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FREDHOLMNESS AND INDEX OF OPERATORS IN THE WIENER

ALGEBRA ARE INDEPENDENT OF THE UNDERLYING SPACE

MARKO LINDNER

Abstract. The purpose of this paper is to demonstrate the so-called Fredholm-inverse closedness
of the Wiener algebra W and to deduce independence of the Fredholm property and index of
the underlying space. More precisely, we look at operators A ∈ W as acting on a family of
vector valued �p spaces and show that the Fredholm regularizer of A for one of these spaces
can always be chosen in W as well and therefore regularizes A (modulo compact operators) on
all of the �p spaces under consideration. We conclude that both Fredholmness and the index of
A do not depend on the �p space that A is considered as acting on.
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1990.

[6] I. GOHBERG and N. KRUPNIK, One-Dimensional Linear Singular Integral Equations, Volume II,
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