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WEYL–TITCHMARSH THEORY AND BORG–MARCHENKO–TYPE

UNIQUENESS RESULTS FOR CMV OPERATORS WITH

MATRIX–VALUED VERBLUNSKY COEFFICIENTS

STEPHEN CLARK, FRITZ GESZTESY AND MAXIM ZINCHENKO

Abstract. We prove local and global versions of Borg–Marchenko-type uniqueness theorems for
half-lattice and full-lattice CMV operators (CMV for Cantero, Moral, and Velázquez [19]) with
matrix-valued Verblunsky coefficients. While our half-lattice results are formulated in terms of
matrix-valued Weyl–Titchmarsh functions, our full-lattice results involve the diagonal and main
off-diagonal Green’s matrices.

We also develop the basics of Weyl–Titchmarsh theory for CMV operators with matrix-
valued Verblunsky coefficients as this is of independent interest and an essential ingredient in
proving the corresponding Borg–Marchenko-type uniqueness theorems.
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[28] A. J. DURÁN AND F. A. GRÜNBAUM, A charcterization for a class of weight matrices with orthogonal
matrix polynomials satisfying second-order differential equations, Int. Math. Res. Notices 23, 1371–
1390 (2005).
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