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ON THE MULTIPLICITY FUNCTION

OF REAL NORMAL OPERATORS

GEOFFREY R. GOODSON

(communicated by F. Kittaneh)

Abstract. Properties of commuting and non-commuting operators are important in operator
theory. In this paper we study the consequences of equations such as AB = BA∗ when A and
B are real normal operators ( A is real if it commutes with a conjugation operator, see [1] or
[14]). It is shown that the multiplicity function of A has certain symmetry properties in this case.
This generalizes to infinite dimensions some recent results concerning the eigenvalues of certain
normal matrices (see [9]).

1. Introduction

For bounded normal operators A and B defined on a separable Hilbert space H ,
equations like A∗B = BA and AB = BA imply a certain type of symmetry on the
spectrum of A and B , in particular the multiplicity function of A sometimes takes only
even values on certain subspaces. It is this symmetry which we investigate in this paper
in the case that A and B are bounded real normal operators. (A∗ is the adjoint of A ,
uniquely determined by the equation 〈Af , g〉 = 〈 f , A∗g〉 for f , g ∈ H ). An operator
is real if it commutes with a conjugation operator. In a similar way one can define
the notions of symmetric operator, complex symmetric operator etc. See for example
[4], where complex symmetric operators are studied and many examples of conjugation
operators are given.

It was shown in [9] that if A and B are real n × n normal matrices acting on n
dimensional complex Hilbert space Cn , satisfying A∗B = BA , then the eigenvalues
of A have even multiplicity on the orthogonal complement of the subspace {x ∈ Cn :
Bx = B∗x} . As a corollary one obtains that if A has only simple eigenvalues, then
B = B∗ . In this paper it is this type of theorem we wish to investigate and to generalize
(see also [7] and [8]).
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2. Preliminaries: General Spectral Theory for Normal Operators

Let Y be a compact subset of the complex plane C , and let H be a separable
complex Hilbert space. Given a σ -algebra F of Borel subsets of Y , let E : F →
B(H ) be a spectral measure, so that for each Δ ∈ F , E(Δ) is a projection on H
with the usual properties.

The spectral measure E is said to be of multiplicity one if there exists a cyclic
vector h ∈ H , i.e., is such that the closed linear span of {E(Δ)h : Δ ∈ F} is equal to
H .

More generally (when E may not be of multiplicity one) we let Z( f ) be the
closed linear span of all vectors of the form {E(Δ)f : Δ ∈ F} , and call Z( f ) the
cyclic subspace generated by f ∈ H . This is written

Z( f ) = span{E(Δ)f : Δ ∈ F}.
For h ∈ H , we define a measure μh on the measurable space (Y, F ) by

μh(Δ) = 〈E(Δ)h, h〉 = ||E(Δ)h||2.
This gives rise to an isometry U : Z(h) → L2(Y,μh) satisfying UE(Δ)U∗ = Eh(Δ) ,
where Eh is the spectral measure on L2(Y,μh) defined by Eh(Δ) = χΔ (where χD is
the characteristic function of D ).

The operator U is a unitary operator which is defined on simple functions by

U

(
n∑

i=1

aiE(Δi)h

)
=

n∑
i=1

aiχΔi ,

in particular, taking n = 1 , ai = 1 and Δi = Y gives

U(h) = U(E(Y)h) = χY = p0,

where pn(z) = zn , for n � 0 .
A bounded linear operator A : H → H is normal if AA∗ = A∗A . In the finite

dimensional case there is unitary matrix U with the property that

U∗AU = diag(λ1, λ2, . . . , λn),

where λ1, λ2, . . . , λn are the eigenvalues of A . Denote the spectrum of A by σ(A) ,
a compact subset of the complex plane. In infinite dimensions the situation is more
complex:

The Spectral Theorem for a bounded normal operator A : H → H on the
separable Hilbert space H tells us that there exists a unique spectral measure E
defined on the Borel subsets of the spectrum σ(A) of A such that

(a) A =
∫
σ(A)

z E(dz) .

(b) E(G) �= 0 for all non-empty G relatively open in σ(A) .
(c) If T ∈ B(H ) , and TA = AT , then TE(Δ) = E(Δ)T for all Δ ∈ F .
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If the spectral measure E is of multiplicity one, then A is a cyclic operator, or
is said to have multiplicity one (classically the term simple spectrum was used: see
Akhiezer and Glazman [1], Putnam [13] or Stone [15]). One can see that a normal
operator has multiplicity one if and only if there is a vector h ∈ H for which

span{AmA∗nh : m, n � 0} = H .

If the normal operator A has multiplicity one, then A is unitarily equivalent to
the operator Nh : L2(σ(A),μh) → L2(σ(A),μh) , defined by Nhf (z) = zf (z) . In fact
we have A = U∗NhU where U is the unitary operator defined previously. It readily
follows that

U

(
N∑

n=0

K∑
m=0

amnA
mA∗nh

)
=

N∑
n=0

K∑
m=0

amnz
mz̄ n,

and that functions of the form
N∑

n=0

K∑
m=0

amnzmz̄ n are dense in L2(σ(A),μh) . Note that if

μ is a regular Borel measure on σ(A) , with
∫
σ(A) zmz̄ n dμ(z) = 0 for all m, n � 0 ,

then μ = 0 .
The Hahn-Hellinger Theorem says that for a bounded normal operator A on the

separable Hilbert space H , there is a sequence of vectors (hn) , n ∈ Z+ such that

H = Z(h1) ⊕ Z(h2) ⊕ · · · ⊕ Z(hn) ⊕ · · · ,

and a (essentially unique) sequence of regular Borel measures (μhi) on σ(A) , satisfy-
ing:

μh1 � μh2 � · · · � μhn � · · · ,

(where for two measures μ and τ , defined on the same σ -algebra, μ 	 τ if τ(D) = 0
implies μ(D) = 0 and μ ∼ τ if μ 	 τ and τ 	 μ ).

These are the spectral measures of the operator A , μh1 being the maximal spectral
type of A (which is defined only up to absolutely equivalent measures). A normal
operator A is determined up to unitary equivalence by its maximal spectral type,
together with a function M : σ(A) → Z+ ∪ {∞} , called the multiplicity function of
A . The maximum value of the range of M (μh1 a.e.), is called the maximum spectral
multiplicity of A . If the maximum spectral multiplicity is 1 , then A has multiplicity
one. There is a decreasing sequence of Borel sets Δn in σ(A) for which μhn = μh1 |Δn .
Then M is defined a.e. μh1 by

M(z) =

⎧⎪⎨⎪⎩
∞ ; z ∈ ∞∩

n=1
Δn

n ; z ∈ Δn \ Δn+1

0 ; otherwise

Two normal operators having the same maximal spectral type and multiplicity function
M are unitarily equivalent.

Given a normal operator A with spectral measure E , if f , g ∈ H , we can define
a complex measure μf ,g on the Borel subsets of the spectrum of A by μf ,g(Δ) =
〈E(Δ)f , g〉 . The measure μf ,g is absolutely continuous with respect to both μf and
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μg , i.e., μf ,g 	 μf and μf ,g 	 μg . Note also that μf (Δ) = 0 if and only if
E(Δ)f = 0 . In addition, μf ⊥ μg implies that μf ,g ≡ 0 , the converse being true when
A has multiplicity one.

The Fourier coefficients of the measure μf ,g are defined by

μ̂f ,g(m, n) = 〈Amf , Ang〉 =
∫
σ(A)

zmz̄ n dμf ,g, m, n ∈ Z
+,

and two such measures are equal if and only if their corresponding Fourier coefficients
are equal.

For the basic ideas concerning the multiplicity theory of normal operators, see
Halmos [10] or Conway [2].

3. Conjugation Operators and Real Normal Operators

In this paper we study bounded linear operators on separable Hilbert-spaces H
for which there exists a conjugation operator (see Akhiezer and Glazman [1] and also
Riesz and Nagy [14], for the notions of conjugation operator and real operator, and also
Halmos [11] for the related notion of self-conjugate functional Hilbert space):

DEFINITION. A map I : H → H is a conjugation operator on the (complex)
Hilbert space H if

1) 〈 I( f ), I(g)〉 = 〈 f , g〉 , for all f , g ∈ H .
2) I2( f ) = f , for all f ∈ H .

Such operators are conjugate linear: I(αf + βg) = ᾱI( f ) + β̄I(g) , for all f , g ∈ H
and α, β ∈ C . Often we shall denote I( f ) by f̄ .

DEFINITION. A linear operator A : H → H is said to be real with respect to a
given conjugation operator I , if A and I commute.

Note that any self conjugate functional Hilbert space (in the sense of Halmos [11]),
with the property that || f̄ || = ||f || for all f ∈ H has a conjugation operator.

Our main theorem is the following result (throughout we use the convention that
∞ is even and we assume that H is a Hilbert space having a conjugation operator):

THEOREM 1. Let A, B : H → H be bounded real normal operators. If
A∗B = BA where B is invertible, then in the orthogonal complement of the subspace

H0 = {f ∈ H : Bf = B∗f },

the multiplicity function of A only takes even values.

Note that H0 = {f ∈ H : Bf = B∗f }, is a reducing subspace for A (i.e.,
A(H0) ⊆ H0 and A(H⊥

0 ) ⊆ H⊥
0 ) since if f ∈ H0 , then BAf = A∗Bf = A∗B∗f =

B∗Af , so Af ∈ H0 . In addition, by the Fuglede-Putman Theorem, AB = BA∗ , so
f ∈ H0 implies A∗f ∈ H0 . Clearly H0 is a reducing subspace for B .
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Examples

1. Let H = Cn = n -dimensional complex vector space. The usual complex
conjugation gives a conjugation operator, and any real n × n matrix gives rise to an
operator which preserves complex conjugation, so is real in the above sense. It follows
from Theorem 1 that if A and B are real n× n normal matrices with AB = BA∗ , then
the eigenvalues of A occur with even multiplicity on the orthogonal complement of the
subspace on which B is symmetric (the condition that B be invertible can be dropped
in this case [9]). As a corollary, it follows that if all the eigenvalues of A are simple,
then B = B∗ .

2. Let H = l2(Z) , then if f = (f n) ∈ l2 , ||f ||2 =
∑

n |f n|2 < ∞ . If
I( f ) = ( f̄ n) , then I defines a conjugation operator. The bilateral shift operator
A : l2(Z) → l2(Z) defined by A(en) = en+1 (where en is the sequence with a 1 in
the nth position and 0 ’s elsewhere), is a real (unitary) operator which has multiplicity
one (because it is clear that span{Ane1 : n ∈ Z} = l2(Z) ). Theorem 1 implies that if
A∗B = BA where B is real and normal, then B = B∗ .

3. Let (X, F ,μ) be a separableBorelmeasure space. Set H = L2(X, F ,μ) , then
I( f ) = f̄ defines a conjugation operator on H , and any operator which preserves real
valued functions will be a real operator. To give a more explicit example, let X = [0, 1]
with F the Borel measurable subsets and μ equal to Lebesgue measure. Define
A : H → H by Af (x) = f (x + α) where α ∈ [0, 1] (addition is taken modulo
one). Then A is a unitary operator which is real, and has multiplicity one if α is
irrational. Theorem 1 implies that if B is any real unitary operator with AB = BA∗ ,
then B2 = E , the identity operator. (This fact was known to Halmos and von Neumann
as a consequence of their Discrete Spectrum Theorem).

4. Let H = L2(S1, F ,μ) where S1 is the unit circle in the complex plane, F is
the σ -algebra of Borel subsets of the circle and μ is a finite Borel measure on S1 which
is symmetric with respect to the real axis. Define I : H → H by If (z) = f̄ (z̄) . I is
a conjugation operator since μ is symmetric, and Nμ f (z) = zf (z) is real with respect
to I . More generally, Wf (z) = h(z)f (z) is real if h(z̄) = h̄(z) . If WNμ = N∗

μW
where W is real and normal, then W = W∗ , since Nμ has multiplicity one.

5. Let H be the space of all functions f : D → C with
∫

D |f |2 dλ < ∞
(λ = planar Lebesgue measure), where D is the unit disc in the complex plane and
where each f can be written in the form f = u + iv where both u and v are real
functions satisfying Laplace’s equation. H is a Hilbert space when given the usual
inner product. As before, I( f ) = f̄ defines a conjugation operator, and any linear
operator which preserves real valued functions is real.

LEMMA 1. Let A : H → H be a bounded normal operator, real with respect to
a conjugation operator I .

(1) The spectrum of A , σ(A) is symmetric with respect to the real axis.
(2) The maximal spectral type of A can be chosen to be a symmetric measure.
(3) A is unitarily equivalent to A∗ , the adjoint of A .
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Proof. (1) It suffices to show that ρ(A) , the complement of σ(A) is symmetric
with respect to the real axis. If λ ∈ ρ(A) , then Rλ = (A − λE)−1 is bounded (where
E is the identity operator).

We can check that Rλ = IRλ̄ I , so that λ̄ ∈ ρ(A) because A− λ̄E = I(A−λE)I .
(2) Suppose that h ∈ H realizes the maximal spectral type of A , then there

exists a finite Borel measure μh on σ(A) with 〈Amh, Anh〉 =
∫
σ(A) zmz̄ n dμh(z) . Let

us denote I(h) by h̄ , then

〈Amh, Anh〉 = 〈Amh̄, Anh̄〉 =
∫
σ(A)

zmz̄ n dμh̄(z),

but also

〈Amh, Anh〉 =
∫
σ(A)

zmz̄ n dμh(z) =
∫
σ(A)

z̄ mzn dh(z) =
∫
σ(A)

zmz̄ n dμh(z̄).

Thus μh̄(D) = μh(D̄) (for any Borel set D ), and since μh̄ 	 μh (because μh is
the maximal spectral type), μh(D) = 0 implies μh(D̄) = 0 . Consequently, we may
assume that μh is a symmetric measure.

(3) Suppose that A has multiplicity equal to one, then we can write A = UNhU∗

for some unitary operator U and some μh , a symmetric measure on σ(A) as above.
Define B : L2(σ(A),μh) → L2(σ(A),μh) by Bf (z) = f (z̄) , then B is a unitary

operator (because μh is symmetric). In addition, BNh = N∗
μh

B , so Nh and N∗
h are

unitarily equivalent, and thus A and A∗ are unitarily equivalent.
Now suppose that A has multiplicity greater than one, then we can see that A and

A∗ have the same multiplicity function. A similar argument to that above shows that they
are unitarily equivalent. �

4. Proof of Theorem 1

The following lemma shows that in order to prove Theorem 1 we may assume that
B is a unitary operator.

LEMMA 2. The operator B in Theorem 1 may be assumed to be unitary.

Proof. If A∗B = BA , where B is invertible, then by a theorem of Putnam (see [12]
or [11]), there is a unitary operator U with the property A∗U = UA . In fact U arises
from the polar decomposition of B , B = UP (uniquely), where U is unitary and P is
positive. In the case that B is normal, UP = PU . In addition, if B is invertible then
P is invertible and we can check that

{f ∈ H : Bf = B∗f } = {f ∈ H : Uf = U∗f }.
Now if B is a real operator, B = IBI , so that UP = IUPI = IUIIPI . It follows by
the uniqueness of U and P that U = IUI and P = IPI , so both U and P are real
operators. �
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Given a bounded normal operator K : H → H and f ∈ H , the (non-closed)
support of the spectral measure μf is a subset of σ(K) , the spectrum of K , which will
be denoted by supp (μf ) . The complex plane C can be written as the disjoint union
C = C+ ∪ C− ∪ R , where C+ , C− are respectively the upper and lower open half
planes and R is the real axis.

LEMMA 3. Let A, B : H → H be bounded normal operators with A∗B = BA .
Set

P+ = {f ∈ H : supp(μf ) ⊆ C
+}, P− = {f ∈ H : supp(μf ) ⊆ C

−},
H0 = {f ∈ H : Bf = B∗f }, H1 = {f ∈ H : Bf = −B∗f },

(where μf is a spectral measure with respect to the operator B2 ).
(1) P+ , P− , H0 and H1 are closed subspaces of H which are both A and

B2 invariant and reducing.
(2) {f ∈ H : B∗2f = B2f } = {f ∈ H : supp(μf ) ⊆ R}.
(3) If B is unitary operator, then

H = P+ ⊕ P− ⊕ H0 ⊕ H1.

Proof. (1) Clearly all the above sets are closed subspaces, and H0 and H1 are
B2 -invariant. H1 is A -invariant for if f ∈ H1 , the BAf = A∗Bf = −A∗B∗f =
−B∗Af , so Af ∈ H1 (the proof for H0 was given earlier). The symmetry of these
definitions implies that the subspaces are also A∗ and B∗2 -invariant, so they are
reducing subspaces.

Also note that A∗B = BA implies AB = BA∗ (by the Fuglede-Putnam theorem
[12]), since A is normal and so AB2 = B2A , A∗B2 = B2A∗ and AnB = BA∗n for any
n ∈ Z+ .

To see that P+ is B2 -invariant, let f ∈ P+ , then supp (μf ) ⊆ C+ , and

μ̂B2f (m, n) = 〈B2mB2f , B2nB2f 〉 = 〈B2mf , B2nB∗2B2f 〉 = μ̂f ,B∗2B2f (m, n),

thus μB2f = μf ,B∗2B2f 	 μf , so that supp (μB2f ) ⊆ C+ .
To show that P+ is A -invariant, let f ∈ P+ , then for m, n ∈ Z+

μ̂Af (m, n) = 〈B2mAf , B2nAf 〉 = 〈AB2mf , B2nAf 〉
= 〈B2mf , A∗B2nAf 〉 = 〈B2mf , B2nA∗Af 〉 = μ̂f ,A∗Af (m, n),

so μAf = μf ,A∗Af , and in particular μAf 	 μf , so that Af ∈ P+ .
(2) Set H = {f ∈ H : B2f = B∗2f } , and HR = {f ∈ H : supp(μf ) ⊆ R} ,

then if f ∈ H we can check that μ̂f (m, n) is real, and this implies supp (μf ) ⊆ R , or
H ⊆ HR .

For the converse, suppose that f ∈ HR and let g ∈ H . We can write g = g0+g1 ,
where supp (μg0) ⊆ R and g1 ⊥ g0 . It can be seen that 〈B2(f + g0), f + g0〉 is real
and this can be used to show that 〈B2f , g0〉 = 〈 f , B2g0〉 (see Riesz and Nagy [14], p.
229). It follows that

〈B2f , g〉 = 〈B2f , g0〉 = 〈 f , B2g0〉 = 〈 f , B2g〉 ,
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and this implies that B2f = B∗2f .
(3) In the case where B is unitary, H = {f ∈ H : B4f = f } = HR , and

it suffices to show that HR = H0 ⊕ H1 , where now H0 = {f ∈ H : B2f = f } ,
H1 = {f ∈ H : B2f = −f } (this is because H = P+ ⊕ P− ⊕ HR , using (2)).
This follows from the fact that any f ∈ H can be written as

f = g0 + g1, where g0 = 1/2(f + B2f ), g1 = 1/2(f − B2f ),

g0 ∈ H0 and g1 ∈ H1 . In addition, we can see that H0 ⊥ H1 . �

To show that a normal operator A has multiplicity greater than one, it is enough to
show there exists f , g ∈ H with Z( f ) ⊥ Z(g) and μf ∼ μg . Our method of proof to
show that the multiplicity function of A takes only even values on a certain subspace,
is to show that for f ∈ P+ , Z( f ) ⊆ P+ , Z(B f̄ ) ⊆ P− (so Z( f ) ⊥ Z(B f̄ ) ), with
μf ∼ μB f̄ . If this is the case, A can be thought of as being unitarily equivalent to an
operator V having a decomposition of the form

V = Nh ⊕ Nh ⊕ other terms.

Finally, we remark that if A has multiplicity one, the commutant {A}′ of A is Abelian.
In the following proposition it is not assumed that B is invertible.

PROPOSITION 1. Let A, B : H → H be bounded real normal operators.
If A∗B = BA then A cannot be a cyclic operator when restricted to either of the
subspaces H1 or P+ ⊕ P− , when they are non-trivial.

The proof is split into two lemmas:

LEMMA 4. If A and B are as in Proposition 1 above, then A has multiplicity
greater than one on the subspace P+ ⊕ P− .

Proof. Initially we suppose that μf denotes the spectral measure of f with respect
to B2 , we saw in Lemma 3 that if f ∈ P+ , then Af ∈ P+ , so that f ∈ P+ implies
that Z( f ) ⊆ P+ (the cyclic subspace Z( f ) with respect to A ).

In addition, we can see that if f ∈ P+ , then f̄ ∈ P− . This is because∫
σ(B2)

zmz̄ n dμ f̄ (z) = μ̂ f̄ (m, n) = 〈B2m f̄ , B2n f̄ 〉 = 〈B2mf , B2nf 〉

= 〈B2nf , B2mf 〉 =
∫
σ(B2)

z̄ mzn dμf (z) =
∫
σ(B2)

zmz̄ n dμf (z̄),

i.e., μ f̄ (D) = μf (D̄) for all Borel sets D ⊆ σ(B2) , so if supp (μf ) ⊆ C+ , then
supp (μ f̄ ) ⊆ C− .

In a similar way we can see that for f ∈ P+ , μB f̄ = μ f̄ ,B∗Bf (where we
are assuming Bf �= 0 ), so that μB f̄ 	 μ f̄ (with respect to B2 ), and in particular
B f̄ ∈ P− , and generally Z(B f̄ ) ⊆ P− (with respect to A ).

We now claim that μB f̄ 	 μf (with respect to A ), for each f ∈ P+ , and this,
together with Z( f ) ⊥ Z(B f̄ ) is enough to show that A is not of multiplicity one on
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P+ ⊕ P− . In the following our spectral measures are with respect to A :

μ̂B f̄ (m, n) = 〈AmB f̄ , AnB f̄ 〉 = 〈AmB f̄ , BA∗n f̄ 〉 = 〈B∗AmB f̄ , A∗n f̄ 〉
= 〈A∗mB∗B f̄ , A∗n f̄ 〉 = 〈B∗B f̄ , AmA∗n f̄ 〉 = 〈AmA∗nf , B∗Bf 〉
= 〈Amf , AnB∗Bf 〉 = μ̂f ,B∗Bf (m, n),

i.e., μB f̄ = μf ,B∗Bf 	 μf and μB f̄ 	 μB∗Bf (with respect to A ). Notice that in
addition we have

μB f̄ 	 μBB∗f 	 μB∗ f̄

and by similar reasoning μB∗ f̄ 	 μB f̄ , so μB∗ f̄ ∼ μB f̄ . �

LEMMA 5. The normal operator A restricted to the invariant subspace H1 does
not have multiplicity one.

Proof. We saw that H1 is both A and B2 reducing. Let f ∈ H1 with Bf �= 0 ,
then B∗f = −Bf and we see that for all m, n ∈ Z+

〈Amf , AnB f̄ 〉 = 〈Amf ,−AnB∗ f̄ 〉 = 〈Amf ,−B∗A∗n f̄ 〉 = −〈BAmf , A∗n f̄ 〉
= −〈A∗mBf , A∗n f̄ 〉 = −〈A∗n f̄ , A∗mBf 〉 = −〈A∗nf , A∗mB f̄ 〉
= −〈Amf , AnB f̄ 〉 ,

or 〈Amf , AnB f̄ 〉 = 0 for all m, n ∈ Z+ , and this implies Z( f ) ⊥ Z(B f̄ ) .
Consider the spectral measures μf and μB f̄ of f and B f̄ (with respect to A ).

The same argument that we used previously shows that μB f̄ = μf ,B∗Bf 	 μf .
Again we have shown that Z( f ) ⊥ Z(B f̄ ) , with μB f̄ 	 μf , and this is enough to

show that A does not have multiplicity one on H1 . �

Completion of the Proof of Theorem 1

We have shown that A is non-cyclic on P+ ⊕ P− ⊕ H1 and that this subspace
is equal to H⊥

0 (using Lemma 3 when B is invertible).
To prove that the multiplicity function only takes even values on this subspace,

we now use the fact that we may assume that B is a unitary operator. Suppose that
f ∈ P+ , then we showed previously that B f̄ ∈ P− , and Z( f ) ⊥ Z(B f̄ ) (cyclic
subspaces with respect to A ) and that μB f̄ 	 μf and

μBB∗f 	 μB∗ f̄ and μB∗ f̄ ∼ μB f̄ .

Since B is unitary, BB∗f = f and it follows that μf ∼ μB f̄ , so that A has even
multiplicity on Z( f )⊕Z(B f̄ ) . The following argument shows the even multiplicity on
H1 , and a similar argument shows even multiplicity on P+ ⊕ P− :

Let Z(f 1) be a maximal cyclic subspace in H1 , then Z(B f̄ ) is a maximal cyclic
subspace also in H1 , with μf 1 ∼ μB f̄ 1

and Z(f 1) ⊥ Z(B f̄ 1) , giving even multiplicity
on the direct sum. Continue in this way by taking a maximal cyclic subspace Z(f 2)
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in H1 � (Z(f 1) ⊕ Z(Bf̄ 1)) , and form the cyclic subspace Z(B f̄ 2) , which is clearly
orthogonal to Z(f 2) ⊕ Z(B f̄ 1) , so we need only prove that Z(f 1) ⊥ Z(B f̄ 2) . Now

〈Amf 1, A
nB f̄ 2〉 = 〈Amf 1,−AnB∗ f̄ 2〉 = 〈Amf 1,−B∗A∗n f̄ 2〉 = −〈BAmf 1, A

∗n f̄ 2〉
= −〈A∗mBf 1, A

∗n f̄ 2〉 = −〈A∗n f̄ 2, A
∗mBf 1〉 = −〈A∗nf 2, A

∗mB f̄ 1〉
= −〈Amf 2, A

nB f̄ 1〉 = 0,

because Z(f 2) ⊥ Z(B f̄ 1) . Now continue to find a sequence f n ∈ H1 with

H1 =
∞⊕
n=1

Z(f n) ⊕
∞⊕
n=1

Z(B ¯f n),

andwe see that A has an evenmultiplicity function on H⊥
0 . �

COROLLARY 1. Let A, B : H → H be bounded real normal operators. Suppose
that A has multiplicity one. If A∗B = BA then B = B∗ .

Proof. Since A has multiplicity one, P+ ⊕ P− = {0} , so H = {f ∈ H :
B2f = B∗2f } .

Let f ∈ H , then if g = (B−B∗)f , we see that g ∈ H1 . But Lemma2 implies that
H1 = {0} , so Bf = B∗f and the result follows. �

5. Even Multiplicity for A2

Suppose that A is a unitary operator with the property that AB = B∗A for some
bounded operator B with B �= B∗ . If A2 has multiplicity one, then {A2}′ (the
commutant of A2 ), is an Abelian sub-algebra with A, B ∈ {A2}′ so that AB = BA =
B∗A , contradicting B∗ �= B . We conclude that A2 cannot have multiplicity one. This is
a result we make more precise for the case of real operators on spaces with conjugation
operators. In the following theorem, condition (a) holds if AB = B∗A and B is normal,
or A is unitary.

THEOREM 2. Suppose that A, B : H → H are bounded real linear operators.
If A is normal and B �= B∗ and either (a) or (b) below holds:

(a) AB = B∗A and BA = AB∗

(b) AB = −BA ,
then A2 is not of multiplicity one. If A is invertible, then A2 has an even multiplicity
function on the orthogonal complement of the subspace

H0 = {f ∈ H : Bf = B∗f }.
Proof. (a) Let K = B − B∗ , then K∗ = B∗ − B = −K , so is a skew symmetric

operator (and hence normal) whose spectrum is contained in the imaginary axis. Since
AB = B∗A and AB∗ = BA we deduce that AK = K∗A .

Now H0 = {f ∈ H : Kf = 0} is the subspace corresponding to the eigenvalue 0
of K , so is certainly K –invariant. H0 is A invariant (and reducing), since if f ∈ H0 ,
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then KAf = −K∗Af = −AKf = 0 , so Af ∈ H0 . In the following, supp (μf ) denotes
the support of the spectral measure μf with respect to K . In this case supp (μf ) is a
(not necessarily closed) subset of the imaginary axis I .

Write I = I+ ∪ I− ∪ {0} , the disjoint union of the upper and lower imaginary
axes. Let

P+ = {f ∈ H : supp(μf ) ⊆ I+}, P− = {f ∈ H : supp(μf ) ⊆ I−}.
(In each case the spectral measure is with respect to K ).

P+ and P− are K –invariant for if f ∈ P+ , μKf 	 μf (with respect to K ),
since μ̂Kf (n) = 〈Kn(Kf ), Kf 〉 = 〈Knf , K∗Kf 〉 , so that μKf = μf ,K∗Kf 	 μf , and
then Kf ∈ P+ .

Since K is a normal operator, P+ and P− are orthogonal subspaces and

H = H0 ⊕ P+ ⊕ P−.

Let f ∈ P+ , then supp (μf ) ⊆ I+ and we claim that Af ∈ P− . Let n ∈ Z+ and
consider

μ̂Af (n) = 〈KnAf , Af 〉 = 〈AK∗nf , Af 〉 = 〈 (Kn)∗f , A∗Af 〉
= 〈 f , KnA∗Af 〉 = 〈KnA∗Af , f 〉 = 〈KnA∗A f̄ , f̄ 〉 = μ̂A∗A f̄ , f̄ (n).

We have shown that μAf 	 μ f̄ , and if we show that f̄ ∈ P− , it will follow that
Af ∈ P− . To see this last statement, note that∫

zn dμ f̄ (z) = 〈Kn f̄ , f̄ 〉 = 〈Knf , f 〉 =
∫

zn dμf (z) =
∫

z̄ n dμf (z) =
∫

zn dμf (z̄),

and this implies that μ f̄ (D) = μf (D̄) for all Borel sets D contained in σ(K) .
We have shown that P+ and P− are invariant with respect to both K and A2 ,

since if f ∈ P+ then Af ∈ P− so that A2f ∈ P+ .
Furthermore

〈A2m(Af ), A2n(Af )〉 = 〈A2mf , A2n(A∗Af )〉 , m, n ∈ Z
+.

This shows that Z(Af ) ⊥ Z( f ) with μAf = μf ,A∗Af 	 μf (spectral measure with
respect to A2 ). This is enough to show that A2 does not have multiplicity one on
P+ ⊕ P− . In the case that A is invertible, setting A1 = A2|P+ (the restriction) and
A2 = A2|P− , we have that AA1 = A2A , so that A1 and A2 are unitarily equivalent
(A can be replaced by a unitary operator, by Putnam’s Theorem), so that A2 has even
multiplicity on P+ ⊕ P− = H⊥

0 , and the result follows.
(b) If instead AB = −BA , set K = B − B∗ as before, then we can check that

AK = K∗A , so we are in the situation of (a). �

COROLLARY 2. Let A, B : H → H be bounded real linear operators. Suppose
that A is normal and A2 has multiplicity one.

(a) If AB = B∗A and BA = AB∗ then B = B∗ .
(b) If AB = −BA , then B = B∗ .
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6. Commuting Operators

Suppose now that our operators commute. Theorem 3 gives information about the
multiplicity function of a self–adjoint (Hermitian) operator. The corresponding spectral
measures are now measures on the real line and the multiplicity function is defined on
the real line.

THEOREM 3. Suppose that A, B : H → H are bounded real linear operators.
If A is self–adjoint with AB = BA , then A has an even multiplicity function on the
orthogonal complement of the subspace

H0 = {f ∈ H : Bf = B∗f }.
Proof. We may assume that B is normal since if we set K = B − B∗ , then

AK = KA and {f ∈ H : Bf = B∗f } = {f ∈ H : Kf = K∗f } .
As before write

P+ = {f ∈ L2(X,μ) : supp(μf ) ⊆ C
+}, P− = {f ∈ H : supp(μf ) ⊆ C

−},
but now the spectral measures are with respect to B .

Clearly H0 = {f ∈ H : supp(μf ) ⊆ R} and it can be seen that H = H0 ⊕
P+ ⊕ P− , and so H⊥

0 = P+ ⊕ P− .
Suppose that f ∈ P+ , then for all m, n ∈ Z+∫

S1

zmz̄ n dμ f̄ (z) = 〈Bm f̄ , Bn f̄ 〉 = 〈Bmf , Bnf 〉

=
∫

S1

zmz̄ n dμf (z) =
∫

S1

z̄ mzn dμf (z) =
∫

S1

zmz̄ n dμf (z̄).

It follows that μ f̄ (D) = μf (D̄) for all Borel sets D , and this implies that f̄ ∈ P− .
Both P+ and P− are A and B–invariant. B–invariance is clear, to see the

A–invariance, note that

μ̂Af (m, n) = 〈BmAf , BnAf 〉 = 〈ABmf , BnAf 〉 = 〈Bmf , BnA∗Af 〉 = μ̂f ,A2f (m, n),

so that μAf = μf ,A2f 	 μf . In particular, if f ∈ P+ , then Anf ∈ P+ for all n � 0 .
Finally we show that μf = μ f̄ (spectral measures now with respect to A ). This is

because, for n � 0

μ̂f (n) = 〈Anf , f 〉 = 〈 f , (An)∗f 〉 = 〈 f , Anf 〉 = 〈Anf , f 〉 = 〈An f̄ , f̄ 〉 = μ̂ f̄ (n).

If f ∈ P+ , it is clear that 〈Anf , f̄ 〉 = 0 for all n ∈ Z+ , or Z( f ) ⊥ Z( f̄ ) (since
P+ and P− are orthogonal), and also μf = μ f̄ .

To show that A has even multiplicity on P+ ⊕ P− , let Z(f 1) be a maximal
cyclic subspace in P+ with corresponding subspace Z( f̄ 1) in P− . Now take Z(f 2)
maximal in P+�Z(f 1) . Clearly Z( f̄ 2) ⊥ Z(f 2) and Z( f̄ 2) ⊥ Z(f 1) , so we need only
check that Z( f̄ 2) ⊥ Z( f̄ 1) . But 〈An f̄ 1, f̄ 2〉 = 〈Anf 1, f 2〉 = 0 , n � 0 , so this is clear.
Now continuing in this way, the result follows.
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7. Final Remarks

1. Motivation for the results of this paper also came from the study of joinings and
intertwinings involving (ergodic) invertible measure preserving transformations (auto-
morphisms) on Borel probability spaces. Given a Borel probability space (X, F ,μ) ,
an automorphism of this space is an invertible transformation T : X → X for which
T−1A ∈ F and μ(T−1A) = μ(A) for all A ∈ F . Recall that for automorphisms S and
T on the probability space (X, F ,μ) , λ is a joining of S and T if λ is a probability
measure on the product space which is invariant under S×T and each projection on X is
equal to μ . Joinings can be realized as intertwining operators J : L2(X,μ) → L2(X,μ)
with the property that JŜ = T̂J (where T̂ : L2(X,μ) → L2(X,μ) is the unitary operator
induced by T and defined by T̂f (x) = f (Tx) ), and where J1 = 1 , Jf � 0 when
f � 0 (see [6]). It was shown in [8] that if T̂ has multiplicity one and JT̂ = T̂−1J ,
then J = J∗ .
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