
Operators
and

Matrices
Volume 2, Number 4 (2008), 483–506

SELF–ADJOINT EXTENSIONS OF RESTRICTIONS

ANDREA POSILICANO

Abstract. We provide a simple recipe for obtaining all self-adjoint extensions, together with
their resolvent, of the symmetric operator S obtained by restricting the self-adjoint operator
A : D (A) ⊆ H → H to the dense, closed with respect to the graph norm, subspace
N ⊂ D (A) . Neither the knowledge of S∗ nor of the deficiency spaces of S is required.
Typically A is a differential operator and N is the kernel of some trace (restriction) operator
along a null subset. We parametrise the extensions by the bundle p : E(h) → P(h) , where
P(h) denotes the set of orthogonal projections in the Hilbert space h� D (A)/N and p−1(Π)
is the set of self-adjoint operators in the range of Π . The set of self-adjoint operators in h ,
i.e. p−1(1) , parametrises the relatively prime extensions. Any (Π,Θ) ∈ E(h) determines a
boundary condition in the domain of the corresponding extension AΠ,Θ and explicitly appears
in the formula for the resolvent (−AΠ,Θ + z)−1 . The connection with both von Neumann’s
and Boundary Triples theories of self-adjoint extensions is explained. Some examples related to
quantum graphs, to Schrödinger operators with point interactions and to elliptic boundary value
problems are given.
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