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LOCALIZATIONS OF THE KLEINECKE–SHIROKOV THEOREM

JANKO BRAČIČ AND BOJAN KUZMA

(communicated by M. Omladič)

Abstract. A local version of the Kleinecke-Shirokov theorem is proved. The results easily extend
to bounded linear derivations on Banach algebras. In case of algebraic elements, an improved
bound on the nilindex of a commutator is obtained as a consequence.

1. Localizations of the Kleinecke-Shirokov Theorem

Let X be a complex Banach space and B(X) be the Banach algebra of all bounded
linear operators on X . If A, B ∈ B(X) are operators such that the commutant
[A, B] := AB − BA commutes with A , then the Kleinecke-Shirokov Theorem [7, 12]
(see also [4, Problem 184], and [1, 2, 6, 8, 10] for some generalizations of the theme)
asserts that [A, B] is a quasinilpotent operator. Actually theKleinecke-Shirokov theorem
holds for any Banach algebra. It follows that the local spectral radius of [A, B] at any
vector x ∈ X is zero, that is

r[A,B](x) := lim sup
n→∞

‖[A, B]nx‖1/n = 0 (x ∈ X).

Now, assume that A and [A, B] commute only locally, that is, there is a closed
subspace Y of X such that [A, [A, B]]y = 0 for all y ∈ Y . Do there exist vectors
0 �= x ∈ X at which the local spectral radius of [A, B] is zero? We shall give a positive
answer for spaces related to the kernel and the range of A .

For T ∈ B(X) , let Lat T be the lattice of all closed T -invariant subspaces of X .
We start with the following simple observation.

PROPOSITION 1.1. Let A, B ∈ B(X) and assume that Y ∈ Lat A ∩ Lat B . If
[A, [A, B]]Y = {0} , then r[A,B](y) = 0 for all y ∈ Y .

Proof. Let Ã := A|Y and B̃ := B|Y . These are bounded operators on Y and it
follows from [A, [A, B]]Y = {0} that [Ã, [Ã, B̃]] = 0. By Kleinecke-Shirokov theorem,
the commutant [Ã, B̃] is quasinilpotent, which gives
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r[A,B](y) = lim sup
n→∞

‖[A, B]ny‖1/n = lim sup
n→∞

‖[Ã, B̃]ny‖1/n

� lim sup
n→∞

‖[Ã, B̃]n‖1/n · ‖y‖1/n = 0

for any y ∈ Y . �
Let A ∈ B(X) . In the next proposition we will show that sometimes there are

non-trivial proper subspaces Y in LatA such that [A, [A, B]]Y = {0} forces Y ∈ Lat B .
We introduce the necessary notation.

For λ ∈ C , let Nλ (A) be the closure of
⋃∞

n=1 ker(A − λ )n. If A − λ has
a finite ascent, that is, a(A − λ ) := min{n; ker(A − λ )n = ker(A − λ )n+1} is a
positive integer, then Nλ (A) = ker(A − λ )a(A−λ ) . The cœur of A (see [11], [9, C.12.2],
and [3] for relevant set–theoretical properties) is a linear subspace cœA of X defined as
follows. Let im0 A := X , let imα+1 A := A(imα A) , and let imα A := ∩β<α imβ A
for a limit (that is, without predecessor) ordinal α . The collection of these subspaces is
decreasing, and forms a set. It can, therefore, be shown that there exists an ordinal ξ
with imξ A = imξ+1 A . Then cœ A := imξ A = ∩α<ξ+1 imα A . The cœur of A ,
though not necessarily closed, is the maximal subspace of X that satisfies the condition
A (cœA) = cœ A (see [11]). Let Rλ (A) be the closure of cœ(A − λ ) . If the descent
of A − λ , that is, d(A − λ ) := min{n; im(A − λ )n = im(A − λ )n+1} , is finite, then
Rλ (A) = im (A − λ )d(A−λ ) . Of course, Nλ (A) and Rλ (A) are in Lat A .

The inner derivation on B(X) induced by A is a bounded liner map given by
δA(B) := [A, B] (B ∈ B(X)) . Note that δ k

A(B) =
∑k

j=0(−1)j
(k

j

)
Ak−jBAj , where we

agreed upon A0 := Id .

PROPOSITION 1.2. Let A ∈ B(X) and λ ∈ C .
(i) If δA

k(B)Nλ (A) = {0} , for some B ∈ B(X) and some positive integer k , then
Nλ (A) ∈ LatB .

(ii) If δA
k(B)Rλ (A) = {0} , for some B ∈ B(X) and some positive integer k , then

Rλ (A) ∈ Lat B .

Proof. Since δA = δA−λ , there is no loss of generality if we assume that λ = 0.
To prove (i), choose an arbitrary vector x ∈ ⋃∞

n=1 ker An . Then there exists a
positive integer m such that Amx = 0 . Clearly, the vectors Aix are in N0(A) , for each
i ∈ {0, 1, . . . , m − 1} so, by the assumption, δA

k(B)Aix = 0 . Hence, with i := m − 1
we have

0 = δA
k(B)Am−1x =

k∑
j=0

(−1)j

(
k
j

)
Ak−jBAm−1+jx = AkBAm−1x. (1)

The equality δA
k(B)Am−2x = 0 similarly gives AkBAm−2x − k Ak−1BAm−1x = 0. If

we multiply this equality by A and use (1), we get Ak+1BAm−2x = 0 . Using induction
backwards, we are left with Ak+mBx = 0 . Therefore, Bx ∈ ⋃∞

n=1 kerAn , and so
BNλ (A) ⊆ Nλ (A) .
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We proceed to prove (ii) with transfinite induction. It is trivial that B(cœA) ⊆
im0 A . Pick an ordinal α , and assume that we have B(cœ A) ⊆ imβ A for each ordinal
β < α . Consequently, if α is a limit ordinal then B(cœ A) ⊆ ∩β<α imβ A = imα A .

Suppose lastly α is a nonlimit ordinal, say α = α′+1 . Let x ∈ cœ A be arbitrary.
Since cœ A = A(cœ A) = · · · = Ak(cœ A) there exists a vector y ∈ cœ A such that
x = Aky . It follows from δA

k(B)(cœ A) = {0} that

Bx = BAky = −
(
(−1)kAkBy+(−1)k−1

(
k
1

)
Ak−1BAy±· · ·−

(
k

k − 1

)
ABAk−1y

)
. (2)

Now, vectors y, Ay, . . . , Ak−1y are in cœ A and therefore, by the induction hypothesis,
By, BAy, . . . , BAk−1y are all in B(cœ A) ⊆ imα′ A . Since Ak(imα′ A) ⊆ A(imα′ A)
for each k � 1 , we conclude from (2) that Bx ∈ Ak(imα′ A) + · · · + A(imα′ A) =
A(imα′ A) = imα′+1 A = imα A . Hence, B(cœA) ⊆ imα A .

By transfinite induction, B(cœ A) ⊆ cœ A and consequently R0(A) = cœA ∈
LatB . �

THEOREM 1.3. Let A ∈ B(X) and let Y be the closure of finite sum of spaces
Rλ (A) and Nμ(A) , for instance, let

Y = Rλ1(A) + · · · + Rλm(A) + Nμ1(A) + · · · + Nμn(A), (3)

where λ1, . . . , λm, μ1, . . . ,μn are arbitrary complex numbers. If B ∈ B(X) is such
that [A, [A, B]]Y = {0} then Y is invariant for B and r[A,B](y) = 0 for every y ∈ Y .

Proof. Assume that Y is of the form (3). It follows from [A, [A, B]]Y = {0} that

[A, [A, B]]Rλi(A) = {0} and [A, [A, B]]Nμj(A) = {0} for all 1 � i � m, 1 � j � n.

Thus, all spaces Rλi(A) and Nμj(A) are in LatB , which gives Y ∈ LatB . Now the
assertion follows by Proposition 1.1. �

2. Jacobson’s Lemma

If X is a finite dimensional vector space, then the Kleinecke-Shirokov Theorem
reduces to the Jacobson’s Lemma [5, Lemma 2], which says that [A, B] is nilpotent if
A, B ∈ B(X) are such that [A, [A, B]] = 0 . The original proof [5, Lemma 2], and its
extension [6], bound the nilindex of [A, B] above by 2n − 1 where n is the degree of
the minimal polynomial for A . Arguments run as follows: Let ′ be a derivation such
that A′ commutes with A and let f be the minimal polynomial of A . Differentiat-

ing f (A) = 0 gives f ′(A)A′ = 0 , which is the case k = 1 of f (k)(A)(A′)2k−1 = 0 .

Differentiating produces f (k+1)(A)A′(A′)2k−1 + f (k)(A)(A′′(A′)2k−2 + A′A′′(A′)2k−3 +
· · · + (A′)2k−2A′′) = 0 . Now, premultiply with (A′)2k−1 to get the induction step. We
remark that if A′′ commutes with A′ , similar arguments would bound nilindex above
by 2n − 1 .
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We shall use the results from the previous section to improve the estimate on the
upper bound of the nilindex of [A, B] (see Theorem 2.5 below).

PROPOSITION 2.4. Let X be a complex Banach space.
(i) If A ∈ B(X) is a nilpotent operatorwith nilindex n � 1 , then the inner derivation

δA is a nilpotent operator on B(X) with nilindex 2n − 1 .
(ii) Let A ∈ B(X) be a nilpotent operator with nilindex n � 1 and let B ∈ B(X) be

such that δA
2(B) = 0. Then

(
δA(B)

)2n−1 = 0 .

Proof. (i) For a nilpotent operator A with nilindex n , we have

δA
2n−1(T) =

2n−1∑
j=0

(−1)j

(
2n − 1

j

)
A2n−1−jTAj = 0 (T ∈ B(X)),

which shows that δA
2n−1 = 0.

On the other hand, let x ∈ X and T ∈ B(X) be such that An−1x �= 0 and
TAn−1x = x . Then,

δA
2n−2(T)x =

2n−2∑
j=0

(−1)j

(
2n − 2

j

)
A2n−2−jTAjx = (−1)n−1

(
2n − 2
n − 1

)
An−1TAn−1x

= (−1)n−1

(
2n − 2
n − 1

)
x �= 0

gives δA
2n−2 �= 0.

(ii)The classical proof ofKleinecke-Shirokov [4, Solution 184] shows that δA
2(B) =

0 implies δA
2n−1(B2n−1

)
= (2n−1)!

(
δA(B)

)2n−1
. By the first part of this proposition,

δA is a nilpotent operator with nilindex 2n − 1 . Thus,
(
δA(B)

)2n−1 = 0. �

Assume that the ascent of A ∈ B(X) is a positive integer m . That is, N0(A) =⋃∞
n=1 kerAn = kerAm . If [A, [A, B]]N0(A) = {0} , for some B ∈ B(X) , then, by (i)

of Proposition 1.2, N0(A) is invariant for B . Let Ã and B̃ be the restrictions of A
and B to N0(A) . Then Ã is nilpotent with nilindex m and we have [Ã, [Ã, B̃]] = 0 .
It follows, by Proposition 2.4, that [Ã, B̃]2m−1 = 0 , which gives [A, B]2m−1N0 = {0} .
Thus, the local nilindex of [A, B] on N0(A) is 2m − 1 .

THEOREM 2.5. Let A ∈ B(X) be an algebraic operator with the minimal poly-
nomial qA(z) = (z− λ1)m1 · · · (z− λk)mk . If [A, [A, B]] = 0 for B ∈ B(X) , then [A, B]
is a nilpotent operator with nilindex at most 2 · max{m1, . . . , mk} − 1.

Proof. For each 1 � i � k , let Mi := ker(A − λi)mi (thus Mi = Nλi(A) in
the notation used above). Then X = M1 ⊕ · · · ⊕ Mk . Since [A − λi, [A − λi, B]] =
[A, [A, B]] = 0 we have [A−λi, [A−λi, B]]Mi = {0} . The restriction of A−λi to Mi

is a nilpotent with nilindex mi . It follows that the local nilindex of [A− λi, B] = [A, B]
on Mi is at most 2mi − 1 . Let x = x1 ⊕ · · · ⊕ xk be the decomposition of x ∈ X with
xi ∈ Mi . Then, of course, [A, B]2m−1x = 0 , where m = max{m1, . . . , mk}. �
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COROLLARY 2.6. If A is a diagonalizable matrix then [A, [A, B]] = 0 implies
[A, B] = 0 .

Proof. The minimal polynomial of A is a product of distinct linear factors. �
Note that a diagonalizable matrix is similar to a diagonal, hence to a normal

matrix. With this in mind, Corollary 2.6 can also be derived from Anderson’s results [1]
on range-kernel orthogonality of normal derivations; see also [10, Theorem 3].
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