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CANONICAL STRUCTURES FOR

PALINDROMIC MATRIX POLYNOMIALS
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Abstract. Spectral properties and canonical structures of palindromic matrix polynomials are
studied in terms of their linearizations, standard triples, and unitary triples. These triples describe
matrix polynomials via eigenvalues and Jordan chains. As an application of canonical structures
and their properties, criteria are developed for stable boundedness of solutions of systems of
linear differential equations with symmetries.
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Basel, 1983.
[6] GOHBERG, I., LANCASTER, P. AND RODMAN, L., Indefinite Linear Algebra and its Applications,
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