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HADAMARD DUALS, RETRACTABILITY

AND OPPENHEIM’S INEQUALITY

SHAUN M. FALLAT AND CHARLES R. JOHNSON

Abstract. Oppenheim’s determinantal inequality was originally proved for positive semidefinite
matrices and has produced many interesting consequences and applications. Positive semidefinite
matrices were a natural class to consider partly because they are closed under Hadamard (or
entry-wise) multiplication. Since Oppenheim’s original contribution, others have considered
similar inequalities for M -matrices, inverse M -matrices and totally nonnegative matrices. We
attempt to unify many of these existing results dealing with Oppenheim’s inequality, and our
approach relies on two major themes: retractions and Hadamard duals. Retractions are a type
of diagonal perturbation and the Hadamard dual is a maximal collection of matrices with a
closure property under Hadamard multiplication. These notions are applied to yield results that
generalize Oppenheim’s original result.
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