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ABELIAN SELF-COMMUTATORS IN FINITE FACTORS
GABRIEL NAGY

(communicated by Hari Berkovici)

Abstract. An abelian self-commutator in a C*-algebra A is an element of the form A =
X*X — XX*, with X € A, such that X*X and XX* commute. It is shown that, given a finite
AW#*-factor A, there exists another finite AW *-factor M of same type as A, that contains .4
as an AW*-subfactor, such that any self-adjoint element X € M of quasitrace zero is an abelian
self-commutator in M .

Introduction

According to the Murray-von Neumann classification, finite von Neumann factors
are either of type I, , or of type II; . For the non-expert, the easiest way to understand
this classification is by accepting the famous result of Murray and von Neumann (see
[6]) which states that every finite von Neumann factor M possesses a unique state-
trace Toq . Upon accepting this result, the type of M is decided by so-called dimension
range: Dy = {Tam(P) : P projectionin M} as follows. If Dy is finite, then M
is of type I, (more explicitly, in this case D¢ = {& : k = 0,1,...,n} for some
n € N, and M ~ Mat,(C) - the algebra of n x n matrices). If Dx is infinite,
then M is of type II;, and in fact one has Dpyq = [0,1]. From this point of view,
the factors of type II; are the ones that are interesting, one reason being the fact that,
although all factors of type II; have the same dimension range, there are uncountably
many non-isomorphic ones (by some celebrated results of McDuff of Connes).

In this paper we deal with the problem of characterizing the self-adjoint elements
of trace zero, in terms of simpler ones. We wish to carry this investigation in a “Hilbert-
space-free” framework, so instead of von Neumann factors, we are going to work within
the category of AW*-algebras. Such objects were introduced in the 1950°s by Kaplansky
([4]) in an attempt to formalize the theory of von Neumann algebras without any use
of pre-duals. Recall that A unital C*-algebra A is called an AW*-algebra, if for every
non-empty set X C A, the left annihilator set L(X) = {A € A : AX =0, VX € X}
is the principal right ideal generated by a projection P € A, thatis, L(X) = AP.

Much of the theory — based on the geometry of projections — works for AW*-
algebras exactly as in the von Neumann case, and one can classify the finite AW*-factors
into the types I, and II;, exactly as above, but using the following alternative result:
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any finite AW*-factor A possesses a unique normalized quasitrace q 4. Recall that a
quasitrace on a C*-algebra 2 is a map g : 2 — C with the following properties:

i) if A, B € 2 are self-adjoint, then q(A + iB) = q(A) + iq(B);
(i) g(AA*) = q(A*A) >0, VA e U,
(iii) g is linear on all abelian C*-subalgebras of 2,
(iv) there is amap ¢, : Mat(A) — C with properties (i)-(iii), such that

qz({g %D — 4(A), VA €.

(The condition that ¢ is normalized means that g(I) = 1.)

With this terminology, the dimension range of a finite AW*-factor is the set D4 =
{ga(P) : P projectionin A}, and the classification into the two types is exactly as
above. As in the case of von Neumann factors, one can show that the AW*-factors of
type I, are again the matrix algebras Mat,(C), n € N. The type II; case however is
still mysterious. In fact, a longstanding problem in the theory of AW*-algebras is the
following:

KAPLANSKY’S CONIECTURE. Every AW*-factor of type 1, is a von Neumann
factor.

An equivalent formulation states that: if A is an AW*-factor of type 11, , then the
quasitrace q 4 is linear (so it is in fact a trace). It is well known (see [3] for example)
that Kaplansky’s Conjecture implies:

QUASITRACE CONJECTURE. Quasitraces (on arbitrary C*-algebras) are traces.

A remarkable result of Haagerup ([3]) states that quasitraces on exact C*-algebras
are traces, so if A is an AW*-factor of type II; , generated (as an AW*-algebra) by an
exact C*-algebra, then A is a von Neumann algebra.

It is straightforward that if ¢ is a quasitrace on some C*-algebra 2, and A € 2 is
some element that can be written as A = XX* — X*X for some X € 2, such that XX*
and X*X commute, then g(A) = 0. In this paper we are going to take a closer look at
such A’s, which will be referred to as abelian self-commutators.

Suppose now A is a finite AW*-factor, which is contained as an AW*-subalgebra
in a finite AW*-factor 3. Due to the uniqueness of the quasitrace, for A € A, one has
the equivalence g4(A) = 0 < gp(A) = 0, so a sufficient condition for g4(A) = 0
is that A is an abelian self-commutator in B. In this paper we prove the converse,
namely: If A is a finite AW*-factor, and A € A is a self-adjoint element of quasitrace
zero, then there exists a finite AW*-factor M, that contains A as an AW*-subfactor,
such that A is an abelian self-commutator in M . Moreover, M can be chosen such
that it is of same type as A, and every self-adjoint element X € M of quasitrace zero
is an abelian self commutator in M . Specifically, in the type I,, , M is A itself, and
in the type II; case, M is an ultraproduct.

The paper is organized as follows. In Section 1 we introduce our notations, and we
recall several standard results from the literature, and in Section 2 we prove the main
results.
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1. Prelimiaries

NOTATIONS. Let A be a unital C*-algebra.

A. We denote by Ay, the real linear space of self-adjoint elements. We denote
by U(A) the group of unitaries in .A. We denote by P(A) the collection of
projections in A, thatis, P(A) = {P € Ay, : P=P?}.

B. Two elements A, B € A are said to be unitarily equivalent in A, in which case
we write A = B, if there exists U € U(A) such that B = UAU*.

C. Two elements A,B € A are said to be orthogonal, in which case we write
A L B, ift AB = BA = AB* = B*A = 0. (Using the Fuglede-Putnam
Theorem, in the case when one of the two is normal, the above condition reduces
to: AB=BA =0. If both A and B are normal, one only needs AB =0.) A
collection (A;);e; C A is said to be orthogonal, if A; L A;, Vi #j.

Finite AW*-factors have several interesting features, contained in the following
well-known result (stated without proof).

PROPOSITION 1.1. Assume A is a finite AW*-factor.
A. For any element X € A, one has: XX* ~ X*X.
B. If X1,X5,Y,,Y, € A are suchthat X, = Xo, Y1 = Yy, and X; L Yy, k=1,2,
then X1 + Y1 =X+ Y>.

DEFINITION. Let A be a unital C*-algebra. An element A € Ay, is called an
abelian self-commutator, if there exists X € A, such that
o (XX*)(X*X) = (X*X)(XX™*);
e A=XX*-X*X.

REMARK 1.1. It is obvious that if A € A, is an abelian self-commutator, then
q(A) = 0, for any quasitrace g on A.

Abelian self-commutators in finite AW*-factors can be characterized as follows.

PROPOSITION 1.2. Let A be a finite AW*-factor. For an element A € As,, the
following are equivalent:
(i) A is an abelian self-commutatorin A;
(ii) there exists A1,Ay € Ay, with:

L] A1A2 :AzAl;
o A=A —Ay;
L] A1 %Az.

Proof. The implication (i) = (ii) is trivial by Proposition 1.1.

Conversely, assume A; and A, are as in (ii), and let U € U(A) be such that
UA\U* = A,. Choose a real number ¢ > 0, such that A; +#/ > 0 (for example
t = ||A1]|), and define the element X = (A; + ¢[)!/2U* . Notice that XX* = A; + I,
and X*X = A, +1I,s0 XX* and X*X commute. Now we are done, since XX* — X* =
Al—Ay=A. O
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NOTATION. In [3] Haagerup shows that, given a normalized quasitrace ¢ on a unital
C*-algebra A, the map d, : A x A — [0, 00), given by

dy(X,Y) = q((X = V)" (X - Y))3, VX,Y € A,

defines a metric. We refer to this metric as the Haagerup “ 5 -metric” associated with
q . Using the inequality |q(X)| < 2||X]||, one also has the inequality

dy(X,Y) < V2IX - Y|}, VX, Y € A (1)

If A is a finite AW*-factor, we denote by g4 the (unique) normalized quasitrace on
A, and we denote by d 4 the Haagerup * 5 -metric” associated with g4 .

We now concentrate on some issues that deal with the problem of “enlarging” a
finite AW*-factor to a “nicer” one. Recall that, given an AW*-algebra B, a subset
A C B is declared an AW*-subalgebra of B, if it has the following properties:

(i) A is a C*-subalgebraof B;

(i) s(A) e A, VA € Ay

(111) if (Pi)iel C P(.A) , then \/iel PieA.
(In condition (ii) the projection s(A) is the supportof A in B. In (iii) the supremum is
computedin B.) Inthis case it is pretty clear that A is an AW*-algebra on its own, with
unit 14 = \/,c 4, S(A) . Below we take a look at the converse statement, namely at the
question whether a C*-subalgebra 4 of an AW*-algebra .4, which is an AW *-algebra
on its own, is in fact an AW*-subalgebra of 3. We are going to restrict ourselves with
the factor case, and for this purpose we introduce the following terminology.

DEFINITION. Let B be an AW*-factor. An AW*-subalgebra A C B is called an
AW*-subfactor of B, if A is a factor, and A > I — the unitin B.

PROPOSITION 1.3. Let A and B be finite AW*-factors. If ©: A — B be a unital
(i.e. (I) =1) x-homomorphism, then w(A) is a AW*-subfactor of B.

Proof. Denote for simplicity 7(.A) by M. Since A is simple, 7 is injective, so
M is *-isomorphic to .4. Among other things, this shows that M is a factor, which
contains the unit / of B. We now proceed to check the two key conditions (ii) and (iii)
that ensure that M is an AW*-subalgebrain B.

(ii). Start with some element M € M, , writtenas M = 7(A), forsome A € Ay,
and let us show that s(M) — the support of M in B — in fact belongs to M. This will
be the result of the following:

CLAIM 1. One has the equality s(M) = 7(s(A)), where s(A) denotes the support
of Ain A.

Denote the projection 7(s(A)) € P(M) by P. Firstof all, since (I—s(A))A =0
(in A),wehave (I — P)M =0 in B,so (I — P) L s(M),ie. s(M) > P. Secondly,
since gg o : A — C is a quasitrace, we must have the equality

gBO T =qA. (2)
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In particular the projection P has dimension Dg(P) = D 4 (s(A)) . We know however
that for a self-adjoint element X in a finite AW*-factor with quasitrace g, one has the
equality g(s(X)) = u*(R\ {0}), where u* is the scalar spectral measure, defined
implicitly (using Riesz’ Theorem) by

[raw =aro0), v e .
R
So in our case we have the equalities

Di(s(M)) = ug (R\{0}), (3)
Di(P) = Da(s(4)) = ua(R\ {0}), (4)

where the subscripts indicate the ambient AW *-factor. Since 7 is a * -homomorphism,
one has the equality 7z(f(A)) =f (M), Vf € Co(R), and then by (2) we get

/Rf dult = qs(r (M) = (g5 0 1) (F(A)) = qa(f (4)) = /Rf du, Vf € ColR).

In particular we have the equality ujf = % , and then (3) and (4) will force D (s(M)) =
Dp(P). Since P > s(M), the equality of dimensions will force P = s(M).

(iii). Start with a collection of projections (P;)ic; C P(M), let P =\/,., P; (in
B), and let us prove that P € M. Write each P; = m(Q;), with Q; € P(A), and let
Q =V, Qi (in A). The desired conclusion will result from the following.

CLAM 2. P=m(Q).

Denote by F the collection of all finite subsets of 7, which becomes a directed
set with inclusion, and define the nets Pr = \/,. P (in B) and Qr = \/,. Q; (in
A). On the one hand, if we consider the element Xr = » ... Q;, then Qr = s(Xr)
(in A), and Pr = s(X_;c; Pi) = s(n(Xr)) (in B), so by Claim 1, we have the
equality Pr = m(Qr). On the other hand, we have Q = \/;.»QF (in A), with the
net (Qr)rer increasing, so we get the equality D 4(Q) = limpezD 4(QOF) . Arguing
the same way (in B), and using the equalities Pr = 7(QF) , we get

D5(P) = lim D (Pr) = }iGH}DB(ﬂ(QF)) = lim Da(Qr) = Da(Q) = Di(7(Q)).
Finally, since [I - n(Q)]P,- = n([[ - Q]Q,-) = 0, Vi € I, we get the inequality
n(Q) > P, and then the equality Dg(P) = D(n(Q)) will force P = n(Q). O

COMMENT. In the above proof we employed an argument based on the following
property of the dimension function D on a finite AW*-factor A :

(L) Ifanet (Py)yen C P(A) is increasing, then D( Viea P,l) = limyecp D(P)).
The literature ([1],[4]) often mentions a different feature: the complete additivity
(C.A) If (Ei)ier C P(A) is an orthogonal family, then D(\/,c; Ei) = > ;c; D(E;).
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To prove property (L) one can argue as follows. Let P = \/, _, Py, so that D(P) >
D(P;), VA € A. In particular if we take ¢ = limyep D(P;) (which exists by
monotonicity), we get D(P) > ¢. To prove that in fact we have D(P) = ¢, we
construct a sequence o < 0O < ... in A, such that lim,_,., D(Py,) = ¢, we
consider the projection Q = \/, .y Py, < P, and we show first that D(Q) = ¢,
then Q = P. The equality D(Q) = ¢ follows from (C.A.) since now we can write
Q =Py, V.2 [Poy., — Po,) with all projections orthogonal, so we get

D(Q) :D(Pal) +ZD(P05)1+1 _P(Xn)

n=1

= D(Py,) + i [D(Pg,.,) — D(Pg,)] = lim D(Py,) = L.
n=1

n—oo

To prove the equality Q = P, we fix for the moment A € A, and integer n > 1, and
some U € A with u > A and u > o, , and we observe that, using the Parallelogram
Law, we have:

P, =Py NQ < P; — Py NPq, = P, V Py, —Pgy, <Py —Pg,,
so applying the dimension function we get
D(P, —PyL N Q) gD(PM*Pan) :D(PM)*D(P%) <{=D(Pg,).

Since the inequality D(P) — Py A Q) < £ — D(Py,) holds for arbitrary n € N and
A € A, taking limit (as n — o0) yields D(P, — P, A Q) = 0, which in turn forces
P), = P, A Q, which means that P, < Q. Since this is true for all A € A, it will force
Q > P,sowe musthave Q =P.

We now recall the ultraproduct construction of finite AW *-factors, discussed for
example in [2] and [3].

NOTATIONS. Let A = (A,).en be a sequence of finite AW*-factors, and let
qn : Ay, — C denote the (unique) normalized quasitrace on A,. One considers the
finite AW *-algebra

A = {(Xﬂ)nGN S H-An - sup HXnH < OO}
neN neN

Given a free ultrafilter &/ on N, one defines the quasitrace 7, : A* — C by

Ty(x) = lig{nq,,(X,,)7 Vx = (Xu)nen € A%.

Next one considers the norm-closed ideal
Ju={xeA™ : y(x*x) = 0}.

It turns out that quotient C*-algebra Ayy = A°°/Jy; becomes a finite AW*-factor.
Moreover, its (unique) normalized quasitrace qa,, is defined implicitly by ga,, oIl =
Ty, where Iy, : A — Ay denotes the quotient * -homomorphism.
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The finite AW*-factor Ay, is referred to as the U -ultraproduct of the sequence
A= (-An)HGN .

REMARKS 1.2. Let A = (A,),en be a sequence of finite factors.
A. With the notations above, if x = (X;,)nen, ¥ = (Yn)nen € A are elements that
satisfy the condition limy,d 4,(X,, ¥,) = 0, then ITy(x) = ITy(y) in Ay . This
is trivial, since the given condition forces

lizf{nq-An((Xn —Y)" (X, — Y”)) =0,

ie. x—yeJy.

B. For x = (X,),en € A, one has the inequality: |ITy(x)|| < limy || X,||. To
prove this inequality we start off by denoting limy, ||X,|| by ¢, and we observe
that given any € > 0, the set

Us={neN:l—e<|X,|| <l+¢e}
belongs to U, so if we define the sequence x; = (X%),en by

XE — X, ifné& U
"1 0 ifrneU;

we clearly have limy, || X%|| = 0. In particular, by part A, we have ITy(x) =
ITy(x — x;). Since ||X, — X5|| < £+ €, Vn € N, it follows that

M (x)[| = [Tee(x — xe)[| < £+ e,

and since the inequality ||TT;¢(x)|| < ¢+ € holds forall € > 0, it follows that we
indeed have ||TTy(x)]| < £.

EXAMPLE 1.1. Start with a finite AW*-factor A of type II; and a free ultrafilter
U on N. Let Ay, denote the ultraproduct of the constant sequence A, = .A. For every
X e Alet I'(X) = (Xu)nen € A™ bethe constant sequence: X, = X . Itis obvious that
I': A — A isaunital x-homomorphism, so the composition Ay; = ITyol" : A — Ay
is again a unital *-homomorphism. Using Proposition 2.1 it follows that Az(.A) is an
AW?*-subfactor in Ay, .

Moreover, if B is some finite AW*-factor, and @ : B — A is some unital *-
homomorphism, then the *-homomorphism 7 = Ay o w : B — Ay gives rise to an
AW*-subfactor m(B) of Ay.

2. Main Results

We start off with the analysis of the type I, situation, i.e. the algebras of the form
Mat, (C) —the n x n complex matrices. To make the exposition a little easier, we are
going to use the un-normalized trace 7 : Mat,(C) — C with 7(I,) = n.

The main result in the type g, — stated in a way that will allow an inductive proof
—1is as follows.

THEOREM 2.1. Let n > 1 be an integer, and let X € Mat, (C),, be a matrix with
7(X) = 0.
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A. For any projection P € Mat,(C) with PX = XP and ©(P) = 1, there exist
elements A, B € Mat,(C),, with:

AB = BA;

X=A—-B;

A~ B;

max { 4]l |B]} < X
o ALP.

B. X is an abelian self-commutator in Mat,(C).

>

Proof. A. We are going to use induction on n. The case n = 1 is trivial, since
it forces X = 0, so we can take A = B = 0. Assume now property A is true for
all n < N, and let us prove it for n = N. Fix some X € Maty(C) with 7(X) =0,
and a projection P € Maty(C) with 7(P) = 1 such that PX = XP. The case
X = 0 is trivial, so we are going to assume X # 0. Let us list the spectrum of X
as Spec(X) = {a1 < op < --- < a}, and let (E;)!, be the corresponding spectral
projections, so that

(i) ©(E) >0,Vie{l,...,m};

(11) E,‘ LEJ', Vi;éj,and Z;n:lEi :IN;

(iii) X =", aE;,s0 7(X)=>", oT(E;).
Since 7(P) = 1 and P commutes with X, there exists a unique index iy € {1,...,m}
such that P < Ej,. Since none of the inclusions Spec(X) C (0,00) or Spec(X) C
(—00,0) is possible, there exists iy € {1,...,m}, iy # iy, such that one of the
following inequalities holds

) (5)

<
o > = 0. (6)

Choose then a projection Q < E;, with 7(Q) = 1, and let us define the elements
S=qa,(P—Q) and ¥ = X — S. Notice that

Y = Z GE; + 04, (Eiy — Q) + 04 (Ei, — P) + (04, + 04,) 0,
i#io o
so in particular we have ¥ L P. Notice also that either one of (5) or (6) yields
o, + o, | < max {[e, ], |og, [} < [1X]),
so we have ||Y|| < ||X||. Finally, since both ¥ an Q belong to the subalgebra
A = (Iy — P)Maty(C)(Iy — P),

which is *-isomorphic to Maty_;(C), using the inductive hypothesis, with ¥ and Q
(which obviously commute), there exist Ag, By € A, with
° AOBO = BQA() )
Y=A¢— Bo;
AO ~ Bo 5
max {{|Ao|, [1Bo[l} < Y]] < [1X]]:
Ao L Q.
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It is now obvious that the elements A = Ag — o;,Q and B = B — o, P will satisfy the
desired hypothesis (at one point, Proposition 1.1.B is invoked).

B. This statement is obvious from part A, since one can always start with an arbitrary
projection P < E,,, with ©(P) = 1, and such a projection obviously commutes with
X. 0O

In preparation for the type II; case, we have the following approximation result.

LEMMA 2.1. Let A be an AW*-factor of type 11,, and let € > 0 be a real number.
For any element X € Ay,, there exists an AW*-subfactor B C A, of type Isn, and an
element B € B, with
(i) da(X,B) < €;
(i) qa(X) =qa(B);
(iii) ||B]| < [[X]| +&.

Proof. We begin with the following
PARTICULAR CASE. Assume X has finite spectrum.

Let Spec(X) = {a; < 0p < --- < a,},and let Ey, ..., E, be the corresponding
spectral projections, so that
e D(E)>0,Vie{l,...,m};
e E, LE,Vi#j,and > | E =1;
o X = szzl o;E;, so C]_A(X) = szzl O(,'D(Ei) .
For any integer n > 2 define the set Z, = {0,1,2 ... 21 1} and let 6, :
{1,...,m} — Z, be the map defined by

0,(i) =max { € Z, : { < D(E)}.

For every i € {1,...,m}, and every integer n > 2, chose P, € P(A) be an
arbitrary projection with P,; < E;, and D(P,;) = 6,(i) . Notice that, for a fixed n > 2,
the projections Py, ..., Py, are pairwise orthogonal, and have dimensions in the set
Z, , hence there exists a subfactor B, of type I, , that contains them. Define then the
element H, = Y ;" | &iPni € (By)sa. Note that ||H,|| < ||X]||. We wish to prove that

(A) lim, . d.A(Xa Hn) =0;

(B) lim, q.A(Hn) = QA(X) .
To prove these assertions, we first observe that, for each n > 2, the elements X and
H,, commute, and we have

m

X —H, =Y o(Ei — Py).

i=1
In particular, one has

m

|g.a(X) = qa(Hy)| <Y loil - D(E; = Pyy) < m| X - max {D(E; = Pu)}iy. (7)
i=1
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Likewise, since

(X —H,) Za (Ei — P),
we have
ga((X — Hy)* (X — Za - D(E; — P
< mHX||2-max{D (Ei — Pu)}r |- (8)

By construction however we have D(E; — P,;) < 1, so the estimates (7) and (8) give

m|| X
94(%) — q.a(ty)| < "X
o [mXT?

dA(X>Hn) < 5

n

which clearly give the desired assertions (A) and (B).
Using the conditions (A) and (B), we immediately see that, if we define the numbers
B = qu(X), B, = qa(H,), and the elements B, = H, + ( — B,)] € B,, then
the sequence (By)n>2 will still satisfy lim,_ . d .A(X7 B,) = 0, but also g4(B,) =
qa(B,),and
[1Bull < 1 Hall + 1B = Bull < [IX]| + 1B = Bal,

which concludes the proof of the Particular Case.

Having proven the Particular Case, we now proceed with the general case. Start
with an arbitrary element X € Ay,, and pick a sequence (T,),eny C Ay, of elements
with finite spectrum, such that lim,_, ||7, — X|| = 0. (This can be done using
Borel functional calculus.) Using the norm-continuity of the quasitrace, we have
limy—c g(Ty) = ga(X), so if we define X, = T, + (qa(X) — qa(T,))1, we will
still have lim,—, o ||X, — X|| = 0, butalso g4(X,) = g4(X). In particular, there exists
some k > 1, such that

o da(Xi,X) <€/2;
1Xell < [1X[| +&/2.
Finally, applying the Particular Case, we can also find an AW*-subfactor B C A, of
type I, and an element B € B, with
o di(Xy,B)<¢€/2;
1]l < [1Xel) +¢/2:
* qa(Xi) =qa(B).
It is then trivial that B satisfies conditions (i)-(iii). O

We are now in position to prove the main result in the type II; case.

THEOREM 2.2. Let A = (A,)nen be a sequence of AW*-factors of type 11y, let U
be a free ultrafilter on N, and let X € (Ay)sa be an element with qa,,(X) = 0. Then
there exist elements A, B € (Ay)sq With

e AB=BA;
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e X=A—-B;
e AXB;

< X1+
In particular, X is an abelian self-commutator in Ay.

Proof. Write X = ITy(x), where x = (X,,)nen € A® . Without loss of generality,
we can assume that all X,,’s are self-adjoint, and have norm < || X]||.

Consider the elements X, = X, — ga,(X,)] € A,. Remark that, since X, is
self-adjoint, we have |g,(X,) < ||X,]| < [|X]|, so we have ||X,| < 2||X]||, Vn € N,
hence the sequence X = (X,,)neN defines an element in A°°. By construction, we have

limy g4, (X,) =0, and da, (X, Xn) = |q.4,(Xn) |% , 50 by Remark 1.2.A it follows that
X = Iy(x) = My(%).

Use Lemma 2.1 to find, for each n € N, an AW*-subfactor B, of A, of type g, ,

and and elements Y, € (B,);, with

(1) d.An(YmX )

(i) ga,(Yn) =0, VnEN

(i) (%] < 1% + 1.
Furthermore, using Theorem 2.1, for each n € N, combined with the fact that gp, =
qA.| g, (which implies the equality gg,(Y,) = 0), there exist elements A,, B, € (B,)sq
such that

(A) Aan = BnAn 5

(B) Y, =A,—By;

(C) Ay = By;

(D) max {IlAnH7 ”BHH} < |Yall-
Choose U, € U(B,), such that B, = U,A, U .

Let us view the sequences @ = (A,)nen, b = (Bn)nen, # = (Up)nen as elements
in the AW*-algebra A°°, and let us define the elements A = IT;(a), B = Iy(b), and
U =Ty (u) in Ay . Obviously A and B are self-adjoint. Since u is unitary in A, it
follows that U is unitary in A;;. Moreover, since by construction we have uau™ = b,
we also have the equality UAU* = B, so A =~ B in Ay,. Finally, since by construction
we also have ab = ba, we also get the equality AB = BA. Since by condition (D) we
have

max {[Aull, [Ball} < 1Yall < I1Xull + 5 < X+ lga, (Xo)| + 7
by Remark 1.2.B (combined with limy g4, (X,) = 0), we get the inequality

max {[|A] [B]| } < [IX]-

The proof of the Theorem will then be finished, once we prove the equality X = A —B.
For this purpose, we consider the sequences ¥ = (X,),en and y = (¥,,)uen, both
viewed as elements in A°°. On the one hand, since by construction we have y = a—»b,
we get the equality IT;/(y) = A— B. On the other hand, since lim,, .o d (Y, X,) =0,
we also have limyda(Y,,X,) = 0, so by Remark 1.2.A we get the equalities X =
Hz,{(x) = Hz,{(i) = Hu(y) . ie. X=A—-—B. O

COMMENT. Assume A an AW*-factor of type II;, and let I/ be a free ultrafilter
on N. Following Example 1.1, A is identified with the AW*-subfactor Ay(A) of Ay.
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Under this identification, by Theorem 2.2, every element A € A, of quasitrace zero is
an abelian self-commutator in A, .

In connection with this observation, it is legitimate to ask whether A is in fact
an abelian self-commutator in A itself. The discussion below aims at answering this
question in a somewhat different spirit, based on the results from [5].

DEFINITION. Let A be an AW*-factor of type II;. An element A € Ay, is
called an abelian approximate self-commutator in A, if there exist commuting ele-
ments Ay, Ay € Ay, with A = A} — A, and such that A} and A, are approximately
unitary equivalent, i.e. there exists a sequence (U,)n,en of unitaries in A such that
lim, o ||U,A1 U} — Az|| = 0. By [5, Theorem 2.1] the condition that A; and A, are
approximately unitary equivalent — denoted by A; ~ A, —is equivalent to the condition
ga(A%) = qa(AY), Vk € N. In particular, it is obvious that abelian approximate
self-commutators have quasitrace zero.

With this terminology, one has the following result.

THEOREM 2.3. Let A be an AW*-factor of type 11, , and let X € Ay, be an element
with qa(X) = 0. If D(s(X)) < 1, then X can be written as a sum X = X; + X,
where X1, Xa are two commuting abelian approximate self-commutators in A.

Proof. Let P =1 —s(X). Using the proof of Theorem 5.2 from [5], there exist
elements Ay, A;, By, B2, Y1, Y2, 81,5 € Ay, with the following properties:
(i) A1,A2,B1,By,Y1,Y,, 81,5, all commute;
(ii)) Ay ~By, Ay ~By, Y1 ~ 81, Y2 ~8,,and S; + S is spectrally symmetric,
e (S;+8)~—(81+S5,);

(111) A1 J_Az,Bl,P, A2 1 BZ,P, Bl J_BQ,P, and BzP = PBz = Y1 + Yz;
(IV) Yl, Y2 1 Sl,Sz;

(V) Y1,Y2,81,8, € PAP;,

(Vi) X:Al 731 +A2 7Bz+Y1 +Y2.
Consider then the elements

Vi=A+Y — S Vs :AZJF%(S]JrSz);
Wi =B+ 81 — Y Wa =By — (81 + $2).

Using the orthogonal additivity of approximate unitary equivalence (Corollary 2.1
from [5]), and the above conditions, it follows that V| ~ W; and V, ~ W,. Since
Vi, Vy, Wi, W, all commute, it follows that the elements X; = V; — W, and X; =
Vo — W, are abelian approximate self-commutators, and they commute. Finally, one
has X1 + X, =A —B1+A, —B +Y1+YL,=X. O

COROLLARY 2.1. Let A be an AW*-factor of type 11}, and let X € Ay, be
an element with q4(X) = 0. There exist two commuting abelian approximate self-
commutators X1,X, € Maty(A) —the 2 X 2 matrix algebra — such that

©)

X 0
X1+X2—|:0 O:|



ABELIAN SELF-COMMUTATORS IN FINITE FACTORS 269

(According to Berberian’s Theorem (see [1]), the matrix algebra Mat,(.A) is an AW*-
factor of type II; .)

Proof. Denote the matrix algebra Mat(A) by A,, and let X € A, denote the
matrix in the right hand side of (9). It is obvious that, if we consider the projection

10
=los]

then s(X) < E. Since Dy, (E) = 1 < 1, and g.4,(X) = 3q4(X) = 0, the desired
conclusion follows immediately from Theorem 2.3. [
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