then
G ∪ {0} is transitive.

Proof. This follows from Theorem 9 since given vectors x �= 0 and y �= 0 there
exists G ∈ G with Ge = x and H ∈ G with He = y , but then HG−1x = y . �

THEOREM 11. If S is a closed, topologically transitive semigroup in Mn (C) which
contains no non-zero nilpotents, and contains a nonzero matrix A which is similar to a
strict contraction then S is transitive.

Proof. Since there are no nilpotents in S , by consideration of the JordanCanonical
form, there exists m in N such that Ran(Aj) = Ran(Am) �= {0} and ker Aj = ker Am �=
Cn for all j � m .

If x is a non-zero vector in Cn , by the topological transitivity of the minimal-rank
ideal, there exists X in S of minimal rank such that Xx is not in the kernel of Am .
Then for large enough j , B = AjX is a strict contraction of minimal rank such that
Bx = AjXx �= 0 .

If y is any vector in the range of B (so Bz = y for some z ), then by topological
transitivity there exists Xn in S such that XnBx → z , so BXnBx → y . If BXnB
is bounded we may find a convergent subsequence and so an element S in S with
Sx = y . If BXnB is unbounded, then, applying Lemma 8 (and the comments following
the lemma), can find increasing sequences {ki} and {mi} such that BmiBXliB all have

norm in
[
1, 1

mB

]
. But by passing to subsequences we may assume BjnBXnB → T �= 0

and thus Tx = limBjnBXnBx = lim Bjny = 0 . But we have now constructed a non-zero
matrix T in S with rank below the minimal rank of B which is a contradiction. Thus
we have shown that any non-zero vector in Cn can be mapped onto a vector in the range
of a strict contraction in S by an element of S . Thus we can map any vector x to an
eigenvector (corresponding to a nonzero eigenvalue) of a strict contraction, and then by
Theorem 9 onto any vector, establishing transitivity. �

Even in two spatial dimensions there are non-trivial problems. We begin by
constructing a topologically transitive semigroup of invertibleswhich is closed in M2(R)
but is not transitive.

For a matrix Q with rational entries, define the degree of Q to be

deg (Q) = min {n ∈ N : nQ ∈ M2(Z)}
and note that deg (PQ) � deg (P) · deg (Q) for all P and Q in M2(Q).

THEOREM 12. Let

Q = {Q ∈ M2(Q) : deg (Q) � |det(Q)|}
then S is a closed (discrete) semigroup in M2(R) which is topologically transitive but
not transitive.
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Proof. If P and Q are in Q then

deg (PQ) � deg (P)deg (Q) � |det(P)| |det(Q)| = |det(PQ)|

so Q is a semigroup.
For each k in N , let Qk = {Q ∈ Q : |deg (Q)| = k} . Then each Qk is discrete

and Q =
⋃∞

k=1 Qk , so if {Qn}∞n=1 is a sequence in S with Qn → Q and Q is not in
Q then deg (Qn) → ∞ . But then |det(Qn)| → ∞ so {Qn}∞n=1 does not converge and
hence Q is closed.

The semigroup Q is clearly not transitive since it is countable, but Q∪{0} does act

transitively on Q2 . The vector

[
1
0

]
can be mapped to any non-zero vector

[
q1

q2

]

in Q2 by

[
q1 −nq2

q2 nq1

]
, which will be in Q if n in N is chosen large enough, and

any non-zero vector

[
p1

p2

]
can be mapped to

[
1
0

]
by 1

p2
1+p2

2

[
p1 p2

−np2 np1

]
where

again n can be chosen large enough to ensure this is in Q . Composing these we can

map any non-zero

[
p1

p2

]
to any non-zero

[
q1

q2

]
.

The proof will be complete once we show topological transitivity. To this end, let

x =
[
α
β

]
be a non-zero vector in R2 (by symmetry, with no loss of generality we will

assume α �= 0 , and it is enough to show Q
[
α
1

]
is dense in R2 when α is irrational,

since Q
[
α
0

]
= αQ

[
1
0

]
and for nonzero β , Q

[
α
β

]
= βQ

[
α/β
1

]
.

Let

[
r1

r2

]
be a nonzero vector in Q2 . With no loss of generality assume r1 �= 0

(if not just reverse the role of pn
qn

and pn+1

qn+1
in what follows). If, for each ε > 0 we exhibit

an element Q of Q with

∥∥∥∥Q
[
α
1

]
−
[

r1

r2

]∥∥∥∥ < ε then topological transitivity will be

established. Let pn
qn

and pn+1

qn+1
be consecutive convergents of α (see [4] for information

on convergents and continued fractions) and let

Qn =
[

qn −pn + r1

qn+1 −pn+1 + r2

]
.

Then ∥∥∥∥Qn

[
α
1

]
−
[

r1

r2

]∥∥∥∥ =
∥∥∥∥
[

qnα − pn

qn+1α − pn+1

]∥∥∥∥ <

√
2

qn

due to the approximation properties of convergents (see page 163 of [4]) and

|det(Qn)| = |pnqn+1 − pn+1qn + qnr2 − qn+1r1| .
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Consecutive convergents satisfy pnqn+1 − pn+1qn = (−1)n so

|det(Qn)| � |(−1)n + qnr2 − qn+1r1| � qn+1

∣∣∣∣ qn

qn+1
r2 − r1

∣∣∣∣− 1.

Since qn+1 → ∞ and qn
qn+1

→ 0 we can choose n large enough to guarantee that
√

2
qn

< ε and

qn+1

∣∣∣∣ qn

qn+1
r2 − r1

∣∣∣∣− 1 > deg

[
0 r1

0 r2

]

so Qn is in Q . �

Our final example is of a closed group in Mn(R) which is countable and hence not
transitive and yet, computational evidence suggests is topologically transitive. Let

A =
[

2 0
0 1

2

]

and let

B =
1
2

[
1 −1
1 1

] [
2 0
0 1

2

] [
1 1
−1 1

]
.

THEOREM 13. The group G generated by A and B is free and is a closed subgroup
of SL(2, R) which is discrete in the usual topology on SL(2, R) .

The idea behind the proof of this theorem is quite straighforward. The image of
the unit ball under a word W = w(A, B) is an ellipse whose orientation is determined
mainly by the initial letter in the word W and whose major radius is determined mainly
by the length of the word W . For words beginning with A , the major axis of this
ellipse is very close to the x -axis. For words beginning with A−1 , the major axis is
very close to the y -axis. For words beginning with B , the major axis is very close to
the line y = x , while for words beginning with B−1 , the major axis is very close to
the line y = −x . In addition, the length of the major axis increases exponentially in
relation to the word length (and hence so does the norm). The details of these claims
are in the Lemma which follows. With these facts in hand, consider a sequence Wn in
the group G which converges to some W in M2(R) . The length of the words Wn must
be bounded and eventually all terms must map the unit ball to ellipses with major axis
falling into one of the four cases above. But this implies that eventually all Wn have
the same initial letter, which we may assume, with no loss of generality, is A . Then
consider A−1Wn and repeat the above argument. Since word length is bounded, we
must have that the sequence Wn is eventually constant, which proves discreteness.
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Using Maple, we can plot the orbit of randomly chosen points in the plane under
the above group. When A (or A−1 ) acts on a vector x it moves that vector along
a hyperbola of the form xy = c , and when B (or B−1 ) acts on a vector it moves it
along a hyperbola of the form x2 − y2 = c . All evidence indicates that the group is
topologically transitive. The plot below shows the orbit of the point (1, 2) under all
words in the group of length eight or less.

The image of the unit circle {x : ‖x‖ = 1} under an invertible matrix A−1 is
the ellipse {x : ‖Ax‖ = 1} = {x : 〈A∗Ax, x〉 = 1} and the principal axes of the
ellipse are the eigenvectors of A∗A , lengths of the principal axis of the ellipse are the
eigenvalues of A∗A . These facts and symmetry considerations, alongwith the following
technical lemma, contains the details for the above claim that the image of the unit ball
under a word W = w(A, B) is an ellipse whose orientation is determined mainly by the
initial letter in the word W and whose major radius is determined mainly by the length
of the word W .

Let

Dβ =
[
β 0
0 1

β

]
and Uθ =

[
cosθ − sin θ
sin θ cos θ

]

LEMMA 14. If π
6 � θ � π

3 , α > 2 , β > 4 and B = UθDβU−θ then DαBDα =
Uθ1DγU−θ1 where |θ1| < π

6 and γ �
√

7
2 β .

Proof. Since DαBDα is a positive matrix of determinant 1, it can be written
as Uθ1DγU−θ1 for some choice of γ and θ1 . Computing both sides of DαBDα =
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Uθ1DγU−θ1 and equating entries we obtain that

from the (1, 2) entry : cosθ sin θ
(
β − 1

β

)
= cosθ1 sin θ1

(
γ − 1

γ

)

from the (1, 1) entry : α2

(
β cos2 θ +

1
β

sin2 θ
)

= γ cos2 θ1 +
1
γ

sin2 θ1

from the (2, 2) entry :
1
α2

(
1
β

cos2 θ + β sin2 θ
)

=
1
γ

cos2 θ1 + γ sin2 θ1

Considering the (1, 1) entry minus the (2, 2) entry we see that

cos(2θ1)
(
γ − 1

γ

)
=
(
cos2 θ1 − sin2 θ1

)(
γ − 1

γ

)

= β
(
α2 cos2 θ − 1

α2 sin2 θ
)

+
1
β

(
α2 sin2 θ − 1

α2 cos2 θ
)

� β
(
α2 cos2 θ − 1

α2
sin2 θ

)
� βα2 cos2 θ

� βα2 cos2
(π

3

)
=

βα2

4
while from the (1, 2) entry we see that

sin(2θ1)
(
γ − 1

γ

)
= 2 cosθ1 sin θ1

(
γ − 1

γ

)

= 2 cosθ sin θ
(
β − 1

β

)
= sin(2θ)

(
β − 1

β

)

� sin
(π

3

)
β =

√
3β
2

.

Hence (
γ − 1

γ

)2

= cos2(2θ1)
(
γ − 1

γ

)2

+ sin2(2θ1)
(
γ − 1

γ

)2

� β2

(
α4

16
+

3
4

)
= β2

(
α4 + 12

16

)
Since γ > 1 ,

γ > γ − 1
γ

� β

(√
α4 + 12

4

)

Isolating sin2 θ1 in the (2, 2) entry we see that

sin2 θ1 =
1
γ

(
1
α2

(
1
β

cos2 θ + β sin2 θ
)
− 1

γ
cos2 θ1

)

� 1
γ

1
α2

(
1
β

cos2 θ + β sin2 θ
)

� 1
γ

1
α2

(2β)

� 1
α2

4√
α4 + 12
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Since α � 2 , we obtain that γ �
√

7
2 β and that sin θ1 � 1

4√28
< 1

2 , so θ1 < π
6 ,

and the Lemma is proven. �

REMARK 1. The above example can be generalized as follows. Let Dβ and Uθ
be as above. For n ∈ N , with θ = π

2n and β large enough, one can show similarly to
above that the group generated by{

Dβ , UθDβU−θ , U
2
θDβU

2
−θ , . . . , U

n−1
θ DβU

n−1
−θ
}

is a closed subgroup of SL(2, R) which gives a new representation of the free group on
n letters in SL(2, R) . By permuting the angle θ slightly so that cos2 θ and cos θ sin θ
are rational and choosing β rational as well, we can arrange for this group to be in
SL(2, Q) . Also, this representation has the property that all the generators (and their
inverses) are unitarily equivalent.

With transitivity there is a concept of sharp transitivity. If S is transitive and
the function mapping S → Sx is one-to-one for each non-zero x then we say S is
sharply transitive. For topological transitivity we can use the same definition: a matrix
semigroup S is sharply topologically transitive if S is topologically transitive and the
function mapping S → Sx is one-to-one for each non-zero x .

Closed, sharply transitive groups have been classified in [2] and in [1] sharply
transitive matrix semigroups are classified. Transitive groups (or semigroups) with the
property of sharpness seem to be more tractable. Our final result shows that, at least
in some cases, semigroups which are topologically transitive but not transitive have the
property of sharpness.

LEMMA 15. If G is a closed topologically transitive group in SL(2, R) which is
not sharply topologically transitive then G is transitive.

Proof. Asssume G is not sharply topologically transitive. Then we must have
some non-zero x in R2 such that Sx = Tx for distinct S and T in G . It follows that
Gx = x for some G in G besides the identity. We will show that Gx is the whole
space for this particular x , therefore for every vector because G is a group; this will
show G is transitive. Suppose not. It is not difficult to see that there is a y which is
not a multiple of x and doesn’t belong to Gx . (For, if Gx contains every vector v that
is not a multiple of x , and if t is nonzero, first choose a member S of G with Sx not
a multiple of x and then choose T in G such that Tx is tSx , giving (S−1T)x = tx.
Thus every vector of the form tx is in Gx . If all vectors which are not multiples of
tx are also in Gx then G is transitive and we are done.) Next assume with no loss of
generality that y is perpendicular to x . Write matrices with respect to the basis {x, y} .
Now G has matrix [

1 t
0 1

]
with t not zero, so G contains all matrices

Gk =
[

1 kt
0 1

]
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for all integers k .
Given any z ∈ R2 , by topological transitivity there exists a sequence of matrices

Sn in G such that Snx → z . So the first column of Sn converges to z . However we
can replace this sequence with Tn = SnGkn so that the first column of Tn is the same as
the first column of Sn and the kn are chosen large enough (with plus or minus sign) so
that the inner products (Tny, y) , (i.e, the the southeast entry of the matrix of each Tn )
can be made smaller than t‖z‖ in absolute value. Now det(Tn) = 1 implies that the
northeast entry is also bounded. Thus {Tn} is bounded and we can extract a convergent
subsequence converging to T ∈ G such that Tx = z . �

There are a number of open questions regarding closed topologically transitive
semigroups. We close with just a few:

(1) Is the existence of a single strict contraction in the semigroup enough to yield
transitivity? Our Theorem 11 required the additional condition that there be no
non-zero nilpotents in the semigroup, but this condition may not be necessary.

(2) Is the example given in Theorem 13 topologically transitive?
(3) Is there a deeper general connection between sharpness and lack of transitivity?
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