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SEMI–FREDHOLM SINGULAR INTEGRAL OPERATORS

WITH PIECEWISE CONTINUOUS COEFFICIENTS ON

WEIGHTED VARIABLE LEBESGUE SPACES ARE FREDHOLM

ALEXEI YU. KARLOVICH

(communicated by A. Böttcher)

Abstract. Suppose Γ is aCarleson Jordan curvewith logarithmicwhirl points, � is aKhvedelidze
weight, p : Γ → (1,∞) is a continuous function satisfying |p(τ) − p(t)| � −const/ log |τ − t|
for |τ − t| � 1/2 , and Lp(·)(Γ, �) is a weighted generalized Lebesgue space with variable
exponent. We prove that all semi-Fredholm operators in the algebra of singular integral operators

with N × N matrix piecewise continuous coefficients are Fredholm on Lp(·)
N (Γ, �) .

1. Introduction

Let X be a Banach space and B(X) be the Banach algebra of all bounded linear
operators on X . An operator A ∈ B(X) is said to be n -normal (resp. d -normal)
if its image ImA is closed in X and the defect number n(A; X) := dimKer A (resp.
d(A; X) := dimKer A∗ ) is finite. An operator A is said to be semi-Fredholm on X if
it is n -normal or d -normal. Finally, A is said to be Fredholm if it is simultaneously
n -normal and d -normal. Let N be a positive integer. We denote by XN the direct sum
of N copies of X with the norm

‖f ‖ = ‖(f 1, . . . , f N)‖ := (‖f 1‖2 + · · · + ‖f N‖2)1/2.

Let Γ be a Jordan curve, that is, a curve that is homeomorphic to a circle. We
suppose that Γ is rectifiable. We equip Γ with Lebesgue length measure |dτ| and the
counter-clockwise orientation. The Cauchy singular integral of f ∈ L1(Γ) is defined
by

(Sf )(t) := lim
R→0

1
πi

∫
Γ\Γ(t,R)

f (τ)
τ − t

dτ (t ∈ Γ),

where Γ(t, R) := {τ ∈ Γ : |τ − t| < R} for R > 0 . David [7] (see also [3,
Theorem4.17]) proved that the Cauchy singular integral generates the bounded operator
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S on the Lebesgue space Lp(Γ) , 1 < p < ∞ , if and only if Γ is a Carleson (Ahlfors-
David regular) curve, that is,

sup
t∈Γ

sup
R>0

|Γ(t, R)|
R

< ∞,

where |Ω| denotes the measure of a measurable set Ω ⊂ Γ . We can write τ − t =
|τ− t|ei arg(τ−t) for τ ∈ Γ \ {t} , and the argument can be chosen so that it is continuous
on Γ \ {t} . It is known [3, Theorem 1.10] that for an arbitrary Carleson curve the
estimate

arg(τ − t) = O(− log |τ − t|) (τ → t)
holds for every t ∈ Γ . One says that a Carleson curve Γ satisfies the logarithmic whirl
condition at t ∈ Γ if

arg(τ − t) = −δ(t) log |τ − t| + O(1) (τ → t) (1)

with some δ(t) ∈ R . Notice that all piecewise smooth curves satisfy this condition at
each point and, moreover, δ(t) ≡ 0 . For more information along these lines, see [2],
[3, Chap. 1], [4].

Let t1, . . . , tm ∈ Γ be pairwise distinct points. Consider the Khvedelidze weight

�(t) :=
m∏

k=1

|t − tk|λk (λ1, . . . , λm ∈ R).

Suppose p : Γ → (1,∞) is a continuous function. Denote by Lp(·)(Γ, �) the set of all
measurable complex-valued functions f on Γ such that∫

Γ
|f (τ)�(τ)/λ |p(τ)|dτ| < ∞

for some λ = λ (f ) > 0 . This set becomes a Banach space when equipped with the
Luxemburg-Nakano norm

‖f ‖p(·),� := inf

{
λ > 0 :

∫
Γ
|f (τ)�(τ)/λ |p(τ)|dτ| � 1

}
.

If p is constant, then Lp(·)(Γ, �) is nothing else than the weighted Lebesgue space.
Therefore, it is natural to refer to Lp(·)(Γ, �) as a weighted generalized Lebesgue space
with variable exponent or simply as weighted variable Lebesgue spaces. This is a
special case of Musielak-Orlicz spaces [24]. Nakano [25] considered these spaces
(without weights) as examples of so-called modular spaces, and sometimes the spaces
Lp(·)(Γ, �) are referred to as weighted Nakano spaces.

If S is bounded on Lp(·)(Γ, �) , then from [13, Theorem 6.1] it follows that Γ is
a Carleson curve. The following result is announced in [16, Theorem 7.1] and in [18,
Theorem D]. Its full proof is published in [20].

THEOREM 1.1. Let Γ be a Carleson Jordan curve and p : Γ → (1,∞) be a
continuous function satisfying

|p(τ) − p(t)| � −AΓ/ log |τ − t| whenever |τ − t| � 1/2, (2)
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where AΓ is a positive constant depending only on Γ . The Cauchy singular integral
operator S is bounded on Lp(·)(Γ, �) if and only if

0 < 1/p(tk) + λk < 1 for all k ∈ {1, . . . , m}. (3)

We define by PC(Γ) as the set of all a ∈ L∞(Γ) for which the one-sided limits

a(t ± 0) := lim
τ→t±0

a(τ)

exist and finite at each point t ∈ Γ ; here τ → t − 0 means that τ approaches t
following the orientation of Γ , while τ → t + 0 means that τ goes to t in the opposite
direction. Functions in PC(Γ) are called piecewise continuous functions.

The operator S is defined on Lp(·)
N (Γ, �) elementwise. We let stand PCN×N(Γ)

for the algebra of all N × N matrix functions with entries in PC(Γ) . Writing the
elements of Lp(·)

N (Γ, �) as columns, we can define the multiplication operator aI for

a ∈ PCN×N(Γ) as multiplication by the matrix function a . Let alg (S, PC; Lp(·)
N (Γ, �))

denote the smallest closed subalgebra of B(Lp(·)
N (Γ, �)) containing the operator S and

the set {aI : a ∈ PCN×N(Γ)} .
For the case of piecewise Lyapunovcurves Γ and constant exponent p , a Fredholm

criterion for an arbitrary operator A ∈ alg (S, PC; Lp
N(Γ, �)) was obtained by Gohberg

and Krupnik [10] (see also [11] and [22]). Spitkovsky [29] established a Fredholm
criterion for the operator aP + Q , where a ∈ PCN×N(Γ) and

P := (I + S)/2, Q := (I − S)/2,

on the space Lp
N(Γ, w) , where Γ is a smooth curve and w is an arbitrary Muckenhoupt

weight. He also proved that if aP + Q is semi-Fredholm on Lp
N(Γ, w) , then it is

automatically Fredholm on Lp
N(Γ, w) . These results were extended to the case of an

arbitrary operator A ∈ alg (S, PC; Lp
N(Γ, w)) in [12]. The Fredholm theory for singular

integral operators with piecewise continuous coefficients on Lebesgue spaces with
arbitrary Muckenhoupt weights on arbitrary Carleson curves curves was accomplished
in a series of papers by Böttcher and Yu. Karlovich. It is presented in their monograph
[3] (see also the nice survey [4]).

The study of singular integral operators with discontinuous coefficients on gen-
eralized Lebesgue spaces with variable exponent was started in [17, 19]. The results
of [3] are partially extended to the case of weighted generalized Lebesgue spaces with
variable exponent in [13, 14, 15]. Suppose Γ is a Carleson curve satisfying the loga-
rithmic whirl condition (1) at each point t ∈ Γ , � is a Khvedelidze weight, and p is
a variable exponent as in Theorem 1.1. Under these assumptions, a Fredholm criterion
for an arbitrary operator A in the algebra alg (S, PC; Lp(·)

N (Γ, �)) is obtained in [14,
Theorem 5.1] by using the Allan-Douglas local principle [5, Section 1.35] and the two
projections theorem [9]. However, this approach does not allow us to get additional
information about semi-Fredholm and Fredholm operators in this algebra. For instance,
to obtain an index formula for Fredholm operators in this algebra, we need other means
(see, e.g., [15, Section 6]). Following the ideas of [10, 29, 12], in this paper we present
a self-contained proof of the following result.
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THEOREM 1.2. Let Γ be a Carleson Jordan curve satisfying the logarithmic
whirl condition (1) at each point t ∈ Γ , let p : Γ → (1,∞) be a continuous function
satisfying (2), and let � be a Khvedelidze weight satisfying (3). If an operator in the

algebra alg (S, PC; Lp(·)
N (Γ, �)) is semi-Fredholm, then it is Fredholm.

The paper is organized as follows. Section 2 contains general results on semi-
Fredholm operators. Some auxiliary results on singular integral operators acting on
Lp(·)(Γ, �) are collected in Section 3. In Section 4, we prove a criterion guaranteeing
that aP + Q , where a ∈ PC(Γ) , has closed image in Lp(·)(Γ, �) . This criterion is
intimately related with a Fredholm criterion for aP + Q proved in [14]. Notice that we
are able to prove both results for Carleson Jordan curves which satisfy the additional
condition (1). Section 5 contains the proof of the fact that if the operator aP + bQ is
semi-Fredholmon Lp(·)

N (Γ, �) , then the coefficients a and b are invertible in the algebra
L∞

N×N(Γ) . In Section 6, we prove that the semi-Fredholmness and Fredholmness of

aP + bQ on Lp(·)
N (Γ, �) , where a and b are piecewise continuous matrix functions,

are equivalent. In Section 7, we extend this result to the sums of products of operators
of the form aP + bQ by using the procedure of linear dilation. Since these sums
are dense in alg (S, PC; Lp(·)

N (Γ, �)) , Theorem 1.2 follows from stability properties of
semi-Fredholm operators.

2. General results on semi-Fredholm and Fredholm operators

2.1. The Atkinson and Yood theorems

For a Banach space X , let Φ(X) be the set of all Fredholm operators on X and
let Φ+(X) (resp. Φ−(X) ) denote the set of all n -normal (resp. d -normal) operators
A ∈ B(X) such that d(A; X) = +∞ (resp. n(A; X) = +∞ ).

THEOREM 2.1. Let X be a Banach space and K be a compact operator on X .
(a) If A, B ∈ Φ(X) , then AB ∈ Φ(X) and A + K ∈ Φ(X) .
(b) If A, B ∈ Φ±(X) , then AB ∈ Φ±(X) and A + K ∈ Φ±(X) .
(c) If A ∈ Φ(X) and B ∈ Φ±(X) , then AB ∈ Φ±(X) and BA ∈ Φ±(X) .

Part (a) is due to Atkinson, parts (b) and (c) were obtained by Yood. For a
proof, see e.g. [11, Chap. 4, Sections 6 and 15].

THEOREM 2.2. (see e.g. [11], Chap. 4, Theorem 7.1) Let X be a Banach space. An
operator A ∈ B(X) is Fredholm if and only if there exists an operator R ∈ B(X) such
that AR − I and RA − I are compact.

2.2. Stability of semi-Fredholm operators

THEOREM 2.3. (see e.g. [11], Chap. 4, Theorems 6.4, 15.4) Let X be a Banach
space.
(a) If A ∈ Φ(X) , then there exists an ε = ε(A) > 0 such that A + D ∈ Φ(X)

whenever ‖D‖B(X) < ε .
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(b) If A ∈ Φ±(X) , then there exists an ε = ε(A) > 0 such that A + D ∈ Φ±(X)
whenever ‖D‖B(X) < ε .

LEMMA 2.4. Let X be a Banach space. Suppose A is a semi-Fredholm operator
on X and ‖An − A‖B(X) → 0 as n → ∞ . If the operators An are Fredholm on X for
all sufficiently large n , then A is Fredholm, too.

Proof. Assume A is semi-Fredholm, but not Fredholm. Then either A ∈ Φ−(X)
or A ∈ Φ+(X) . By Theorem 2.3(b), either An ∈ Φ−(X) or An ∈ Φ+(X) for all
sufficiently large n . That is, An are not Fredholm. This contradicts the hypothesis. �

We refer to the monograph by Gohberg and Krupnik [11] for a detailed presentation
of the theory of semi-Fredholm operators on Banach spaces.

2.3. Semi-Fredholmness of block operators

Let a Banach space X be represented as the direct sum of its subspaces X =
X1+̇X2 . Then every operator A ∈ B(X) can be written in the form of an operator
matrix

A =
[

A11 A12

A21 A22

]
,

where Aij ∈ B(Xj, Xi) and i, j = 1, 2 . The following result is stated without proof in
[27]. Its proof is given in [28] (see also [23, Theorem 1.12]).

THEOREM 2.5.
(a) Suppose A21 is compact. If A is n -normal ( d -normal), then A11 (resp. A22 ) is

n -normal (resp. d -normal).
(b) Suppose A12 or A21 is compact. If A11 (resp. A22 ) is Fredholm, then A22 (resp.

A11 ) is n -normal, d -normal, Fredholm if and only if A has the corresponding
property.

3. Singular integrals on weighted variable Lebesgue spaces

3.1. Duality of weighted variable Lebesgue spaces

Suppose Γ is a rectifiable Jordan curve and p : Γ → (1,∞) is a continuous
function. Since Γ is compact, we have

1 < p := min
t∈Γ

p(t), p := max
t∈Γ

p(t) < ∞.

Define the conjugate exponent p∗ for the exponent p by

p∗(t) :=
p(t)

p(t) − 1
(t ∈ Γ).

Suppose � is a Khvedelidze weight. If � ≡ 1 , then we will write Lp(·)(Γ) and ‖ · ‖p(·)
instead of Lp(·)(Γ, 1) and ‖ · ‖p(·),1 , respectively.
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THEOREM 3.1. (see [21], Theorem 2.1) If f ∈ Lp(·)(Γ) and g ∈ Lp∗(·)(Γ) , then
f g ∈ L1(Γ) and

‖f g‖1 � (1 + 1/p − 1/p) ‖f ‖p(·)‖g‖p∗(·).

The above Hölder type inequality in the more general setting of Musielak-Orlicz
spaces is contained in [24, Theorem 3.13].

THEOREM 3.2. The general form of a linear functional on Lp(·)(Γ, �) is given by

G(f ) =
∫
Γ
f (τ)g(τ) |dτ| (f ∈ Lp(·)(Γ, �)),

where g ∈ Lp∗(·)(Γ, �−1) . The norms in the dual space [Lp(·)(Γ, �)]∗ and in the space
Lp∗(·)(Γ, �−1) are equivalent.

The above result can be extracted from [24, Corollary 13.14]. For the case � = 1 ,
see also [21, Corollary 2.7].

3.2. Smirnov classes and Hardy type subspaces

Let Γ be a rectifiable Jordan curve in the complex plane C . We denote by D+
and D− the bounded and unbounded components of C \ Γ , respectively. We orient
Γ counter-clockwise. Without loss of generality we assume that 0 ∈ D+ . A function
f analytic in D+ is said to be in the Smirnov class Eq(D+) (0 < q < ∞ ) if there
exists a sequence of rectifiable Jordan curves Γn in D+ tending to the boundary Γ in
the sense that Γn eventually surrounds each compact subset of D+ such that

sup
n�1

∫
Γn

|f (z)|q|dz| < ∞. (4)

The Smirnov class Eq(D−) is the set of all analytic functions in D− ∪ {∞} for which
(4) holds with some sequence of curves Γn tending to the boundary in the sense that
every compact subset of D− ∪{∞} eventually lies outside Γn . We denote by Eq

0(D−)
the set of functions in Eq(D−) which vanish at infinity. The functions in Eq(D±) have
nontangential boundary values almost everywhere on Γ (see, e.g. [8, Theorem 10.3]).
We will identify functions in Eq(D±) with their nontangential boundary values. The
next result is a consequence of the Hölder inequality.

LEMMA 3.3. Let Γ be a rectifiable Jordan curve. Suppose 0 < q1, . . . , qr < ∞
and f j ∈ Eqj(D±) for all j ∈ {1, 2, . . . , r} . Then f 1f 2 . . . f r ∈ Eq(D±) , where

1
q

=
1
q1

+
1
q2

+ · · · + 1
qr

.

Let R denote the set of all rational functions without poles on Γ .

THEOREM 3.4. Let Γ be a rectifiable Jordan curve and 0 < q < ∞ . If f belongs
to Eq(D±) + R and its nontangential boundary values vanish on a subset γ ⊂ Γ of
positive measure, then f vanishes identically in D± .
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This result follows from the Lusin-Privalov theorem for meromorphic functions
(see, e.g. [26, p. 292]).

We refer to the monographs by Duren [8] and Privalov [26] for a detailed exposition
of the theory of Smirnov classes over domains with rectifiable boundary.

LEMMA 3.5. Let Γ be a Carleson Jordan curve, let p : Γ → (1,∞) be a
continuous function satisfying (2), and let � be a Khvedelidze weight satisfying (3).
Then P2 = P and Q2 = Q on Lp(·)(Γ, �) .

This result follows from Theorem 1.1 and [13, Lemma 6.4].
In view of Lemma 3.5, the Hardy type subspaces PLp(·)(Γ, �) , QLp(·)(Γ, �) , and

QLp(·)(Γ, �)
·
+ C of Lp(·)(Γ, �) are well defined. Combining Theorem 1.1 and [13,

Lemma 6.9] we obtain the following.

LEMMA 3.6. Let Γ be a Carleson Jordan curve, let p : Γ → (1,∞) be a
continuous function satisfying (2), and let � be a Khvedelidze weight satisfying (3).
Then

E1(D+) ∩ Lp(·)(Γ, �) = PLp(·)(Γ, �),

E1
0(D−) ∩ Lp(·)(Γ, �) = QLp(·)(Γ, �),

E1(D−) ∩ Lp(·)(Γ, �) = QLp(·)(Γ, �)
·
+ C.

3.3. Singular integral operators on the dual space

For a rectifiable Jordan curve Γ we have dτ = eiΘΓ(τ)|dτ| where ΘΓ(τ) is
the angle between the positively oriented real axis and the naturally oriented tangent
of Γ at τ (which exists almost everywhere). Let the operator HΓ be defined by
(HΓϕ)(t) = e−iΘΓ(t)ϕ(t) for t ∈ Γ . Note that HΓ is additive but HΓ(αϕ) = αHΓϕ
for α ∈ C . Evidently, H2

Γ = I .
From Theorem 1.1 and [13, Lemma 6.6] we get the following.

LEMMA 3.7. Let Γ be a Carleson Jordan curve, let p : Γ → (1,∞) be a
continuous function satisfying (2), and let � be a Khvedelidze weight satisfying (3). The
adjoint operator of S ∈ B(Lp(·)(Γ, �)) is the operator −HΓSHΓ ∈ B(Lp∗(·)(Γ, �−1)) .

LEMMA 3.8. Let Γ be a Carleson Jordan curve, let p : Γ → (1,∞) be a
continuous function satisfying (2), and let � be a Khvedelidze weight satisfying (3).
Suppose a ∈ L∞(Γ) and a−1 ∈ L∞(Γ) .
(a) The operator aP + Q is n -normal on Lp(·)(Γ, �) if and only if the operator

a−1P + Q is d -normal on Lp∗(·)(Γ, �−1) . In this case

n
(
aP + Q; Lp(·)(Γ, �)

)
= d

(
a−1P + Q; Lp∗(·)(Γ, �−1)

)
. (5)

(b) The operator aP + Q is d -normal on Lp(·)(Γ, �) if and only if the operator
a−1P + Q is n -normal on Lp∗(·)(Γ, �−1) . In this case

d
(
aP + Q; Lp(·)(Γ, �)

)
= n

(
a−1P + Q; Lp∗(·)(Γ, �−1)

)
.
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Proof. By Theorem 3.2, the space Lp∗(·)(Γ, �−1) may be identified with the dual
space [Lp(·)(Γ, �)]∗ . Let us prove part (a) . The operator aP + Q is n -normal
on Lp(·)(Γ, �) if and only if its adjoint (aP + Q)∗ is d -normal on the dual space
Lp∗(·)(Γ, �−1) and

n
(
aP + Q; Lp(·)(Γ, �)

)
= d

(
(aP + Q)∗; Lp∗(·)(Γ, �−1)

)
. (6)

From Theorem 3.2 it follows that

(aI)∗ = HΓaHΓ. (7)

Combining Lemma 3.7 and (7), we get

(aP + Q)∗ = HΓ(P + QaI)HΓ. (8)

On the other hand, taking into account Lemma 3.5, it is easy to check that

P + QaI = (I + Pa−1Q)(a−1P + Q)(I − Qa−1P)aI, (9)

where I + Pa−1Q , I − Qa−1P , and aI are invertible operators on Lp∗(·)(Γ, �−1) .
From (8) and (9) it follows that (aP + Q)∗ and a−1P + Q are d -normal on the space
Lp∗(·)(Γ, �−1) only simultaneously and

d
(
(aP + Q)∗; Lp∗(·)(Γ, �−1)

)
= d

(
a−1P + Q; Lp∗(·)(Γ, �−1)

)
. (10)

Combining (6) and (10), we arrive at (5). Part (a) is proved. The proof of part (b) is
analogous. �

Denote by L∞
N×N(Γ) the algebra of all N ×N matrix functions with entries in the

space L∞(Γ) .

LEMMA 3.9. Let Γ be a Carleson Jordan curve, let p : Γ → (1,∞) be a
continuous function satisfying (2), and let � be a Khvedelidze weight satisfying (3).
Suppose a ∈ L∞

N×N(Γ) and aT is the transposedmatrix of a . Then the operator P+aQ

is n -normal (resp. d -normal) on Lp(·)
N (Γ, �) if and only if the operator aTP + Q is

d -normal (resp. n -normal) on Lp∗(·)
N (Γ, �−1) .

Proof. In view of Theorem 3.2, the space Lp∗(·)
N (Γ, �−1) may be identified with

the dual space [Lp(·)
N (Γ, �)]∗ , and the general form of a linear functional on Lp(·)

N (Γ, �)
is given by

G(f ) =
N∑

j=1

∫
Γ
f j(τ)gj(τ) |dτ|,

where f = (f 1, . . . , f N) ∈ Lp(·)
N (Γ, �) and g = (g1, . . . , gN) ∈ Lp∗(·)

N (Γ, �−1) , and

the norms in [Lp(·)
N (Γ, �)]∗ and in Lp∗(·)

N (Γ, �−1) are equivalent. It is easy to see that

(aI)∗ = HΓaTHΓ , where HΓ is defined on Lp∗(·)
N (Γ, �−1) elementwise.
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FromLemma3.7 it follows that P∗ = HΓQHΓ and Q∗ = HΓPHΓ on Lp∗(·)
N (Γ, �−1) .

Then
(P + aQ)∗ = HΓ(PaTI + Q)HΓ. (11)

On the other hand, it is easy to see that

PaTI + Q = (I + PaTQ)(aTP + Q)(I − QaTP), (12)

where the operators I + PaTQ and I − QaTP are invertible on Lp∗(·)
N (Γ, �−1) . From

(11) and (12) it follows that (P + aQ)∗ and aTP + Q are n -normal (resp. d -normal)
on Lp∗(·)

N (Γ, �−1) only simultaneously. This implies the desired statement. �

4. Closedness of the image of aP + Q in the scalar case

4.1. Functions in Lp(·)(Γ, �) are better than integrable if S is bounded

LEMMA 4.1. Suppose Γ is a Carleson Jordan curve and p : Γ → (1,∞) is a
continuous function satisfying (2). If � is a Khvedelidze weight satisfying (3), then
there exists an ε > 0 such that Lp(·)(Γ, �) is continuously embedded in L1+ε(Γ) .

Proof. If (3) holds, then there exists a number ε > 0 such that

0 < (1/p(tk) + λk)(1 + ε) < 1 for all k ∈ {1, . . . , m}.
Hence, by Theorem 1.1, the operator S is bounded on Lp(·)/(1+ε)(Γ, �1+ε) . In that case
the operator �1+εS�−1−εI is bounded on Lp(·)/(1+ε)(Γ) . Obviously, the operator V
defined by (Vg)(t) = tg(t) is bounded on Lp(·)/(1+ε)(Γ) , and

((AV − VA)g)(t) =
�1+ε(t)
πi

∫
Γ

g(τ)
�1+ε(τ)

dτ.

Since AV − VA is bounded on Lp(·)/(1+ε)(Γ) , there exists a constant C > 0 such that∣∣∣∣
∫
Γ

g(τ)
�1+ε(τ)

dτ
∣∣∣∣ ‖�1+ε‖p(·)/(1+ε) =

∥∥∥∥�1+ε
∫
Γ

g(τ)
�1+ε(τ)

dτ
∥∥∥∥

p(·)/(1+ε)
� C‖g‖p(·)/(1+ε)

for all g ∈ Lp(·)/(1+ε)(Γ) . Since �(τ) > 0 a.e. on Γ , we have ‖�1+ε‖p(·)/(1+ε) > 0 .
Hence

Λ(g) =
∫
Γ

g(τ)
�1+ε(τ)

eiΘΓ(τ) |dτ|

is a bounded linear functional on Lp(·)/(1+ε)(Γ) . From Theorem 3.2 it follows that
�−1−ε ∈ L[p(·)/(1+ε)]∗(Γ) , where(

p(t)
1 + ε

)∗
=

p(t)
p(t) − (1 + ε)

is the conjugate exponent for p(·)/(1 + ε) . By Theorem 3.1,∫
Γ
|f (τ)|1+ε |dτ| � Cp(·),ε

∥∥ |f |1+ε�1+ε∥∥
p(·)/(1+ε) ‖�−1−ε‖[p(·)/(1+ε)]∗. (13)
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It is easy to see that ∥∥ |f |1+ε�1+ε∥∥
p(·)/(1+ε) = ‖f �‖1+ε

p(·) = ‖f ‖1+ε
p(·),�. (14)

From (13) and (14) it follows that ‖f ‖1+ε � Cp(·),ε,�‖f ‖p(·),� for all f ∈ Lp(·)(Γ, �) ,
where Cp(·),ε,� := (Cp(·),ε‖�−1−ε‖[p(·)/(1+ε)]∗)1/(1+ε) < ∞ . �

4.2. Criterion for Fredholmness of aP + Q in the scalar case

THEOREM 4.2. (see [14], Theorem3.3) Let Γ be a Carleson Jordan curve satisfying
the logarithmic whirl condition (1) at each point t ∈ Γ , let p : Γ → (1,∞) be a
continuous function satisfying (2), and let � be a Khvedelidze weight satisfying (3).
Suppose a ∈ PC(Γ) . The operator aP + Q is Fredholm on Lp(·)(Γ, �) if and only if
a(t ± 0) 
= 0 and

− 1
2π

arg
a(t − 0)
a(t + 0)

+
δ(t)
2π

log

∣∣∣∣a(t − 0)
a(t + 0)

∣∣∣∣ +
1

p(t)
+ λ (t) /∈ Z (15)

for all t ∈ Γ , where

λ (t) :=
{
λk, if t = tk, k ∈ {1, . . . , m},
0, if t /∈ Γ \ {t1, . . . , tm}.

The necessity portion of this result was obtained in [13, Theorem 8.1] for spaces
with variable exponents satisfying (2) under the assumption that S is bounded on
Lp(·)(Γ, w) , where Γ is an arbitrary rectifiable Jordan curve and w is an arbitrary
weight (not necessarily power). The sufficiency portion follows from [13, Lemma 7.1]
and Theorem 1.1 (see [14] for details). The restriction (1) comes up in the proof of
the sufficiency portion because under this condition one can guarantee the boundedness
of the weighted operator wSw−1I , where w(τ) = |(t − τ)γ | and γ ∈ C . If Γ
does not satisfy (1), then the weight w is not equivalent to a Khvedelidze weight and
Theorem 1.1 is not applicable to the operator wSw−1I , that is, a more general result
than Theorem 1.1 is needed to treat the case of arbitrary Carleson curves. As far as
we know, such a result is not known in the case of variable exponents. For a constant
exponent p , the result of Theorem 4.2 (for arbitrary Muckenhoupt weights) is proved
in [2] (see also [3, Proposition 7.3] for the case of arbitrary Muckenhoupt weights and
arbitrary Carleson curves).

4.3. Criterion for the closedness of the image of aP + Q

THEOREM 4.3. Let Γ be a Carleson Jordan curve satisfying the logarithmic
whirl condition (1) at each point t ∈ Γ , let p : Γ → (1,∞) be a continuous function
satisfying (2), and let � be a Khvedelidze weight satisfying (3). Suppose a ∈ PC(Γ)
has finitely many jumps and a(t ± 0) 
= 0 for all t ∈ Γ . Then the image of aP + Q is
closed in Lp(·)(Γ, �) if and only if (15) holds for all t ∈ Γ .
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Proof. The idea of the proof is borrowed from [3, Proposition 7.16]. The suffi-
ciency part follows from Theorem 4.2. Let us prove the necessity part. Assume that
a(t ± 0) 
= 0 for all t ∈ Γ . Since the number of jumps, that is, the points t ∈ Γ at
which a(t − 0) 
= a(t + 0) , is finite, it is clear that

− 1
2π

arg
a(t − 0)
a(t + 0)

+
δ(t)
2π

log

∣∣∣∣a(t − 0)
a(t + 0)

∣∣∣∣ +
1

1 + ε
/∈ Z,

− 1
2π

arg
a(t + 0)
a(t − 0)

+
δ(t)
2π

log

∣∣∣∣a(t + 0)
a(t − 0)

∣∣∣∣ +
1

1 + ε
/∈ Z

for all t ∈ Γ and all sufficiently small ε > 0 . By Theorem 4.2, the operators aP + Q
and a−1P + Q are Fredholm on the Lebesgue space L1+ε(Γ) whenever ε > 0 is
sufficiently small. From Lemma 4.1 it follows that we can pick ε0 > 0 such that

Lp(·)(Γ, �) ⊂ L1+ε0(Γ), Lp∗(·)(Γ, �−1) ⊂ L1+ε0(Γ)

and aP + Q , a−1P + Q are Fredholm on L1+ε0(Γ) . Then

n
(
aP + Q; Lp(·)(Γ, �)

)
� n

(
aP + Q; L1+ε0(Γ)

)
< ∞, (16)

and taking into account Lemma 3.8(b),

d
(
aP + Q; Lp(·)(Γ, �)

)
= n

(
a−1P + Q; Lp∗(·)(Γ, �−1)

)
� n

(
a−1P + Q; L1+ε0(Γ)

)
< ∞. (17)

If (15) does not hold, then aP+Q is not Fredholmon Lp(·)(Γ, �) in viewof Theorem4.2.
From this fact and (16)–(17) we conclude that the image of aP + Q is not closed

in Lp(·)(Γ, �) , which contradicts the hypothesis. �

5. Necessary condition for semi-Fredholmness of aP + bQ . The matrix case

5.1. Two lemmas on approximation of measurable matrix functions

Let the algebra L∞
N×N(Γ) be equipped with the norm

‖a‖L∞N×N(Γ) := N max
1�i,j�N

‖aij‖L∞(Γ).

LEMMA 5.1. (see [23], Lemma 3.4) Let Γ be a rectifiable Jordan curve. Suppose
a is a measurable N × N matrix function on Γ such that a−1 /∈ L∞

N×N(Γ) . Then for
every ε > 0 there exists a matrix function aε ∈ L∞

N×N(Γ) such that ‖aε‖L∞N×N(Γ) < ε
and the matrix function a − aε degenerates on a subset γ ⊂ Γ of positive measure.

LEMMA 5.2. (see [23], Lemma 3.6) Let Γ be a rectifiable Jordan curve. If a
belongs to L∞

N×N(Γ) , then for every ε > 0 there exists an aε ∈ L∞
N×N(Γ) such that

‖a − aε‖L∞N×N(Γ) < ε and a−1
ε ∈ L∞

N×N(Γ) .
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5.2. Necessary condition for d -normality of aP + Q and P + aQ

LEMMA 5.3. Suppose Γ is a Carleson Jordan curve, p : Γ → (1,∞) is a
continuous function satisfying (2), and � is a Khvedelidze weight satisfying (3). If
a ∈ L∞

N×N(Γ) and at least one of the operators aP + Q or P + aQ is d -normal on

Lp(·)
N (Γ, �) , then a−1 ∈ L∞

N×N(Γ) .

Proof. This lemma is provedby analogywith [23, Theorem3.13]. For definiteness,
let us consider the operator P + aQ . Assume that a−1 /∈ L∞

N×N(Γ) . By Lemma 5.1,
for every ε > 0 there exists an aε ∈ L∞

N×N(Γ) such that ‖a − aε‖L∞N×N(Γ) < ε and aε
degenerates on a subset γ ⊂ Γ of positive measure. We have

‖(P + aQ) − (P + aεQ)‖B(Lp(·)
N (Γ,�)) � ‖a − aε‖L∞N×N(Γ)‖Q‖B(Lp(·)

N (Γ,�)) = O(ε)

as ε → 0 . Hence there is an ε > 0 such that P + aεQ is d -normal together
with P + aQ due to Theorem 2.3. Since the image of the operator P + aεQ is a
subspace of finite codimension in Lp(·)

N (Γ, �) , it has a nontrivial intersection with any

infinite-dimensional linear manifold contained in Lp(·)
N (Γ, �) . In particular, the image

of P + aεQ has a nontrivial intersection with linear manifolds Mj , j ∈ {1, . . . , N} , of
those vector-functions, the j -th component of which is a polynomial of 1/z vanishing
at infinity and all the remaining components are identically zero. That is, there exist

ψ+
j ∈ PLp(·)

N (Γ, �), ψ−
j ∈ QLp(·)

N (Γ, �), hj ∈ Mj, hj 
≡ 0

such that ψ+
j + aεψ−

j = hj for all j ∈ {1, . . . , N} . Consider the N × N matrix
functions

Ψ+ := [ψ+
1 ,ψ+

2 , . . . ,ψ+
N ], Ψ− := [ψ−

1 ,ψ−
2 , . . . ,ψ−

N ], H := [h1, h2, . . . , hN ],

where ψ+
j , ψ−

j , and hj are taken as columns. Then H −Ψ+ = aεΨ− . Therefore,

det(H −Ψ+) = det aε detΨ− a.e. on Γ.

The left-hand side of this equality is a meromorphic function having a pole at zero of at
least N -th order. Thus, it is not identically zero in D+ .

On the other hand, each entry of H −Ψ+ belongs to

PLp(·)(Γ, �) + R ⊂ E1(D+) + R

(see Lemma3.6). Hence, by Lemma3.3, the function det(H−Ψ+) ∈ E1/N(D+)+R and
det(H−Ψ+) degenerates on γ because aε degenerates on γ . In view of Theorem 3.4,
det(H −Ψ+) vanishes identically in D+ . This is a contradiction. Thus, a−1 belongs
to L∞

N×N(Γ) . �
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5.3. Necessary condition for semi-Fredholmness of aP + bQ

THEOREM 5.4. Let Γ be a Carleson Jordan curve, let p : Γ → (1,∞) be a
continuous function satisfying (2), and let � be a Khvedelidze weight satisfying (3). If
the coefficients a and b belong to L∞

N×N(Γ) and the operator aP+bQ is semi-Fredholm

on Lp(·)
N (Γ, �) , then a−1, b−1 ∈ L∞

N×N(Γ) .

Proof. The proof is analogous to the proof of [23, Theorem3.18]. Suppose aP+bQ

is d -normal on Lp(·)
N (Γ, �) . By Lemma 5.2, for every ε > 0 there exist aε ∈ L∞

N×N(Γ)
such that a−1

ε ∈ L∞
N×N(Γ) and ‖a − aε‖L∞N×N(Γ) < ε . Since

‖(aP + bQ) − (aεP + bQ)‖B(Lp(·)
N (Γ,�)) � ‖a − aε‖L∞N×N(Γ)‖P‖B(Lp(·)

N (Γ,�)) = O(ε)

as ε → 0 , from Theorem 2.3 it follows that ε > 0 can be chosen so small that
aεP + bQ is d -normal on Lp(·)

N (Γ, �) , too. Since a−1
ε ∈ L∞

N×N(Γ) , the operator aεI is

invertible on Lp(·)
N (Γ, �) . From Theorem 2.1 it follows that the operator P + a−1

ε bQ =
a−1
ε (aεP + bQ) is d -normal. By Lemma 5.3, b−1aε belongs to L∞

N×N(Γ) . Hence
b−1 = b−1aεa−1

ε ∈ L∞
N×N(Γ) .

Furthermore, b−1aP+Q = b−1(aP+bQ) and the operator b−1aP+Q is d -normal
on Lp(·)

N (Γ, �) . By Lemma 5.3, a−1b ∈ L∞
N×N(Γ) . Then a−1 = a−1bb−1 belongs to

L∞
N×N(Γ) . That is, we have shown that if aP + bQ is d -normal on Lp(·)

N (Γ, �) , then
a−1, b−1 ∈ L∞

N×N(Γ) .

If aP + bQ is n -normal on Lp(·)
N (Γ, �) , then arguing as above, we conclude

that the operator P + a−1
ε bQ is n -normal on Lp(·)

N (Γ, �) . By Lemma 3.9, the oper-

ator (a−1
ε b)TP + Q is d -normal on Lp∗(·)

N (Γ, �−1) . From Lemma 5.3 it follows that
[(a−1

ε b)T ]−1 ∈ L∞
N×N(Γ) . Therefore, b−1 = (a−1

ε )−1a−1
ε ∈ L∞

N×N(Γ) . Furthermore,
b−1aP+Q = b−1(aP+bQ) and the operator b−1aP+Q = b−1(aP+bQ) is n -normal
on Lp(·)

N (Γ, �) . From Lemma 3.9 we get that the operator P + (b−1a)TQ is d -normal

on Lp∗(·)
N (Γ, �−1) . Applying Lemma 5.3 to the operator P + (b−1a)TQ acting on

Lp∗(·)
N (Γ, �−1) , we obtain a−1b ∈ L∞

N×N(Γ) . Thus a−1 = a−1bb−1 ∈ L∞
N×N(Γ) . �

6. Semi-Fredholmness and Fredholmness of aP + bQ are equivalent

6.1. Decomposition of piecewise continuous matrix functions

Denote by PC0(Γ) the set of all piecewise continuous functions a which have
only a finite number of jumps and satisfy a(t − 0) = a(t) for all t ∈ Γ . Let CN×N(Γ)
and PC0

N×N(Γ) denote the sets of N ×N matrix functions with continuous entries and
with entries in PC0(Γ) , respectively. A matrix function a ∈ PCN×N(Γ) is said to be
nonsingular if det a(t ± 0) 
= 0 for all t ∈ Γ .

LEMMA 6.1. (see [6], Chap. VII, Lemma 2.2) Suppose Γ is a rectifiable Jor-
dan curve. If a matrix function f ∈ PC0

N×N(Γ) is nonsingular, then there exist an
upper-triangular nonsingular matrix function g ∈ PC0

N×N(Γ) and nonsingular matrix
functions c1, c2 ∈ CN×N(Γ) such that f = c1gc2 .
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6.2. Compactness of commutators

LEMMA 6.2. Let Γ be a Carleson Jordan curve, let p : Γ → (1,∞) be a
continuous function satisfying (2), and let � be a Khvedelidze weight satisfying (3). If
c belongs to CN×N(Γ) , then the commutators cP − PcI and cQ − QcI are compact

on Lp(·)
N (Γ, �) .

This statement follows from Theorem 1.1 and [13, Lemma 6.5].

6.3. Equivalence of semi-Fredholmness and Fredholmness of aP + bQ

THEOREM 6.3. Let Γ be a Carleson Jordan curve satisfying the logarithmic
whirl condition (1) at each point t ∈ Γ , let p : Γ → (1,∞) be a continuous function
satisfying (2), and let � be a Khvedelidze weight satisfying (3). If a, b ∈ PC0

N×N(Γ) ,

then aP+bQ is semi-Fredholmon Lp(·)
N (Γ, �) if and only if it is Fredholmon Lp(·)

N (Γ, �) .

Proof. The idea of the proof is borrowed from [29, Theorem 3.1]. Only the
necessity portion of the theorem is nontrivial. If aP + bQ is semi-Fredholm, then
a and b are nonsingular by Theorem 5.4. Hence b−1a is nonsingular. In view of
Lemma 6.1, there exist an upper-triangular nonsingular matrix function g ∈ PC0

N×N(Γ)
and continuous nonsingular matrix functions c1 , c2 such that b−1a = c1gc2 . It is easy
to see that

aP + bQ = bc1
[
(gP + Q)(Pc2I + Qc−1

1 I)+ g(c2P−Pc2I)+ (c−1
1 Q−Qc−1

1 I)
]
. (18)

From Lemma 6.2 it follows that the operators c2P − Pc2I and c−1
1 Q − Qc−1

1 I are

compact on Lp(·)
N (Γ, �) and

(Pc2I + Qc−1
1 I)(c−1

2 P + c1Q) = I + K1, (c−1
2 P + c1Q)(Pc2I + Qc−1

1 I) = I + K2,

where K1 and K2 are compact operators on Lp(·)
N (Γ, �) . In view of these equalities, by

Theorem 2.2, the operator Pc2I + Qc−1
1 I is Fredholm on Lp(·)

N (Γ, �) . Obviously, the
operator bc1I is invertible because bc1 is nonsingular. From (18) and Theorem 2.1 it
follows that aP + bQ is n -normal, d -normal, Fredholm if and only if gP + Q has the
corresponding property.

Let gj , j ∈ {1, . . . , N} , be the elements of the main diagonal of the upper-
triangular matrix function g . Since g is nonsingular, all gj are nonsingular, too.

Assume for definiteness that gP+Q is n -normal on Lp(·)
N (Γ, �) . By Theorem 2.5 (a) ,

the operator g1P+Q is n -normal on Lp(·)(Γ, �) . Hence the image of g1P+Q is closed.
From Theorem 4.3 it follows that (15) is fulfilled with g1 in place of a . Therefore,
the operator g1P + Q is Fredholm on Lp(·)(Γ, �) due to Theorem 4.2. Applying
Theorem 2.5(b), we deduce that the operator g(1)P + Q is n -normal on Lp(·)

N−1(Γ, �) ,
where g(1) is the (N − 1) × (N − 1) upper-triangular nonsingular matrix function
obtained from g by deleting the first column and the first row. Arguing as before with
g(1) in place of g , we conclude that g2P+Q is Fredholm on Lp(·)(Γ, �) and g(2)P+Q

is n -normal on Lp(·)
N−2(Γ, �) , where g(2) is the (N − 2) × (N − 2) upper-triangular
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nonsingular matrix function obtained from g(1) by deleting the first column and the
first row. Repeating this procedure N times, we can show that all operators gjP + Q ,
j ∈ {1, . . . , N} , are Fredholm on Lp(·)(Γ, �) .

If the operator gP + Q is d -normal, then we can prove in a similar fashion that
all operators gjP + Q , j ∈ {1, . . . , N} , are Fredholm on Lp(·)(Γ, �) . In this case we
start with gN and delete the last column and the last row of the matrix g(j−1) on the
j -th step (we assume that g(0) = g ).

Since all operators gjP + Q are Fredholm on Lp(·)(Γ, �) , from Theorem 2.5(b)
we obtain that the operator gP + Q is Fredholm on Lp(·)

N (Γ, �) . Hence aP + bQ is

Fredholm on Lp(·)
N (Γ, �) , too. �

7. Semi-Fredholmness and Fredholmness are equivalent
for arbitrary operators in alg (S, PC, Lp(·)

N (Γ, �))

7.1. Linear dilation

The following statement shows that the semi-Fredholmness of an operator in a
dense subalgebra of alg (S, PC, Lp(·)

N (Γ, �)) is equivalent to the semi-Fredholmness of
a simpler operator aP + bQ with coefficients of a, b of larger size.

LEMMA 7.1. Suppose Γ is a Carleson Jordan curve, p : Γ → (1,∞) is a
continuous function satisfying (2), and � is a Khvedelidze weight satisfying (3). Let

A =
k∑

i=1

Ai1Ai2 . . . Air,

where Aij = aijP+bijQ and all aij, bij belong to PC0
N×N(Γ) . Then there exist functions

a, b ∈ PC0
D×D(Γ) , where D := N(k(r + 1) + 1) , such that A is n -normal ( d -normal,

Fredholm) on Lp(·)
N (Γ, �) if and only if aP + bQ is n -normal (resp. d -normal,

Fredholm) on Lp(·)
D (Γ, �) .

Proof. The idea of the proof is borrowed from [10] (see also [1, Theorem 12.15]).
Denote by Os and Is the s× s zero and identity matrix, respectively. For � = 1, . . . , r ,
let B� be the kN × kN matrix

B� = diag(A1�, A2�, . . . , Ak�),

then define the kN(r + 1) × kN(r + 1) matrix Z by

Z =

⎡
⎢⎢⎢⎢⎢⎣

IkN B1 OkN . . . OkN

OkN IkN B2 . . . OkN
...

...
...

. . .
...

OkN OkN OkN . . . Br

OkN OkN OkN . . . IkN

⎤
⎥⎥⎥⎥⎥⎦ .
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Put

X := column(ON , . . . , ON︸ ︷︷ ︸
kr

, −IN , . . . ,−IN︸ ︷︷ ︸
k

), Y := ( IN , . . . , IN︸ ︷︷ ︸
k

, ON , . . . , ON︸ ︷︷ ︸
kr

).

Define also M0 = ( IN , . . . , IN︸ ︷︷ ︸
k

) and for � ∈ {1, . . . , r} , let

M� := (A11A12 . . . A1� , A21A22 . . . A2� , . . . , Ak1Ak2 . . . Ak�).

Finally, put
W := (M0, M1, . . . , Mr).

It can be verified straightforwardly that[
IkN(r+1) O

W IN

] [
IkN(r+1) O

O A

] [
Z X
O IN

]
=

[
Z X
Y ON

]
. (19)

It is clear that the outer terms on the left-hand side of (19) are invertible. Hence
the middle factor of (19) and the right-hand side of (19) are n -normal (d -normal,
Fredholm) only simultaneously in view of Theorem 2.1. By Theorem 2.5(b), the
operator A is n -normal (d -normal, Fredholm) if and only if the middle factor of (19)
has the corresponding property. Finally, note that the left-hand side of (19) has the form
aP + bQ , where a, b ∈ PC0

D×D(Γ) . �

7.2. Proof of Theorem 1.2

Obviously, for every f ∈ PC(Γ) there exists a sequence f n ∈ PC0(Γ) such that
‖f − f n‖L∞(Γ) → 0 as n → ∞ . Therefore, for each operator αP + βQ , where
α = (αrs)N

r,s=1 , β = (βrs)N
rs=1 and αrs, βrs ∈ PC(Γ) for all r, s ∈ {1, . . . , N} , there

exist sequences α(n) = (α(n)
rs )N

r,s=1 , β (n) = (β (n)
rs )N

r,s=1 with α(n)
rs , β (n)

rs ∈ PC0(Γ) for all
r, s ∈ {1, . . . , N} such that

‖(αP + βQ) − (α(n)P + β (n)Q)‖B(Lp(·)
N (Γ,�))

� N max
1�r,s�N

‖αrs − α(n)
rs ‖L∞(Γ)‖P‖B(Lp(·)

N (Γ,�))

+ N max
1�r,s�N

‖βrs − β (n)
rs ‖L∞(Γ)‖Q‖B(Lp(·)

N (Γ,�)) = o(1)

as n → ∞ .
Let A ∈ alg (S, PC; Lp(·)

N (Γ, �)) . Then there exists a sequence of operators A(n) of

the form
∑k

i=1 A(n)
i1 A(n)

i2 . . . A(n)
ir , where A(n)

ij = a(n)
ij P + b(n)

ij Q and a(n)
ij , b(n)

ij belong to

PCN×N(Γ) , such that ‖A−A(n)‖B(Lp(·)
N (Γ,�)) → 0 as n → ∞ . In view of what has been

said above, without loss of generality, we can assume that all matrix functions a(n)
ij , b(n)

ij

belong to PC0
N×N(Γ) .
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If A is semi-Fredholm, then for all sufficiently large n , the operators A(n) are
semi-Fredholm by Theorem 2.3. From Lemma 7.1 it follows that for every semi-
Fredholm operator

∑k
i=1 A(n)

i1 A(n)
i2 . . . A(n)

ir there exist a(n), b(n) ∈ PC0
D×D(Γ) , where

D := N(k(r + 1) + 1) , such that a(n)P + b(n)Q is semi-Fredholm on Lp(·)
D (Γ, �) .

By Theorem 6.3, a(n)P + b(n)Q is Fredholm on Lp(·)
D (Γ, �) . Applying Lemma 7.1

again, we conclude that
∑k

i=1 A(n)
i1 A(n)

i2 . . . A(n)
ir is Fredholm on Lp(·)

N (Γ, �) . Thus, for
all sufficiently large n , the operators A(n) are Fredholm. Lemma 2.4 yields that A is
Fredholm. �
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