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LOCALIZATIONS OF THE KLEINECKE-SHIROKOV THEOREM

JANKO BRACIC AND BOJAN KUZMA

(communicated by M. Omladic)

Abstract. Alocal version of the Kleinecke-Shirokov theorem is proved. The results easily extend
to bounded linear derivations on Banach algebras. In case of algebraic elements, an improved
bound on the nilindex of a commutator is obtained as a consequence.

1. Localizations of the Kleinecke-Shirokov Theorem

Let X be a complex Banach space and B(X) be the Banach algebra of all bounded
linear operators on X. If A, B € B(X) are operators such that the commutant
[A,B] := AB — BA commutes with A, then the Kleinecke-Shirokov Theorem [7, 12]
(see also [4, Problem 184], and [1, 2, 6, 8, 10] for some generalizations of the theme)
asserts that [A, B] is a quasinilpotent operator. Actually the Kleinecke-Shirokov theorem
holds for any Banach algebra. It follows that the local spectral radius of [A, B] at any
vector x € X is zero, that is

7ia,)(x) := lim sup A, B]"x|" = 0 (x € X).

Now, assume that A and [A, B] commute only locally, that is, there is a closed
subspace Y of X such that [A,[A,B]]y = 0 for all y € Y. Do there exist vectors
0 # x € X at which the local spectral radius of [A, B] is zero? We shall give a positive
answer for spaces related to the kernel and the range of A.

For T € B(X), let Lat T be the lattice of all closed T -invariant subspaces of X.
We start with the following simple observation.

PROPOSITION 1.1.  Let A,B € B(X) and assume that J € LatA N LatB. If
[A,[A,B]]Y = {0}, then ripp(y) =0 forall y € Y.

Proof. Let A := Aly and B := Bly . These are bounded operators on Y and it
follows from [A, [A, B]]Y = {0} that [A, [A, B]] = 0. By Kleinecke-Shirokov theorem,
the commutant [A, B] is quasinilpotent, which gives
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riag(v) = limsup||[A, B)"y||'/" = lim sup |[4, B"y||'/"

n—oo n—oo

< limsup [[[4, B)"|I'" - |[y]]'/" = 0

forany ye Y. O

Let A € B(X). In the next proposition we will show that sometimes there are
non-trivial proper subspaces Y in LatA suchthat [A, [A, B]]Y = {0} forces Y € LatB.
We introduce the necessary notation.

For A € C, let N;(A) be the closure of [J° ker(A —A)". If A — A has
a finite ascent, that is, a(A — 1) := min{n; ker(A — 1)" = ker(A — A)"'} is a
positive integer, then N (A) = ker(A — A)*“~*) . The ceeur of A (see [11], [9, C.12.2],
and [3] for relevant set-theoretical properties) is a linear subspace coe A of X defined as
follows. Let imgA := X, let imy ;1 A := A(imgA), and let imy A := Mgy imgA
for a limit (that is, without predecessor) ordinal o. The collection of these subspaces is
decreasing, and forms a set. It can, therefore, be shown that there exists an ordinal &
with img A = img 1 A. Then ceeA := imgA = NgegypyimgA. The ceeur of A,
though not necessarily closed, is the maximal subspace of X that satisfies the condition
A(ceA) = cee A (see [11]). Let Ry (A) be the closure of cee(A — A). If the descent
of A— A, thatis, d(A — )L) := min{n; im(A — )" = im(A — A)"*'}, is finite, then
Ri(A) =im (A — A)4A4=2)  Of course, N (A) and R, (A) are in LatA.

The inner derzvanon on B(X) induced by A is a bounded liner map given by
84(B) := [A,B] (B € B(X)). Note that §5(B) = Z o= 1)J( JA*=IBA/ | where we
agreed upon A :=Id.

PROPOSITION 1.2. Let A € B(X) and A € C.
(i) If 84" (B)N;.(A) = {0}, for some B € B(X) and some positive integer k, then
N, (A) € LatB.
(ii) If 8,"(B)R;(A) = {0}, for some B € B(X) and some positive integer k, then
R, (A) € LatB.

Proof. Since 84 = 84, , there is no loss of generality if we assume that A = 0.

To prove (i), choose an arbitrary vector x € |J,~ kerA". Then there exists a
positive integer m such that A”x = 0. Clearly, the Vectors A'x are in No(A), for each
i€{0,1,...,m—1} so, by the assumption, 8,*(B)A’x = 0. Hence, with i := m — 1
we have

k
OZSA Am 1 Z < )Ak jBAm 1+jx*AkBAm 1 (1)
J=

The equality 8,°(B)A™ 2x = 0 similarly gives AKBA™=2x — kA¥"1BA™ =1y = 0. If
we multiply this equality by A and use (1), we get AK"!BA"—2x = 0. Using induction
backwards, we are left with A**"Bx = 0. Therefore, Bx € |J° kerA", and so
BNi(A) SN2 (A).

n=1
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We proceed to prove (ii) with transfinite induction. It is trivial that B(cae A) C
img A . Pick an ordinal ¢, and assume that we have B(cee A) C img A for each ordinal
B < a. Consequently, if o is a limit ordinal then B(coe A) C Np<y img A = imy A.

Suppose lastly ¢ is anonlimit ordinal, say & = o’ +1. Let x € coe A be arbitrary.
Since ceA = A(ceA) = --- = A¥(cee A) there exists a vector y € cae A such that
x = Ay Tt follows from 8,%(B)(cee A) = {0} that

Bx = BAky = — ((—1)’<A’<J_L3y+(—1)’<*1 (T)Aleij:- - (k f 1>ABAk1y). 2)

Now, vectors y, Ay, ..., Ak_ly arein cee A and therefore, by the induction hypothesis,
By, BAy, ..., BA*"'y are all in B(cceA) C im, A. Since A¥(imy A) C A(imy A)
for each k > 1, we conclude from (2) that Bx € A¥(imy A) + -+ + A(imy A) =
A(imgr A) = img | A = img A. Hence, B(cae A) C imy A.

By transfinite induction, B(ceeA) C cee A and consequently Ro(A) = ceeA €
LatB. O

THEOREM 1.3. Let A € B(X) and let Y be the closure of finite sum of spaces
R4 (A) and N, (A), for instance, let

9 =R (A) + - + Ry, (A) + Ny (A) + - - + Ny, (4), 3)

where A1, ..., Am, Wi,..., U, are arbitrary complex numbers. If B € B(X) is such
that [A,[A, B]]Y = {0} then Y is invariant for B and ris p(y) = 0 forevery y € Y.

Proof. Assume that Y is of the form (3). It follows from [A, [A, B]]Y = {0} that
[A,[A, B]]R),(A) = {0} and [A,[A,B]]Ny(A) = {0} foralll <i<m, 1<j<n.

Thus, all spaces R;,(A) and Ny, (A) are in LatB, which gives Y € LatB. Now the
assertion follows by Proposition 1.1. [J

2. Jacobson’s Lemma

If X is a finite dimensional vector space, then the Kleinecke-Shirokov Theorem
reduces to the Jacobson’s Lemma [5, Lemma 2], which says that [A, B] is nilpotent if
A,B € B(X) are such that [A,[A, B]] = 0. The original proof [5, Lemma 2], and its
extension [6], bound the nilindex of [A, B] above by 2" — 1 where n is the degree of
the minimal polynomial for A. Arguments run as follows: Let ’ be a derivation such
that A’ commutes with A and let f be the minimal polynomial of A. Differentiat-
ing f(A) = 0 gives f'(A)A’ = 0, which is the case k = 1 of f®(4)(4")*~! = 0.
Differentiating produces f*+1)(4)A’ (A"}~ + £ (A)(A”(A")? 2 + A’A"(A")? =3 +
s (A )Zk’zA’ ") = 0. Now, premultiply with (A’ )zk’1 to get the induction step. We
remark that if A” commutes with A’, similar arguments would bound nilindex above
by 2n—1.
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We shall use the results from the previous section to improve the estimate on the
upper bound of the nilindex of [A, B] (see Theorem 2.5 below).

PROPOSITION 2.4. Let X be a complex Banach space.
(i) If A € B(X) is anilpotent operator with nilindex n > 1, then the inner derivation
O is a nilpotent operator on B(X) with nilindex 2n — 1.
(ii) Let A € B(DC) be a nilpotent operator with nilindex n > 1 and let B € B(X) be

such that 8,*(B) = 0. Then (8a(B ))2n '=o.

Proof. (i) For a nilpotent operator A with nilindex n, we have

2n—1

571 = Y (1) <2nj 1)AznleAj =0 (T €BX)),

J=0

which shows that §,>"~! = 0.
On the other hand, let x € X and T € B(X) be such that A"~ !'x # 0 and

TA" 'x = x. Then,

2n—2

S (T =D (1Y (2”], 2>A2"21‘TAfx = (1) (

j=0

=y (T e 2o

gives 8,72 £ 0.
(ii) The classical proof of Kleinecke-Shirokov [4, Solution 184] shows that 84%(B) =
0 implies 84" (B>1) = 2n—1)!(84(B ))2”71 . By the first part of this proposition,

04 is a nilpotent operator with nilindex 2n — 1. Thus, (SA (B))Zn*1 =0. O

2n—2

)AanAnlx
n—1

Assume that the ascent of A € B(X) is a positive integer m. That is, No(A) =
U2, kerA” = kerA™. If [A, [A, B]|No(A) = {0}, for some B € B(X), then, by (i
of Proposition 1.2, No(A) is invariant for B. Let A and B be the restrictions of A
and B to No(A). Then A is nilpotent with nilindex m and we have [A, [A,B]] = 0.
It follows, by Proposition 2.4, that [A, B|*"~! = 0, which gives [A, B]*"~ !N, = {0}.
Thus, the local nilindex of [A, B] on Ny(A) is 2m — 1.

THEOREM 2.5. Let A € B(X) be an algebraic operator with the minimal poly-
nomial ga(z) = (z—A)™ -+ (z— A)™. If [A,[A,B]] =0 for B € B(X), then [A, B]
is a nilpotent operator with nilindex at most 2 - max{my, ... ,mi} — 1.

Proof. For each 1 < i < k, let M; := ker(A — A;)™ (thus M; = Ny, (A) in
the notation used above). Then X = M; @ --- ® M. Since [A — A4;,[A — A;,B]] =
[A,[A,B]] = 0 we have [A — A;,[A — A;, B]]JM; = {0} . The restriction of A —4; to M
is a nilpotent with nilindex m; . It follows that the local nilindex of [A — A;, B] = [A, B]
on M; is at most 2m; — 1. Let x = x; @ - - - @ x; be the decomposition of x € X with
x; € M;. Then, of course, [A, B]*"~!x = 0, where m = max{my,...,m}. O
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COROLLARY 2.6. If A is a diagonalizable matrix then [A,[A,B]] = 0 implies

[A,B] = 0.

Proof. The minimal polynomial of A is a product of distinct linear factors. [

Note that a diagonalizable matrix is similar to a diagonal, hence to a normal

matrix. With this in mind, Corollary 2.6 can also be derived from Anderson’s results [1]
on range-kernel orthogonality of normal derivations; see also [10, Theorem 3].

1]
2]

RN
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