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GENERATORS OF II1 FACTORS

KEN DYKEMA, ALLAN SINCLAIR, ROGER SMITH AND STUART WHITE

Abstract. In 2005, Junhao Shen introduced a new invariant, G (N) , of a diffuse von Neumann
algebra N with a fixed faithful trace, and he used this invariant to give a unified approach
to showing that large classes of II1 factors M are singly generated. This paper focuses on
properties of this invariant. We relate G (M) to the number of self-adjoint generators of a II1
factor M : if G (M) < n/2 , then M is generated by n + 1 self-adjoint operators, whereas if
M is generated by n + 1 self-adjoint operators, then G (M) � n/2 . The invariant G (·) is
well-behaved under amplification, satisfying G (Mt) = t−2G (M) for all t > 0 . In particular, if
G (L Fr) > 0 for any particular r > 1 , then the free group factors are pairwise non-isomorphic
and are not singly generated for sufficiently large values of r . Estimates are given for forming
free products and passing to finite index subfactors and the basic construction. We also examine a
version of the invariant Gsa(M) defined only using self-adjoint operators; this is proved to satisfy
Gsa(M) = 2G (M) . Finally we give inequalities relating a quantity involved in the calculation of
G (M) to the free-entropy dimension δ0 of a collection of generators for M .
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