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ON THE OPERATOR EQUATION AXB + CYD = Z
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(communicated by Leiba Rodman)

Abstract. Suppose two n -tuples of operators Ak and Bk on a Hilbert space are given, and Φ is
the mapping from the set of n -tuples of operators on the Hilbert space into the set of all operators
on the space defined by Φ(X1,X2, . . . , Xn) =

∑n
k=1 AkXkBk . Conditions are given for Φ to be

onto.

1. Introduction

Let H be a Hilbert space and n a positive integer, and let {A1, A2, · · · , An} and
{B1, B2, · · · , Bn} be two fixed n-tuples of operators on H . We consider the mapping
Φ on n-tuples of operators X = {X1, X2, · · · , Xn} defined by

Φ(X) =
n∑

k=1

AkXkBk. (1)

The mapping Φ may be considered on various classes of operators. Let B(H) be
the set of all bounded operators on H , let K(H) be the compact operators, let T(H)
be the trace class, and let Cp(H) be the Schatten p-class for p � 1 . When there is only
one Hilbert space under consideration we will write simply B for B(H) , etc. Thus, for
example, T(H) = T = C1. We write B(n) for the n-fold direct sum of B with itself.

We consider the question of when Φ is onto. It is immediate that for this to happen
the matrix ( A1 · · · An ) must map the n -fold direct sum of H with itself onto H .
By taking adjoints, one sees that a second necessary condition is that ( B∗

1 · · · B∗
n )

must be onto. That more is necessary even in the case n = 2 may be seen by taking a
nontrivial projection P and putting A1 = B1 = P and A2 = B2 = 1 − P . A complete
answer to the question is obtained in the case when n = 2 , and partial results are
obtained in the general case.

Restricting all the X ’s to be the same operator yields the case of elementary
operators, which have been much studied (see [2]). The particular case when Φ(X) =
AX − XB is the familiar Rosenblum operator (see [1, 7]).
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2. The simplest case

The very special case that motivated this study is the following.

THEOREM 2.1. Let X be a Banach space, and suppose A and B are bounded
operators on X . If the mapping Φ(X, Y) = AX + YB from B(X)×B(X) into B(X) is
onto and B is not injective, then A maps X onto itself.

Proof. Suppose Bf = 0 for some nonzero f in X . Then, for every g in X , there
are operators X and Y such that (AX + YB)f = g . Since Bf = 0 , g is in the range
of A . �

COROLLARY 2.2. If X is finite dimensional, then the map Φ(X, Y) = AX + YB is
onto if and only if at least one of the maps X �→ AX or Y �→ YB is onto.

Proof. Sufficiency is immediate. If Φ is onto, then the theorem shows that at least
one of A and B is invertible, and hence one of X �→ AX or Y �→ YB is onto. �

The corollary holds as well for operators on Hilbert space.

THEOREM 2.3. Suppose H is a Hilbert space. Then the map Φ(X, Y) = AX +YB
from B(H) × B(H) into B(H) is surjective if and only if at least one of the maps
X �→ AX or Y �→ YB is surjective.

Proof. Again we need only show sufficiency, so suppose Φ is onto. If B has
nontrivial nullspace, then Theorem 2.1 implies the conclusion. By taking adjoints, we
see that the same is true if A∗ has a nontrivial nullspace. To prove the theorem it must
be shown that B is bounded below or A is onto. Suppose neither is the case. Then
there exists a sequence of unit vectors {f n} such that {Bf n} converges to zero. We may
assume that {f n} is orthonormal (see [5] or [6], Lemma 2.5). Similarly there exists an
orthonormal sequence {gn} such that {A∗gn} converges to zero. If C is any operator
of the form AX + YB , then the sequence of inner products 〈Cfn, gn〉 converges to
zero. But there exists a partial isometry V such that Vf n = gn for each n , and thus
〈Vf n, gn〉 = 1 for each n . Hence there are no operators X and Y such that V has the
form AX + YB . �

Question. Is the statement of the above result false if H is only assumed to be a Banach
space?

3. The case of two summands

The above ideas may be modified to give a complete answer to the original question
in the case where n = 2 . For this we need to recall some ideas concerning duality.

LEMMA 3.1. When Φ acts as a map from K(n) into K , then the adjoint Φ� maps
T into T(n) and is given by

Φ�(T) = (B1TA1, B2TA2, · · · , BnTAn).
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Furthermore, Φ�� maps B(n) into B , and is given by the same formula as was Φ in
equation (1).

Proof. The assertion concerning Φ� follows from the standard trace relation:

trΦ(X)T = tr
n∑

k=1

XkBkTAk.

For X in K(n),Φ��(X) = Φ(X) , and K(n) is weak* dense in B(n) . It follows from
weak* continuity of the map Y �→ AYB on B for fixed A and B that the action of Φ
on B(n) is determined by equation (1). �

LEMMA 3.2. When Φ acts as a map from C(n)
p into Cp for 1 � p < ∞ , then Φ�

maps Cq into C(n)
q , where q is the conjugate index and C∞ = B , and Φ� is given by

Φ�(T) = (B1TA1, B2TA2, · · · , BnTAn).

The next lemma is elementary.

LEMMA 3.3. Let Ψ be an operator from one Banach space to another.
1. Ψ is onto precisely when its adjoint is bounded below.
2. Ψ is onto if and only if Ψ�� is onto.

An immediate consequence of Lemma 3.3 is the following.

PROPOSITION 3.4. The operator Φ maps K(n) onto K if and only if it maps B(n)

onto B .

THEOREM 3.5. Suppose Φ acts on K(2) and both ( A1 A2 ) and ( B∗
1 B∗

2 )
map H⊕H onto H . Then Φ is onto precisely when both operators in at least one of
the pairs {A1, B∗

1}, {A2, B∗
2}, {A1, A2} or {B∗

1 , B
∗
2} are onto.

Proof. Suppose A1 and B∗
1 are onto. Then A1 has a right inverse, say C1, and B1

has a left inverse, say D1. Then it is easy to see that the map X �→ A1XB1 is onto, for
the image of C1XD1 is then X . Consequently Φ is onto. The case where A2 and B∗

2
are onto is essentially the same. Suppose A1 and A2 are onto. Then each of them has
a right inverse, say C1 and C2 . Furthermore, since ( B∗

1 B∗
2 ) is onto, there exist D1

and D2 such that D1B1 + D2B2 = 1 . Hence if K is a given compact operator, then we
can put X1 = C1KD1 and X2 = C2KD2 to produce a compact pair X = {X1, X2} such
that Φ(X) = K . Thus Φ is onto in this case also, and the final case may be handled
similarly.

For the converse, suppose Φ is onto. Then Φ� is bounded below; i.e., there exists
ε > 0 such that ‖Φ�(T)‖1 � ε‖T‖1 for every T in C1. Apply Φ� to T = g ⊗ f
where f and g are unit vectors, and observe that the last inequality becomes

max{‖A∗
1 f ‖ ‖B1g‖, ‖A∗

2 f ‖ ‖B2g‖} � ε. (2)

We consider the two cases where A∗
1 is and is not bounded below. If A∗

1 is bounded
below and B1 is also, then both A1 and B∗

1 are onto. Suppose then that A∗
1 is bounded
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below, but B1 isn’t. It then follows from inequality (2) that A∗
2 is also bounded below,

and so each of A1 and A2 is onto. Thus we need only consider the second case where
A∗

1 is not bounded below. In this case (2) implies that B2 is bounded below. Either A∗
2

is also bounded below, in which case we are done, or A∗
2 is not. In the latter case (2)

implies that B1 is bounded below, so the result follows in this case also. �

COROLLARY 3.6. Suppose Φ acts on B(2) and both ( A1 A2 ) and ( B∗
1 B∗

2 )
are onto. Then Φ is onto precisely when both operators in at least one of the pairs
{A1, B∗

1}, {A2, B∗
2}, {A1, A2} or {B∗

1 , B
∗
2} are onto.

Proof. This follows from Lemma 3.1, Lemma 3.3, and Theorem 3.5. �

Theorem 2.3 is an immediate corollary of the above Corollary.

COROLLARY 3.7. Suppose Φ acts on C(2)
p for 1 < p < ∞ and both ( A1 A2 )

and ( B∗
1 B∗

2 ) are onto. Then Φ is onto precisely when both operators in at least one
of the pairs {A1, B∗

1}, {A2, B∗
2}, {A1, A2} or {B∗

1 , B
∗
2} are onto.

Proof. The proof of sufficiency is the same as that of the theorem. The proof of
necessity differs only in that when Φ acts on Cp and is onto, then ‖Φ�(T)‖q � ε‖T‖q

for some ε > 0 . The rest of the proof is exactly the same. �

In [3] it is shown that the operator defined by φ(X) = AX − XB is onto precisely
when the right spectrum of A is disjoint from the left spectrum of B . Theorem 2.3
may be interpreted as saying that the operator defined by φ(X1, X2) = AX1 − X2B is
onto precisely when 0 is not in the intersection of the right spectrum of A and the left
spectrum of B .

4. Three or more summands

We now consider the case of three summands:

Φ(X1, X2, X3) = A1X1B1 + A2X2B2 + A3X3B3, (3)

where we assume ( A1 A2 A3 ) and ( B∗
1 B∗

2 B∗
3 ) are both onto. Here are five

conditions each of which implies Φ is onto.
1. Each of A1, A2 and A3 is onto.
2. Each of A1, A2 and ( B∗

1 B∗
2 ) is onto.

3. Each of A1 and B∗
1 is onto.

4. Each of ( A1 A2 ) and B∗
1 and B∗

2 is onto.
5. Each of B∗

1 , B
∗
2 and B∗

3 is onto.
There are others which differ from these in a trivial way by a permutation of the indices.
There are also others that differ from these in a nontrivial way.

We will give two examples not covered by the above conditions. In the first Φ is
onto; in the second it is not.
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EXAMPLE 4.1. Fix three nonzero subspaces that are pairwise orthogonal and sum
to H, and let Pk be the projection onto the kth of these subspaces. Put Ak = Bk =
1− Pk. It is immediate that none of the five conditions above is satisfied. Also for each
pair of distinct indices j, k it is clear that ( Aj Ak ) and ( B∗

j B∗
k ) are onto. To see

that Φ is onto in this case write each operator on H as a 3 × 3 matrix relative to the
decomposition

H = P1H + P2H + P3H.

Then the Pk are diagonalmatriceswith two identities and one zero on themain diagonal.
It is easy to see that Φ(X1, X2, X3) is a 3 × 3 matrix in which each of the nine entries
can be freely specified.

EXAMPLE 4.2. Decompose H into a direct sum of two infinite dimensional

subspaces and let A1 = B1 =
[ 1 0

0 0

]
, et A2 = B2 =

[ 0 0
0 1

]
, and let A3 = B3 =

[
1
2

1
2

1
2

1
2

]
.

It may be shown that this example has the same properties as the last in that none of
the five conditions above is satisfied and for each pair of distinct indices j, k each of
( Aj Ak ) and ( B∗

j B∗
k ) is onto. However a calculation shows for each operator X

on H that A3XB3 has all four entries the same, and therefore it follows that Φ cannot
be onto.

We show that if Φ is onto then a related operator in which the A ’s and B ’s are all
projections is also onto. We first show that the A ’s and B ’s can be replaced by positive
operators without changing the range. For an operator A , let Ran A be its range.

THEOREM 4.1. Suppose A1, · · · , An, B1, · · · , Bn are operators on H and

Φ(X1, X2, · · · , Xn) =
n∑

k=1

AkXkBk.

Suppose in addition A′
1, · · · , A′

n, B
′
1, · · · , B′

n are operators on H and Φ′ is defined
analogously to Φ using these operators. If RanA′

i ⊃ Ran Ai and Ran(B′
i)
∗ ⊃ Ran(Bi)∗

for 1 � i � n , then RanΦ′ ⊃ RanΦ .

Proof. For operators S and T , Ran S ⊂ Ran T is equivalent to the existence of
an operator U such that S = TU (see [4])), and consequently Ran S∗ ⊂ RanT∗ is
equivalent to S = V∗T for some operator V . Thus the hypothesis on the A ’s and B ’s
imply the existence of U1, . . . , Un, V1, . . . , Vn such that A′

iUi = Ai and V∗
i B′

i = Bi for
1 � i � n . Hence

Φ(X1, . . . , Xn) =
n∑

i=1

A′
iUiXiV

∗
i B′

i,

which shows that RanΦ ⊂ RanΦ′ . �

COROLLARY 4.2. If RanAi = Ran A′
i and Ran B∗

i = Ran(B′
i)
∗ for 1 � i � n ,

then RanΦ = RanΦ′ .
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Proof. Two applications of the Theorem imply the Corollary. �

COROLLARY 4.3. If

Φ(X1, X2, · · · , Xn) =
n∑

k=1

AkXkBk

for given operators A1, · · · , An, B1, · · · , Bn on H , then there are positive operators
P1, · · · , Pn, Q1, . . . , Qn on H such that for each i the operators Ai and Pi have the
same range, B∗

i and Qi have the same range, and the operator Ψ defined by

Ψ(X1, X2, · · · , Xn) =
n∑

k=1

PkXkQk

has the same range as Φ .

Proof. Let Ai and B∗
i have polar decompositions Ai = PiUi and B∗

i = QiVi

respectively for 1 � i � n . Then RanAi = Ran Pi and Ran B∗
i = Ran Qi for

1 � i � n , so the result follows from the preceding Corollary. �

THEOREM 4.4. Suppose A1, · · · , An, B1, · · · , Bn are all operators on H and Φ ,
defined by

Φ(X1, X2, · · · , Xn) =
n∑

k=1

AkXkBk,

is onto. Then there are projections P1, . . . , Pn, Q1, . . . , Qn such that the range of each
Pk is included in that of the corresponding Ak , the range of each Qk is included in that
of the corresponding B∗

k , and the operator Ψ defined by

Ψ(X1, X2, · · · , Xn) =
n∑

k=1

PkXkQk

is onto.

Proof. By Corollary 4.3, we may assume that the Ak and Bk are all positive
operators. Suppose Φ is onto. The set of surjective operators on a Banach space is
open in the norm topology, since an operator is surjective if and only if its adjoint is
bounded below, and the set of operators that are bounded below is easily seen to be
open. Therefore if each Ak and Bk is given a small perturbation, then the operator that
results from Φ is also onto. Subtract from each Ak an operator of the form AkEk ,
where Ek is a spectral projection of Ak such that ‖ AkEk ‖< ε for a suitably small
positive ε . Perturb the Bk similarly. The ranges of the perturbed operators are then
included in the ranges of the original ones. Thus we may assume that each Ak and each
Bk has closed range.

Let Pk and Qk be the projections on the ranges of Ak and Bk respectively. The
assertion then follows from Corollary 4.2. �
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The following proposition establishes a necessary condition for the operator Φ of
equation (1) to be onto. We need the following notation: given operators A1, · · · , An ,
for each set of indices J ⊂ {1, · · · , n} let AJ be the operator determined by the row
matrix having entries Aj for all j ∈ J . That is, if J = {j1, j2, · · · , jm}, then

AJ = ( Aj1 Aj2 · · · Ajm ) .

Also, let
A�

J = ( A∗
j1 A∗

j2 · · · A∗
jm ) .

If J = ∅, then let AJ be the zero operator.

PROPOSITION 4.5. Suppose Φ is defined as in equation (1), and Φ is onto. Let
J = {j1, j2, · · · , jm} be any set of indices, and let K = {k1, k2, · · · , kp} be the comple-
mentary set of indices, so J ∩ K = ∅ and J ∪ K = {1, 2, · · · , n}. Then AJ or B�

K is
onto.

Proof. According to Lemma 3.3, since Φ is onto, Φ� is bounded below. Applying
Lemma 3.2 to T = f ⊗ g with f and g unit vectors, we see that there is an ε > 0
such that

max{‖A∗
1g‖‖B1f ‖, ‖A∗

2g‖‖B2f ‖, · · · , ‖A∗
ng‖‖Bnf ‖} � ε. (4)

If AJ is not onto, then A∗
J is not bounded below, and a unit vector g can be chosen to

make A∗
J g arbitrarily small. But then (4) implies that max{‖Bkf ‖ : k ∈ K} > δ for

some δ > 0 and all unit vectors f . This implies B�
K is onto. �

We prove sufficiency of the above condition only in the case where the Ak ’s
and Bk ’s are commuting sets of projections. The projection hypothesis can certainly
be weakened, but Example 4.2 shows that the commutativity hypothesis cannot be
removed.

THEOREM 4.6. Suppose {P1, P2, . . . , Pn} and {Q1, Q2, . . . , Qn} are two sets of
commuting projections and

Φ(X1, X2, . . . , Xn) =
n∑

i=1

PiXiQi.

Then Φ is onto precisely when for each subset J of {1, 2, . . . , n} , if K is the comple-
mentary set of indices, then PJ or QK is onto.

Proof. Only sufficiency remains to be established. To facilitate an induction
argumentwe prove a slight generalization of the theorem where the Pk ’s are projections
on a Hilbert space H and the Qk ’s are projections on a Hilbert space K and the Xk are
operators from K to H .

In the case where n = 1 the hypothesis implies both P1 and Q1 are the identity
operator, and the assertion is trivial in this case.

Suppose inductively that the proposition is true when there are n−1 projections in
each family and {P1, . . . , Qn} and {Q1, . . . , Qn} satisfying the hypothesis are given.
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The case where both P1 and Q1 are the identity is again trivial, so consider the
case where P1 = 1 and Q1 is a proper projection. Then for an arbitrary operator Y
from K to H ,

Y = P1YQ1 + Y(1 − Q1).

The hypothesis implies both ( P2 . . . Pn ) and ( Q1 . . . Qn ) are onto. Let K′ =
(1 − Q1)K and Q′

k = (1 − Q1)Qk for 2 � k � n . Then the induction hypothesis
implies that Φ′ defined by

Φ′(Z2, . . . , Zn) =
n∑

k=2

PkZkQ
′
k

is onto. Thus there are operators Zk from K′ to H such that Φ′(Z2, . . . , Zn) =
Y(1 − Q1) . Taking X1 = Y and Xk = Zk(1 − Q1) for 2 � k � n shows that Y is in
the range of Φ , so Φ is onto in this case. The case of P1 proper and Q1 = 1 is similar.

Finally suppose both P1 and Q1 are proper projections, so that both ( P2 . . . Pn )
and ( Q2 . . . Qn ) are onto. For an arbitrary operator Y from K into H observe

Y = P1YQ1 + (1 − P1)Y + P1Y(1 − Q1). (5)

It must be shown that the last two terms have the form
∑n

k=2 PkXkQk . We separately
consider each of the terms.

For (1 − P1)Y consider the projections P′
k = Pk(1 − P1) for 2 � k � n on

H′ = (1 − P1)H and Q2, . . . , Qn on K . For operators Z2, . . . , Zn from K to H′ let

Φ1(Z2, . . . , Zn) =
n∑

k=2

P′
kZkQk, (6)

so Φ1(Z2, . . . , Zn) = Φ(0, (1 − P1)Z2, . . . , (1 − P1)Zn) . Suppose J ⊂ {2, . . . , n} and
P′

J is not onto H′ . Put J′ = {1} ∪ J , and observe that PJ′ cannot be onto H . Thus
QK is onto where

K = {1, . . . , n} \ J′ = {2, . . . , n} \ J.

Thus the condition of the theorem is satisfied by the projections P′
k and Qk for 2 �

k � n , and, by induction, Φ1 is onto. Hence (1 − P1)Y is in the range of Φ .
For P1Y(1−Q1) consider K′ = (1−Q1)K and Q′

k = (1−Q1)Qk for 2 � k � n .
For operators W2, . . . , Wn from K′ into H define

Φ2(W2, . . . , Wn) =
n∑

k=2

PkWkQ
′
k.

Suppose J ⊂ {2, . . . , n} and PJ is not onto H . Put K = {2, . . . , n} \ J and
K′ = {1} ∪ K . Then QK′ is onto K , and it follows that Q′

K is onto K′ . By
induction, Φ2 is onto, and therefore P1Y(1−Q1) = Φ2(W2, . . . , Wn) for some choice
of W2, . . . , Wn . Thus

P1Y(1 − Q1) = Φ(0, W2(1 − Q1), . . . , Wn(1 − Q1)),
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and, assembling all the pieces, we see that

Y = Φ(Y, (1 − P1)Z2 + W2(1 − Q1), . . . , (1 − P1)Zn + Wn(1 − Q1)).

Hence Φ is onto. �
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