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HIGHER–RANK NUMERICAL RANGES

OF UNITARY AND NORMAL MATRICES
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Abstract. We verify a conjecture on the structure of higher-rank numerical ranges for a wide class
of unitary and normal matrices. Using analytic and geometric techniques, we show precisely how
the higher-rank numerical ranges for a generic unitary matrix are given by complex polygons
determined by the spectral structure of the matrix. We discuss applications of the results to
quantum error correction, specifically to the problem of identification and construction of codes
for binary unitary noise models.

Mathematics subject classification (2000): 15A60, 15A90, 47A12, 81P68.
Key words and phrases: Higher-rank numerical range, unitary matrix, quantum error correction.

RE F ER EN C ES

[1] R. ALICKI AND K. LENDI, Quantum dynamical semigroups and applications, Springer–Verlag, Berlin,
(1987).

[2] H. BARNUM, E. KNILL, Reversing quantum dynamics with near-optimal quantum and classical fidelity,
J. Math. Phys. 43(2002), 2097.
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