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Abstract. In a recent paper by Axtell, Han, Hershkowitz, and the present authors, one of the main
questions that was considered was finding n×n doubly stochastic matrices P and Q which solve
the multiplicative extremal spectral radius problems minS∈Ωn ρ(SA) and maxS∈Ωn ρ(SA) ,
respectively. Here A ∈ R

n,n is an arbitrary, but fixed, n × n nonnegative matrix, ρ(·) is the
spectral radius of a matrix, and Ωn is the set of all n × n doubly stochastic matrices. It was
shown there that the solution to both problems is attained at some permutation matrix. In this
paper we consider an additive version of these problems, namely, of solving the additive extremal
spectral radius problems minS∈Ωn ρ(S + A) and maxS∈Ωn ρ(S + A) . As a by product of,
actually, solutions to more general spectral radius optimization problems, we obtain here that
the solution to both additive spectral radius optimization problems is, once again, attained at
some permutation matrix. One of the more general spectral radius optimization problems that
we consider here is that of replacing the constrains that the optimization be done on the doubly
stochastic matrices by the weaker constraint of optimizing just on the n × n column or row
stochastic matrices.

1. Introduction

In a recent paper [1] by Axtell, Han, Hershkowitz, Neumann, and Sze, the following
multiplicative spectral radius optimization problems were considered: Let A ∈ R

n,n be
a nonnegative and irreducible matrix and let Ωn be the set of all n×n doubly stochastic
matrices. Then determine the extremal values and the matrices on which they occur of:

min
S∈Ωn

ρ(SA) and max
S∈Ωn

ρ(SA), (1)

where ρ(·) denotes the spectral radius of a matrix. It was shown in that paper that the
solution to both problems is always obtained on the set Pn of the n × n permutation
matrices.

The work in this paper was motivated by parallel questions concerning the additive
spectral radius optimization problems, namely, under the above notations, determine:

min
S∈Ωn

ρ(S + A) and max
S∈Ωn

ρ(S + A). (2)
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We shall indeed show that the extremal value of both problems is always attained at a
permutation matrix. To us, this result was a surprise.

In fact we shall consider here optimization problems that extend the questions in
both (1) and (2). Let Cn be the set of all n × n column stochastic matrices. Let Xn

be, alternately, any one of Ωn and Cn . Then given any two arbitrary, but fixed, not
necessarily irreducible nonnegative matrices A, B ∈ R

n,n , determine

min
S∈Xn

ρ(SA + B) and max
S∈Xn

ρ(SA + B). (3)

In all the extremal problems mentioned above the pattern of solution which we
will obtain is the same. When Xn = Ωn , then as will be shown in Section 2, the
solutions are always attained at permutation matrices. When Xn = Cn , the solutions
are attained at extremal points of Cn , namely, on En , which is the set of all nonnegative
matrices having in each column exactly one nonzero entry equal to 1 . This we do in
Section 3. Furthermore, similar result to those we obtained for extremal problems on the
column stochastic matrices, can be obtained for extremal problem on the row stochastic
matrices.

Finally in Section 4, we shall extend the generality of the optimization problem

min
S1,...,Sm∈Xn

ρ

(
m∑

i=1

SiAi

)
and max

S1,...,Sm∈Xn
ρ

(
m∑

i=1

SiAi

)
. (4)

It should be commented that as the sets of matrices Ωn and Cn are closed and
bounded and as the spectral radius is a continuous function on Rn,n , all optimization
problems here are attained in the sets on which they are considered. However, the
spectral radius is not a convex function over these sets of matrices, yet, as we have
claimed above, in all the problems considered here, the extremal spectral values are
obtained at the extreme points of the sets on which they are considered.

Finally, much background material on nonnegative matrices can be found in the
book by Berman and Plemmons [2]. Viewing some of the problems we consider here
as perturbation problems, by a matrix of constant row or column sums or, indeed, a
doubly stochastic matrix, of the spectral radius or Perron root of a nonnegative matrix,
we should mention that other types of perturbation problems for the spectral radius of
nonnegative matrices have been considered in the literature. To mention here a few
we cite: Cohen [3], Deutsch and Neumann [4], Elsner [5], Friedland [6], Golub and
Meyer [7], Han, Neumann, and Tsatsomeros [8], and Jonson, Loewy, Olesky, and van
den Driessche [9].

2. Doubly Stochastic Matrices

A key result to the developments in this paper is the following lemma which is
actually a special case of Lemma 2.2 in [1].

LEMMA 2.1. Suppose T1 and T2 are irreducible nonnegative matrices in R
n,n

such that rank (T1 − T2) = 1 . Then the map f T1,T2 defined by

f T1,T2(α) := ρ(αT1 + (1 − α)T2), α ∈ [0, 1],
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is either a strictly monotone function or a constant function on [0, 1] . Furthermore, if
x and y are right and left Perron vectors of T2 , then:

(a) f T1 ,T2 is strictly increasing if yt(T1 − T2)x > 0 .
(b) f T1 ,T2 is strictly decreasing if yt(T1 − T2)x < 0 .
(c) f T1 ,T2 is a constant function if yt(T1 − T2)x = 0 .

Proof. In [1, Lemma 2.2], substitute A = In , S1 = T1 , and S2 = T2 , respectively.
�

In our first result of this paper we consider the optimization problems (3) for the
case when Xn = Ωn .

THEOREM 2.2. Let A, B ∈ R
n,n be nonnegative matrices. Then there are permu-

tation matrices P∗ and Q∗ such that

ρ(P∗A + B) = min
S∈Ωn

ρ(SA + B) and ρ(Q∗A + B) = max
S∈Ωn

ρ(SA + B). (5)

Proof. We shall prove here only the left equality in (5), that is that the minimum
of ρ(SA + B) over Ωn is attained at a permutation matrix, as the right equality can
been proved along similar lines.

We first consider the case when B is irreducible. Suppose that S∗ ∈ Ωn is a matrix
such that

ρ(S∗A + B) = min
S∈Ωn

ρ(SA + B)

and S∗ is chosen so that among all matrices S satisfying the above equality, S∗ has the
maximum number of entries equal one. We claim that S∗ has exactly n entires equal
one and so it is a permutation matrix.

Suppose to the contrary that S∗ = (si,j) has exactly k entries equal one, with k <
n , at the positions (i1, j1), . . . , (ik, jk) . Set I = {i1, . . . , ik} and J = {j1, . . . , jk} .
Let x and y = (y1, . . . , yn)t be right and left Perron vectors of S∗A + B , respectively,
and set w = (w1, . . . , wn)t = Ax . Take p and q in {1, . . . , n} such that

yp = max{yi : i /∈ I } and wq = min{wj : j /∈ J }. (6)

Without loss of generality, we may assume that p = q = 1 and I = J = {n − k +
1, . . . , n} . Otherwise, we can replace S∗, A, B, x , and y by PS∗Qt, QAPt, PBPt, Px,
and Py , respectively. Hence, S∗ has the form S∗1 ⊕ Ik for some S∗1 ∈ Ωn−k . Note that
all entries of S∗1 , or equivalently, all si,j , with 1 � i, j � n − k , must be smaller than
one.

Now let S† = S∗ + (1 − s1,1)−1uvt with

u = (s1,1−1, s2,1, . . . , sn−k,1, 0, . . . , 0)t and v = (s1,1−1, s1,2, . . . , s1,n−k, 0, . . . , 0)t.
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Then S† has the form S†1 ⊕ Ik with

S†1 =

⎡
⎢⎢⎣

s1,1 s1,2 · · · s1,n−k

s2,1
... si,j

sn−k,1

⎤
⎥⎥⎦+

⎡
⎢⎢⎢⎣

1 − s1,1 −s1,2 · · · −s1,n−k

−s2,1
...

si,1s1,j
1−s1,1−sn−k,1

⎤
⎥⎥⎥⎦

=

⎡
⎢⎢⎣

1 0 · · · 0
0
... si,j +

si,1s1,j
1−s1,1

0

⎤
⎥⎥⎦ ,

so that S† is nonnegative with at least k + 1 entries equal 1 . Furthermore, as all the
row and column sums of uvt equal zero, the row and column sums of S† coincide,
respectively, with those of S∗ . Hence S† is a doubly stochastic matrix. As S† has
k + 1 entries which are equal to one, we must have that ρ(S†A + B) > ρ(S∗A + B) .

Let T1 = S†A + B and T2 = S∗A + B . Clearly, T1 − T2 = (1 − s1,1)−1uvtA is a
rank one matrix. Furthermore, as y1 and w1 satisfy (6), we have that

ytu =
n∑

i=1

si,1yi − y1 =
n−k∑
i=1

si,1yi − y1 �
n−k∑
i=1

si,1y1 − y1 = 0

and

vtw =
n∑

j=1

s1,jwj − w1 =
n−k∑
j=1

s1,jwj − w1 �
n−k∑
j=1

s1,jw1 − w1 = 0.

Thus, (ytu)(vtw) � 0 and hence yt(T1 − T2)x = (1 − s1,1)−1ytuvtw � 0 . By Lemma
2.1, the map f T1,T2 is either a strictly decreasing function or a constant function. But
this contradicts the fact that

f T1 ,T2(0) = ρ(S∗A + B) < ρ(S†A + B) = f T1 ,T2(1).

Therefore, the result holds when B is irreducible.
Now suppose B is not irreducible. If there is an S∗ ∈ Ωn \ Pn such that

min
S∈Ωn

ρ(SA + B) = ρ(S∗A + B) < min
P∈Pn

ρ(PA + B),

then a positive matrix B̃ can easily be found for which

ρ(S∗A + B + B̃) < min
P∈Pn

ρ(PA + B) � min
P∈Pn

ρ(PA + B + B̃).

But this contradicts the fact that for the irreducible matrix B + B̃ , there is P∗ ∈ Pn

such that
ρ(P∗A + (B + B̃)) = min

S∈Ωn
ρ(SA + (B + B̃)).

�
By taking A = In and B = 0n , respectively, Theorem 2.2, yields two corollaries.
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COROLLARY 2.3. ([1, Theorem 2.1]) Let A ∈ R
n,n be a nonnegative matrix. Then

there are permutation matrices P∗ and Q∗ such that

ρ(P∗A) = min
S∈Ωn

ρ(SA) and ρ(Q∗A) = max
S∈Ωn

ρ(SA).

COROLLARY 2.4. Let B ∈ R
n,n be a nonnegative matrix. Then there are permu-

tation matrices P∗ and Q∗ such that

ρ(P∗ + B) = min
S∈Ωn

ρ(S + B) and ρ(Q∗ + B) = max
S∈Ωn

ρ(S + B). (7)

Remark that in Corollary 2.3, we removed the assumption of irreducibility of A ,
which was imposted in [1, Theorem 2.1].

Before continuing, we note that Corollary 2.4 establishes our claim immediately
following (2), a result which we called surprising. Let us provide here an example.

EXAMPLE 2.5. Consider the matrix

B =

⎡
⎢⎢⎢⎣

1 1 1 1 1
1 1 0 1 0
1 0 1 0 0
1 0 0 1 0
1 0 0 0 1

⎤
⎥⎥⎥⎦ . (8)

As a point of information we find that ρ(B) ≈ 3.1149 . On computing the minimum
and maximum of ρ(P + B) , as P runs over all permutations in P5 , we find that for

P∗ =

⎡
⎢⎢⎢⎣

0 0 0 1 0
1 0 0 0 0
0 1 0 0 0
0 0 0 0 1
0 0 1 0 0

⎤
⎥⎥⎥⎦ and Q∗ =

⎡
⎢⎢⎢⎣

1 0 0 0 0
0 0 0 1 0
0 0 1 0 0
0 1 0 0 0
0 0 0 0 1

⎤
⎥⎥⎥⎦ ,

we have that

min
S∈Ω5

ρ(S + B) = min
P∈P5

ρ(P + B) = ρ(P∗ + B) ≈ 4.0050

and that

max
S∈Ω5

ρ(S + B) = max
P∈P5

ρ(P + B) = ρ(Q∗ + B) ≈ 4.1284.

For curiosity’s sake, on generating using several Matlab commands the random doubly
stochastic matrix:

S =

⎡
⎢⎢⎢⎣

0.3833 0.01978 0.03607 0.2559 0.3049
0.02269 0.1668 0.2534 0.3569 0.2002
0.1564 0.3096 0.4718 0.02184 0.04031
0.1003 0.4457 0.01826 0.02990 0.4058
0.3373 0.05808 0.2204 0.3355 0.04870

⎤
⎥⎥⎥⎦ ,

we find that
ρ(S + B) = 4.0618.
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We finally note that in this example, the identity matrix turned out to yield neither the
minimum value nor the maximum value in (7) over all matrices in Pn .

3. Column Stochastic Matrices

In this section we relax our requirement of the last section that our spectral radius
optimization problems are carried out over the set of the doubly stochastic matrices. We
replace this requirement by considering the optimization problems over the set of the
row stochastic or column stochastic matrices. Since the pattern of solution over both
classes of matrices is similar, we shall consider here only the optimization problems
over the column stochastic matrices.

Recall our notation from Section 1. Let Cn be the set of n × n column stochastic
matrices and En be the set of the extreme points of Cn . The set En thus contains all
n × n nonnegative matrices such that each column consists of exactly one entry with
value one and all other entires zero.

Our first major result for this section is:

THEOREM 3.1. Let A, B ∈ R
n,n be nonnegativematrices. Then there are matrices

E∗ and F∗ in En such that

ρ(E∗A + B) = min
C∈Cn

ρ(CA + B) and ρ(F∗A + B) = max
C∈Cn

ρ(CA + B). (9)

Proof. It suffices to prove the case when B is irreducible. Once this case is done,
the remaining case can be shown by a similar argument as at the end of the proof of
Theorem 2.2. We will again show that one of the equalities in (9), say the right equality
holds, as the proof of the other equality is similar.

Let C∗ ∈ Cn be a matrix such that ρ(C∗A + B) = maxC∈Cn ρ(CA + B) and such
that among all maximizers of ρ(CA + B) in Cn , C∗ has maximum number of zero
entries. We claim that C∗ has exactly n(n − 1) zero entries and hence C∗ is in En .

Suppose to the contrary, namely, C∗ = (ci,j) has fewer than n(n−1) zero entries,
then permutation matrices P and Q can be found such that the first column of PC∗Q
has at least two nonzero entries, with the (1, 1)–th entry being nonzero. Without loss
of generality, we may assume that P = Q = In by replacing C∗, A , and B with
PC∗Q, QtAPt , and PBPt , respectively.

Consider the vector c = (1 − c1,1)−1(0, c2,1, c3,1, . . . , cn,1)t ∈ R
n . Note that c is

well defined as 0 < c1,1 < 1 . Furthermore, each entries of c is nonnegative and the
sum of its entries is one. Now let C1 and C2 be the matrices obtained from C∗ by
replacing its first column with (1, 0, . . . , 0)t and c , respectively. Clearly, both C1 and
C2 are column stochastic matrices and both C1 and C2 have at least one more zero
entries than C∗ . But then, due to our assumptions on C∗ , we must have that

ρ(C1A + B) < ρ(C∗A + B) and ρ(C2A + B) < ρ(C∗A + B).

Let T1 = C1A + B and T2 = C2A + B . Now note that as C∗ = c1,1C1 + (1− c1,1)C2 ,
we can write that

C∗A + B = c1,1T1 + (1 − c1,1)T2.
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By the construction of C1 and C2 , T1 − T2 = (C1 −C2)A is a rank one matrix and so
by Lemma 2.1, the map f T1 ,T2 is either strictly monotone or a constant function. But
this contradicts the fact that

max{f T1,T2(1), f T1 ,T2(0)} = max{ρ(C1A+B), ρ(C2A+B)} < ρ(C∗A+B) = f T1 ,T2(c1,1).

�

Using a similar argument to those employed in Section 2, we have the following
two corollaries.

COROLLARY 3.2. Let A ∈ R
n,n be a nonnegativematrix. Then there exist matrices

E∗ and F∗ in En such that

ρ(E∗A) = min
C∈Cn

ρ(CA) and ρ(F∗A) = max
C∈Cn

ρ(CA).

COROLLARY 3.3. Let B ∈ R
n,n be a nonnegativematrix. Then there exist matrices

E∗ and F∗ in En such that

ρ(E∗ + B) = min
C∈Cn

ρ(C + B) and ρ(F∗ + B) = max
C∈Cn

ρ(C + B).

EXAMPLE 3.4. Let us consider thematrix B given in Example 2.5. After computing
the values of ρ(E + B) , for all 55 = 3125 of the elements E in E5 , we find that for

E∗ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0

0 1 0 0 1

1 0 0 1 0

0 0 0 0 0

0 0 1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

and F∗ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

we have

min
C∈C5

ρ(C + B) = min
E∈E5

ρ(E + B) = ρ(E∗ + B) ≈ 3.8662

and
max
C∈C5

ρ(C + B) = max
E∈E5

ρ(E + B) = ρ(F∗ + B) ≈ 4.4709.

Notice that both E∗ and F∗ are not permutation matrices and that

ρ(E∗ + B) < ρ(P∗ + B) < ρ(Q∗ + B) < ρ(F∗ + B),

where P∗ and Q∗ are the permutation matrices found in Example 2.5.

Next, consider an arbitrary but fixed positive vector d = (d1, . . . , dn)t ∈ R
n . Let

Cn(d) be the set of n × n matrix with the column sum equal to d , and let En(d)
be the set of extreme points of Cn(d) . Notice that Cn(d) = {CD : C ∈ Cn} and
En(d) = {ED : E ∈ En} , with D = diag (d1, . . . , dn) . Thus, we have the following.
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COROLLARY 3.5. Let A, B ∈ R
n,n be nonnegative matrices, and let d ∈ R

n be a
positive vector. Then there are matrices E∗ and F∗ in En(d) such that

ρ(E∗A + B) = min
C∈Cn(d)

ρ(CA + B) and ρ(F∗A + B) = max
C∈Cn(d)

ρ(CA + B).

Notice that results similar to Corollaries 3.2 and 3.3 can be also obtained for the
set Cn(d) .

4. Further Extension

In this section, we establish the claims made in display (4).

THEOREM 4.1. Let Xn = Ωn or Cn and Yn = Pn or En according to Xn .
Given m nonnegative matrices A1, . . . , Am ∈ R

n,n , there exist matrices P∗
1 , . . . , P

∗
m

and Q∗
1 , . . . , Q

∗
m in Yn such that

ρ

(
m∑

i=1

P∗
i Ai

)
= min

S1,...,Sm∈Xn
ρ

(
m∑

i=1

SiAi

)
(10)

and

ρ

(
m∑

i=1

Q∗
i Ai

)
= max

S1,...,Sm∈Xn
ρ

(
m∑

i=1

SiAi

)
. (11)

Proof. We will only prove (10), the proof of (11) is similar. Suppose there are
S∗1 , . . . , S

∗
m in Xn such that

ρ

(
m∑

i=1

S∗i Ai

)
= min

S1,...,Sm∈Xn
ρ

(
m∑

i=1

SiAi

)
. (12)

On applying Theorems 2.2 or 3.1 with A = A1 and B =
∑m

i=2 S∗i Ai , we see that there
is a P∗

1 ∈ Yn such that

ρ

(
P∗

1A1 +
m∑

i=2

S∗i Ai

)
� ρ

(
m∑

i=1

S∗i Ai

)
.

Now suppose that the existence of P∗
1 , . . . , P

∗
k−1 ∈ Yn has already been established.

We now apply Theorems 2.2 or 3.1 with A = Ak and B =
∑k−1

i=1 P∗
i Ai +

∑m
i=k+1 S∗i Ai ,

then there is P∗
k ∈ Yn such that

ρ

(
k∑

i=1

P∗
i Ai +

m∑
i=k+1

S∗i Ai

)
� ρ

(
k−1∑
i=1

P∗
i Ai +

m∑
i=k

S∗i Ai

)
.

Thus there exist P∗
1 , . . . , P

∗
m ∈ Yn such that

ρ

(
m∑

i=1

P∗
i Ai

)
� ρ

(
m∑

i=1

S∗i Ai

)
.

But then by (12), the above inequality is indeed an equality. �
We comment that clearly the above result also holds when Xn equals either the

set of row stochastic matrices or the set Cn(d) .
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