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INERTIA THEOREMS BASED

ON OPERATOR LYAPUNOV EQUATIONS

LEONID LERER, IGOR MARGULIS AND ANDRÉ C. M. RAN

Abstract. The well-known Carlson–Schneider inertia theorem for finite matrices, satisfying the
Lyapunov equation with a semi-definite right-hand side, is extended to linear operators acting on
an infinite dimensional Hilbert space. The proofs use extensively the theory of linear operators
acting on indefinite inner product spaces. An application to stability problems of semigroups is
also presented.
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