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CONSERVATIVE REALIZATIONS OF THE FUNCTIONS
ASSOCIATED WITH SCHUR’S ALGORITHM FOR
THE SCHUR CLASS OPERATOR-VALUED FUNCTION

YURY ARLINSKIT

Dedicated to the memory of Peter Jonas,
remarkable human being and mathematician

(communicated by D. Alpay)

Abstract. Let I and 91 be separable Hilbert spaces and let ©(A) be a function from the Schur
class S(9,N) of contractive functions holomorphic on the unit disk. The operator generaliza-
tion of the classical Schur algorithm associates with ® the sequence of contractions (the Schur
parameters of ©) I'o = ©(0) € L(M,MN), I'; € L(Dr,_,,Dr:_|) and the sequence of functions
0y=0, 0, S(Dr, ,@F;) n=1,... (the Schur iterates of ©) connected by the relations

Ly =0,(0), ©4(A) =)+ ADr; 0,41 (A) I+ AL0,41(4)) "' Dr,, |A] < 1.
It is well known that the function @(A) € S(91,9M) can be realized as the transfer function

O(A) =D+ AC(I—-AA)"'B

of a linear conservative and simple discrete time-invariant system 7 = { {g ﬂ ;Sﬁ,‘ﬁ,ﬁ} with

the state space §) and the input and output spaces 9t and 1, respectively.
In this paper we give a construction of conservative and simple realizations of the Schur
iterates ©, by means of the conservative and simple realization of ©.
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1. Introduction

The Schur class S of scalar analytic functions and bounded by one in the unit disc
D ={A € C:|A| < 1} plays a prominent role in complex analysis and operator the-
ory as well in their applications in linear system theory and mathematical engineering.
Given a Schur function f(4), which is not a finite Blaschke product, define inductively

fo(A) = 1(0)
(l_fn( )fn( ))

Itis clear that {f,,(A)} is an infinite sequence of Schur functions and neither of its terms
is a finite Blaschke product. The numbers ¥, := f,,(0) are called the Schur parameters:

L ={v,n,---}

,n=0

Jo(A)=f(A), farr(A) =

Note that

Yo+ A far1(A) Afnr1(A)
1+ ynlfn+1 1+ 7nlfn+l(l) ’

The method of labeling f € S by its Schur parameters is known as the Schur algorithm
and is due to I. Schur [40]. The transformation

)= H IO g
A(1=f(0)£(2))

is called now the Schur transformation [4]. In the case when

fn(/l): :Yn+(17|)’n‘2) n=0.

SBf(A,)H(p

o A — A

MN=e?]] —
f) k]:[1 )
is a finite Blaschke product of order N, the Schur algorithm terminates at the N -th step.
The sequence of Schur parameters {y,}"_ is finite, |y,| <1 for n=0,1,....,N—1,
and |yv| = 1.

The Schur algorithm for matrix valued Schur class functions has been considered
in the paper of Delsarte, Genin, and Kamp [32] and in the book of Dubovoj, Fritzsche,
and Kirstein [34]. An operator extension of the Schur algorithm was developed by
T. Constantinescu in [29] and with numerous applications is presented in the mono-
graphs of Bakonyi and Constantinescu [20] and Constantinescu [30].

In what follows the class of all continuous linear operators defined on a com-
plex Hilbert space £); and taking values in a complex Hilbert space §), is denoted by

L(91,%2) and L($) :=L($,$). The domain, the range, and the null-space of a linear
operator T are denoted by domT, ranT, and kerT , respectively. The set of all regu-
lar points of a closed operator T is denoted by p(T). We denote by I, the identity
operator in a Hilbert space .77 and by Py the orthogonal projection onto the subspace
(the closed linear manifold) .. The notation 7 [.Z means the restriction of a linear
operator T on the set .Z. The positive integers will be denoted by N. An operator
T € L($1,92) is said to be
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(a) contractive if |T|| < 1;

(b) isometricif |Tf|| = || f|| forall f€$H| = T'T =1Ig,;
(c) co-isometricif T* is isometric <= TT" =g, ;

(d) unitary if it is both isometric and co-isometric.

Given a contraction T € L(91,2), the operators
Dy :=(I—-T'T)'? ~ Dp:=1-TT")"?

are called the defect operators of T, and the subspaces ®7 =ranDr, D7+ =ranDr+
the defect subspaces of T . The dimensions dim®7, dim® 7+ are known as the defect
numbers of T . The defect operators satisfy the following intertwining relations

TDr =Dy+T,  T*Dy«=DrT*. (1.1)

It follows from (1.1) that T®7 C D7+, T*D7« C D7, and T (kerDr) = ker Dr+,
T*(ker Dr+) = ker Dy . Moreover, the operators T | ker Dy and T*| ker Dy are isome-
tries and T[®r and T*[Dyr+ are pure contractions, i.e., ||T f|| < ||f]| for f € H\{0}.

The Schur class S($1,2) is the set of all function @(A) analytic on the unit disk
D with values in L($);,2) and such that ||©(A)|| < 1 forall A € D. The next theorem
goes back to Shmul’yan [41], [42] and T. Constantinescu [29] (see also [20], [10]) and
plays a key role in the operator Schur algorithm.

THEOREM 1.1. Let 9 and N be separable Hilbert spaces and let the function
O(A) be from the Schur class S(ON,N). Then there exists a function Z(A) from the
Schur class S(Dg(0),Der(0)) such that

O(4) =0(0) + Dg+(0)Z(A)(I+©*(0)Z(A)) ' Dg(q), 4 €D. (1.2)

In what follows we will call the representation (1.2) of a function ©(A) from the
Schur class the Mobius representation of ©(A) and the function Z(A) we will call the
Mébius parameter of ©(A). Clearly, Z(0) =0 and by Schwartz’s lemma we obtain
that

1Z(A)]| <Al A €D.

The operator Schur’s algorithm [20]. Fix ©(4) € S(OM,N), put Op(A) = O(A)
and let Zy(A) be the Mgbius parameter of ©. Define

Zo(A
To=0(0), 0;(1) = O)(L ) ¢ S(®ry,®ry), T1 = 04(0) = Z)0).
If ©9(4),...,0,(A) and Iy, ..., T, have been chosen, then let Z,, 1 (4) € S(Dr,,Dry)
be the Mobius parameter of ©,,. Put

Zn+1 (A)
A

®n+1(k) =

s Dot = 0,41(0).
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The contractions Ty € L(ON,N), T, € L(CDFWUCDF,’;,[)’ n=1,2,... are called the
Schur parameters of ©(A) and the function ©,(4) € S(r,, |, Dr: ) we will call the
n—th Schur iterate of ©(1).

Formally for the operator analog of the Schur transformation we have

n—17

(S (A) [ranDrn = %Drﬁ (I@r;; - @,&A)F;)il (@n(ﬂ,) — Fn)DI:nl [ranDrn.
Clearly, the sequence of Schur parameters {I', } is infinite if and only if the operators ',
are non-unitary. The sequence of Schur parameters consists of finite number operators
I'o, I't,...,I'y if and only if I'yv € L(®r,,_, ,CDF;H) is unitary. If 'y is isometric
(co-isometric) then I';, =0 forall n > N.

The following theorem is the operator generalization of Schur’s result.

THEOREM 1.2. [29], [20]. There is a one-to-one correspondence between the
Schur class functions S(ON,N) and the set of all sequences of contractions {Ty}n>0
such that

To € L(M,MN), T, €L(Dr, . D ). n> 1. (1.3)

Notice that a sequence of contractions of the form (1.3) is called the choice se-
quence [28].

It is known [37], [27], [13], [8], [21] that every ©(A) € S(IM, M) can be realized
as the transfer function

O(L) =D+ AC(Il —AA)'B

of a linear conservative and simple discrete time-invariant system (see Section 4)

([ anno)

with the state space §) and the input and output spaces 9t and 91, respectively. In this
paper we study the problem of the conservative realizations of the Schur iterates of the
function ©(A) € S(M,N) by means of the conservative realization of ©.

In this connection it should be pointed out that the similar problem for a scalar
generalized Schur and Nevanlinna classes functions has been studied in [1], [2], [3],
[4], [5], [6]. For a scalar finite Blaschke product the realizations of the Schur iterates
are constructed in [36].

Here we describe our main results. Let A be a completely non-unitary contraction
[47] in a separable Hilbert space . Define the subspaces and operators

fjmp = ke[‘DAm7 f)o}l = kerDA*z,
YJm,l = kerDAm ﬂkerDA*z, m,l S N7
Am,l = Pm,lA fme,t,

where B, ; is the orthogonal projection in £ onto $),,; .
We prove that
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1) if A is a completely non-unitary contraction in a Hilbert space then for every
n € N the operators

Anos An—1,15-- Ao

are unitary equivalent completely non-unitary contractions and their Sz.-Nagy— Foias
characteristic functions [47] coincide with the pure contractive part [47], [20] for the
n-th Schur iterate ®,,(A) of the characteristic function ®(A) of A;

2)if ©(A) € S(M,M) is the transfer function of a simple conservative system

_J T €Y.
([

then the Schur parameters of © take the form

1 IR 11 —1p-1 *
I =nplc (DFO B*) T =Dp! Dilea (DFl Dy (B rmo))
*
T, :Di{l ...D;gCA’H (Dfnl,l --Dp) (B*[yj,z,l,o)) e
and the n-th Schur iterate ©,(A) of © is the transfer function of the simple conserva-
tive and unitarily equivalent systems

) Iy Dy 1 e Dr* (cAn- k)
Tn = _ _ * n ;DF’F 7@F* 753 "
1 Ak (Dl“nl,l .. .DFO1 (B* [573,,,0)) Ap_kk 1 w1’ Nk,

for k=0,...,n. Here Dr and DF* are the Moore—Penrose pseudo-inverses. For a
completely non-unitary contraction A with rank one defect operators it was proved in
[12] that the characteristic functions of the operators Aj g = Perp, Al kerDy and Ag | =
Perp, A [ kerDy+ coincide with the first Schur iterate of the characteristic function of
A. This result has been established using the model of A given by a truncated CMV
matrix. Here we use another approach based on the parametrization of a contractive
block-operator matrix

DC m N
T:BA:@H@
9 R

given in [19], [31], [43], and the construction of the passive realization for the Mobius
parameter Z(A4) of ©(A) obtained in [10] by means of a passive realization of ©.

2. Completely non-unitary contractions

Let S be an isometry in a separable Hilbert space H. A subspace Q in H is called
wandering for V if SPQ 1 S9Q for all p,q € Z+, p # q. Since S is an isometry, the
latter is equivalent to $"Q 1 Q forall n € N. If H = 3" (®S"Q then § is called a
unilateral shift and Q is called the generating subspace. The dimension of Q is called
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the multiplicity of the unilateral shift S. It is well known [47, Theorem I.1.1] that the
isometry S is a unilateral shift if and only if

() S"H = () kerDgx = {0}.
n=0 k=1

Clearly, if an isometry S is the unilateral shift in H, then Q = H S SH = Dg- is the
generating subspace for S. An operator is called co-shift if its adjoint is a unilateral
shift.

A contraction A acting in a Hilbert space §) is called completely non-unitary if
there is no nontrivial reducing subspace of A, on which A generates a unitary operator.
Given a contraction A in §), then there is a canonical orthogonal decomposition [47,
Theorem 1.3.2]

H=H0N, A=ADA;, A;j=AlH; Jj=01,

where §)p and $); reduce A, the operator Ag is a completely non-unitary contraction,
and A; is a unitary operator. Moreover,

9 = (ﬂ kerDAn> N (ﬂ kerDAm> .

n>1 n>1

Since
n—1 n—1

() ker(D4A*) = kerDan, (1) ker(Da-A™) = ker Dyon,
k=0 k=0

we get

ﬂ kerDyn = $©35pan {A""'Dy$H, n=0,1,...},

n>1

ﬂ kerDy= = $©5pan {A"Dp=$H, n=0,1,...}.

n>1

2.1)

It follows that

A is completely non-unitary <= ( N kerDAn> N ( N kerDA*n) ={0} =
n>1 n>1
<= span{A*" Dy, A"Dp+, n,m >0} = 6.
(2.2)
Note that
kerDy DkerDy2 D --- DkerDyan D -+,

AkerDyn CkerDyn-1,n=2,3,....

From (2.1) we get that the subspaces () kerDy» and () kerDys: are invariant with re-
n>1 n>1
spect to A and A*, respectively, and the operators A () kerDg» and A*[ [ ker Dy

n>1 n>1
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are unilateral shifts, moreover, these operators are the maximal unilateral shifts con-
tained in A and A*, respectively [35, Theorem 1.1, Corollary 1]. By definition [35]
the operator A contains a co-shift V if the operator A* contains the unilateral shift V*.
In accordance with the terminology of [21], a contraction A in $) is called completely
non-isometric (c.n.i.) if there is no nonzero invariant subspace for A on which A is
isometric. This equivalent to (see [21])

ﬂ kerDAn = {0}

n>1

A contraction A is called completely non-co-isometric (c.n.c.-i.) if A* is completely
non-isometric. Thus, for a completely non-unitary contraction A we have

N kerDgn = {0} <= Alis c.ni. <= A does not contain a unilateral shift,
n>1
N kerDg= = {0} <= Aisc.n.c.-i. <= A* does not contain a unilateral shift.

n>1
(2.3)
The function (see [47, Chapter VI])

Dp(A) = (~A+ADa-(I—AA*)"'Dy) [ Dy (2.4)

is known as the Sz.-Nagy — Foias characteristic function of a contraction A [47]. This
function belongs to the Schur class S(D4,D4+) and ©4(0) is a pure contraction. The
characteristic functions of A and A* are connected by the relation

Dy () =D4(L), AeD.

Two operator-valued functions ©; € S(9%,91;) and ©, € S(M,,My) coincide
[47] if there are two unitary operators V : 91; — 91, and W : 9, — 91y such that

VO ()W =0,(1), AeD.

The result of Sz.-Nagy—Foias [47, Theorem VI.3.4] states that two completely non-
unitary contractions A; and A, are unitary equivalent if and only if their characteristic
functions ®4, and ®,, coincide.

It is well known that a function ©(A) from the Schur class S(91,91) has almost
everywhere non-tangential strong limit values ©(&), & € T, where T={E € C: |§| =
1} stands for the unit circle; cf. [47]. A function ® € S(9M,N) is called inner if
0*(£)O(&) = Iyn and co-inner if O(E)O*(E) = Iy almost everywhereon & € T. A
function © € S(IM,N) is called bi-inner, if it is both inner and co-inner. A contraction
T on a Hilbert space $) belongs to the class Cy. (C.g), if

s—limA"=0  (s—limA™ =0),

n—oo n—oo

respectively. By definition Cyg := Cy. NC.¢g. A completely non-unitary contraction A
belongs to the class C.g, Cp., or Cyo if and only if its characteristic function ®,4(A) is
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inner, co-inner, or bi-inner, respectively (cf. [47, Section VI.2]). Note that for a com-
pletely non-unitary contraction A the equality kerDy = kerDy+ # {0} is impossible
because otherwise the subspace kerDy4 reduces A and A[ kerD, is a unitary operator.

We complete this section by a description of completely non-unitary contractions
with constant characteristic functions. Note that ®4(1) =0 € S({0},D4+) <= Ais
a unilateral shift, and ®4(A) =0 € S(Dy4,{0}) < A is a co-shift.

THEOREM 2.1. Let $ be a separable Hilbert space. A completely non-unitary
contraction A with nonzero defect operators has a constant characteristic function if
and only if § is the orthogonal sum

H=H® 5

and A takes the operator matrix form

s A
A_{%;]:EB - 2.5)
Hoob b

where S| and Sy are unilateral shifts in 741 and 76, respectively, and T is a contrac-
tion such that
ranl" C CDST,ranF* C Dg;,
A< 1AL f € Ds; \ {0}, (2.6)
IT*R| < [[h]], h € Dg: \ {0}

In particular, the characteristic function of A is identically equal zero if and only if A

is the orthogonal sum of a shift and co-shift.

Proof. Suppose that the contraction A takes the form (2.5) with unilateral shifts
S1 and $,, and the contraction I' with the properties (2.6). Then

o o H A
DA = |:O DS; _F*F:| : % - %7 2.7
2 2
and
e A A
D} = b ~TT"O01 o7 o (2.8)
0 0 B B

Since ® st = kerS7, ® 5= kerS3, and Dg; and Dg; are the orthogonal projections in
$ onto D st and © S5 respectively, we get from (2.6) the relations

Dy = CDSE’ Dpx = DST' 2.9)
Taking into account that .77 is an invariant subspace for A*, we have

Dy+(Is — AA")'Dy = 0.
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Hence ®5(A) =I'[Dg; = const.
Because S| and S, are unilateral shifts, we get

S =Y &S|Ds:, S =Y, &5Ds;.

n=0 n=0

Since $ = J# @ 7, the operator A is completely non-unitary. If I" = 0 then A is the
orthogonal sum of a shift and co-shift.
Now suppose that the characteristic function of A is a constant. From (2.4) we get

DuA""Dy =0, DyA"Dye =0, n=0,1,2,....

It follows
W{DA*"CDA, n=0,1,.. } CkerDgx <= () kerDan D Dyx,
n>1
SPW{DA"@A*’ n=0,1,.. } CkerDy <= () kerDp= D Dy.
n>1
Let
jl(,&l = ﬂ kerDAn, % = ﬂ kerDA*n.
n>1 n>1
Since

A C A1 and A L Dy,

we get S ©AI] D Dy and similarly JBOA* 7 D Dy. Let he 74 and h L Dy«
It follows

h € ker D+ ﬂ (ﬂ kerDAn> .

n=1

Then h = Ag, g € kerDs. Hence g € () kerDan = 4, ie., 4 O AT = Dy~

n>1
Similarly 5% S A* 5 =D,
Since A is completely non-unitary contraction, the operators A[ 74 and A*[ 5%
are unilateral shifts. Therefore

=Y BA"Dype, M=) BA"D,. (2.10)
n=0 n=0

Note that for all @,y €
(A"Dp+ @, A*Dyy) = (DAA™*Dps,w) =0, mk=0,1,2....
Hence 7 | 7% . Taking into account (2.10) and the relation
He M =span{A™"D,, n=0,1,2...},

we get ) © JH = % . Because 7 is invariant with respect to A, the matrix form of
A is of the form (2.5) with unilateral shifts

S1:=AlA, S =A" 6,
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and some operator I" € L(%%, 54 ). Since A is a contraction, we have

ITAI1? < |IDsy f11%, f € 265,
|IT*A| > < [|Ds;h| P, h e 4.

From (2.7) and (2.8) we get
m(DSé —T'T) = Dy, m(DST —TIT*) = Dye.

It follows that (2.6) holds true and ®4(A) =T .
If A is the orthogonal sum of a shift and co-shift, then, clearly the characteristic
function of A is identically zero.

3. Contractions generated by a contraction

In this section we define and study the subspaces and the corresponding operators
obtained from a contraction A in a separable Hilbert space ).
Suppose kerD4 # {0} . Define the subspaces

$oo =9
,‘73,170 = keI'DAn, ﬁO,m = keI'DA*m7 (31)
Nnm :=kerDyn NkerDysm, m,n € N.

Let P, be the orthogonal projection in §) onto $), . Define the contractions

AnA,m = Pn,mA rﬁn,m S L(y)n?m) (32)

and
ffz{n,m = An,mPnJrl?m rfJn,m € L(YJnm) (3.3)

In the next theorem we establish the main properties of A, ,, and o7, , .
THEOREM 3.1. Let A be a completely non-unitary contraction. Then

1. the following equalities are valid:

kerD,c = 9,4k
{ Al R 12 (3.4)

_ )
kerDA;{cm = YJn,m+k

Z)Anm = m(Pn-,”lDA"+1 )a (3 5)
QAZJTI = W(P’ZA,mDA*erl) ’ .
AYJn,m = fJnflA,erla nzl, (3.6)
A*f)n,m =Dnrim—1, m=1 ’ '
kerD = ik
R ST 3.7)
kerD{Q{n*‘fn = Dnm+k
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Q%w = Z)AnJer
{ Dt =D o
(An,m)k_,[ = Antkomtls (3.9)

2. The operators {A,m} and { <y m} are completely non-unitary contractions.

3. The operators
Anos Ap—11s -y An_iky -y Ao

are unitarily equivalent and
Ap-1mr1Af =AAwmf, [ € Hnm, n =1 (3.10)
4. The operators
42%]1,07 %71,17 e 7%71{,/{7 e 7%,”

are unitarily equivalent and

~Q7rzfl,m+1Af :AJZ{n,mfa f S YJn,ma nzl. (3.11)

5. the following statements are equivalent

(a) <o € Co (o€ Cy.) for some n,
(b) Ant10€Co (Ant10€Co.).

Proof. 1t is sufficient to prove the first equality from (3.4). From (3.1) and (3.2)

we have 71 =1l =1l ]
f = Anf - A*mf
€ Hnm, f EkerD ‘:’{
f n,m f Agm HfH:HAfl,me

= Af,...,A*f € Dy = f € Dniim-

This proves (3.4). Hence
QA,,‘VW = y)rz?m ef)n+1,m = y)rz?m S (kerDAnH N kerDA*’") =
=HumN @An+l + D prm = m(P,LmDA,Hl),

Z)A,jm = n.m © Dnm+1 = Dnm © (kerDan N kerDA*mH) =
- ﬁn_’m n @A” + Z)A*erl =ran (I)”’mDA*nﬁ»l )7

i.e., relations (3.5) are valid. Furthermore, if n > 2, then

Af S kerDArhl,
fEf)n’m <~ A*Af:f7 <~ AfekerDAn—l mkerDA*nﬁ»l :Sjn717m+l~
f € kerDywn (form > 1)

If n=1, then

A*Af=f,
fEDI M = {feﬁerD{ﬁm = Af ckerDjymi1 = Homt1-
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Similarly A*$),m = 9nt1,m—1, m > 1. Therefore relations (3.6) hold true.
Let g €9, v €91 m+1. Then A"y € 9, and

(AP @, W) = (Pum® A" W) = (0, A" W) = (AQ, W) = (Pu—1 w140, V).

Hence
AP, = Py_1 1A (3.12)

Taking into account (3.6), we get
APn,mAh = Pnfl.,m+1AAh7 he f)n,m-

This proves (3.10). Since A isometrically maps $),,, onto $,_1,,+1 for n > 1, the
operators A,_1,,+1 and Ay, are unitarily equivalent, and therefore the operators

Ano, Ap—11s oo Aniky Ao

are unitarily equivalent.
Note that (3.4) and (3.6) yield the equalities

N kerDA;§ =KkerDyxm ) ( N kerDAj> =A" ( N kerDAj> ,

k=1 j=1 j=1 (3.13)
N kerDA#;n =kerDan ) ( N kerDA*,) =A™ ( N kerDA*,) .
k=1 ’ jzl1 =1

Since A is a completely non-unitary contraction, we get

(ﬂ kerDA;;lim> N (ﬂ kerDA#m> = {0}.

k1 k=1

It follows that the contractions A, , are completely non-unitary.
Note that 9,1 m+1 C Hu—1,m and Ny 1,m C Hnm - Using (3.6) we get

Anfl,m+1Pn7m+1 = Pnfl,m+1APn,m+l = APnA,m+1a
AnA,mPn+1.,m = Pn,mAPr1+1m = APn+1,m~

In particular, it follows that the operators A, ,, P41, are partial isometries. From (3.12)
we obtain
APy 1A= APy 1 my

i.e.,
Anfl.,m+1Pn,m+1Af = AAnA,mPn+1.,mf for all f € f)n,m-

Because A unitarily maps §),,,, onto £,_1 ,+1, we get (3.11) and hence, the operators
n—1m+1 and 7, , are unitarily equivalent.
By induction it can be easily proved that for every k € N holds the equality

o] = (AP m)' f = A  Pocimfs [ € Hum (3.14)
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Since Al $,+1,m is isometric, relations (3.14) imply
| | = 1431 wPast |l f € Dum, kEN.
It follows the equivalence of the statements (a) and (b), and

kerD%;fm = kerDAf;},m = S')n+k7m~

Similarly, since (AymPus1m)* = Ay, Pomt1, We get
kerD%% = keI‘DAzk’;il = Dnmrk-
Thus, relations (3.7) are valid. Now we get that the operators .27, ,, = ApmPot1,m are

completely non-unitary. From (3.4) it follows that

kerDAl§ . N kerDAZlm = Dntim Vnmti =
ker D nik Nker Dpsm Nker Dan NKer D yum+1 = ker D gnk NKETD gum+1 = Nyt mt1-

Hence
(An,m)kJ = n+k,m+an,mArfJn+k,m+l :An+k,m+l~

The relation (3.9) yields the following picture for the creation of the operators Ay,

/\/

/ 71
SN
SN SN TN

Az Aip Ap3

The process terminates on the N -th step if and only if

kerDyv = {0} <= kerDynv-1 NkerDy = {0} < ...
<= kerD v NkerD u = {0} <= ...kerD v = {0}.

Note that from (2.3), (3.7), and (3.13) we get

PROPOSITION 3.2. Let A be a completely non-unitary contraction. If A does
not contain a unilateral shift (respect., co-shift) then the same is true for the operators
Snm and A, for all n and m. Conversely, if for some n and m the operator oy,
or Apm does not contain a unilateral shift (respect., co-shift) then the same is valid for
the operator A.
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Let 64 = dim®y,, S4+ = dimD4- be the defect numbers of a completely non-
unitary contraction A. For n = 1,... denote by §, and §; the defect numbers of
unitarily equivalent operators {A,_.» }1,_,- From the relations (3.5) it follows that

O = dim@AO.h =dim (m(Po_’nDA)) =dim (D40 (DaNDpm)),
6; = dlmZ)A:O = dim (ﬁ (1‘),170DA*)) =dim (@A* © (@A* ﬂ@An)) .

Thus
G128 > 28>,
Oy 251*2...25;52..._

Observe also that
01 =dim (D S (DANDy+)), 8 =dim(Dp- 6 (DaNDy+)),

and by induction

0, = dim (,DAn—LO S) (’DAWLO m,DAZ—LO)) , 5: =dim (QA:—LO S) (Z)An7110 m,DAZ—LO)) .

4. Passive discrete time-invariant linear systems and their transfer functions

4.1. Basic definitions

Let 9,91, and $ be separable Hilbert spaces. A linear system

o {[gemno)

with bounded linear operators A, B, C, D of the form

{ o, =Chy Jngk,

k>0, 41
hist = Al + BE;, “.D

where {h} C 9, {&}F C M, {or} C N, is called a discrete time-invariant system.
The Hilbert spaces 9 and 1 are called the input and the output spaces, respectively,
and the Hilbert space $) is called the state space. The operators A, B, C, and D are
called the state space operator, the control operator, the observation operator, and the
feedthrough operator of 7T, respectively. If the linear operator T, defined by the block

form on o
T — {’;ﬂ LB -6 “.2)
k) k)

is contractive, then the corresponding discrete time-invariant system is said to be pas-
sive. If the block operator matrix 7; is isometric (respect., co-isometric, unitary), then
the system is said to be isometric (respect., co-isometric, conservative). Isometric, co-
isometric, conservative, and passive discrete time-invariant systems have been studied
in [25], [26], [8], [47], [37], [271], [21], [7], [13], [14], [15], [16], [17], [18], [45], [46],
[11], [10], [36].
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The subspaces
HS:=span{A"BM: n=0,1,...} and H? =span {A""C*N: n=0,1,...} (4.3)

are said to be the controllable and observable subspaces of the system T, respectively.
The system 7 is said to be controllable (respect., observable) if $H5 = $ (respect.,
9 =9), and it is called minimal if T is both controllable and observable. The system
T is said to be simple if ) = clos {.‘?32 + .‘?32} (the closure of the span). It follows from
(4.3) that

(991 = [ ker(B'A™), (92 = [ ker(CA"), (4.4)
n=0 n=0
and therefore there are the following alternative characterizations:

(a) 7 is controllable <= ﬁ ker(B*A*™") = {0};

n=0

(b) 7 is observable <= ﬁ ker(CA") = {0};
n=0

=0

(c) Tissimple <= < ﬁ ker(B*A*”)) N ( ﬁ ker(CA”)) = {0}.
n= n=0
The transfer function
O:(A):=D+AC(Ily—AA)"'B, A€D, (4.5)

of the passive system 7 belongs to the Schur class S(991,91) [13]. Conservative sys-
tems are also called the unitary colligations and their transfer functions are called the
characteristic functions [27].

The examples of conservative systems are given by

Z_{|:DA A*:|7®A>©A*>Sj}>z*_{|:DA* A:|7@A*>©A>Sj}-

The transfer functions of these systems
Ds(A) = (—A+ADa+(Ig — AA*) 'Dp) [D4s, AED

and
Dy, (A) = (—A* +ADs(Ig —AA) 'Dyg+) [Dyp+, A €D

are precisely characteristic functions of A and A*, correspondingly.

It is well known that every operator-valued function ©(4) from the Schur class
S(M,91) can be realized as the transfer function of some passive system, which can
be chosen as controllable isometric (respect., observable co-isometric, simple conser-
vative, minimal passive); cf. [26], [47], [37], [21], [8] [13], [15], [7]. Moreover, two
controllable isometric (respect., observable co-isometric, simple conservative) systems
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with the same transfer function are unitarily similar: two discrete time-invariant sys-

tems
_([pa]. _([D &,
Tl - { |:Bl A1:| 9m>m7~61} and T2 - { |:B2 A2:| ’m7m>*§j2}

are said to be unitarily similar if there exists a unitary operator U from $); onto $;
such that

A =U"'AU, B =U'B,, C=GU;

cf. [25], [26], [37], [21], [8], [27], [7]. However, a result of D.Z. Arov [13] states that
two minimal passive systems 7; and 7, with the same transfer function ©(A) are only
weakly similar, i.e., there is a closed densely defined operator Z : §); — ), such that Z
is invertible, Z~! is densely defined, and

ZA\f =AZf, Cif=CZf, fedomZ, and ZB;=B,.

4.2. Defect functions of the Schur class functions

The following result [47, Proposition V.4.2] is needed in the sequel.

THEOREM 4.1. Let MM be a separable Hilbert space and let N(&), £ € T, be an
L (M) -valued measurable function such that 0 < N(&) < Ion. Then there exist a Hilbert
space R and an outer function ¢(A) € S(MN, R) satisfying the following conditions:

(i) ¢*(&)p(&) <N*(&) a.e. on T

(i) if Risa Hilbert space and P(A) € S(M, R) is such that ¢*(£)P(E) < N*(E)
a.e. on T, then @*(£)P(&) < 0*(E)p(E) ae. on T.

Moreover, the function @(A) is uniquely defined up to a left constant unitary factor.

Assume that ©(A) € S(9,N) and denote by @ (&) and we(£), & € T the outer
functions which are solutions of the factorization problem described in Theorem 4.1

for N2(&) = Iy — ©*(E)O(&) and N?(E) = Iy — O(E)O* (&), respectively. Clearly,
if ©(A) is inner or co-inner, then @g = 0 or ye = 0, respectively. The functions
0o (A) and ye(A) are called the right and left defect functions (or the spectral factors),
respectively, associated with ©(A); cf. [20], [22], [23], [24], [35]. The following result
has been established in [35, Theorem 1.1, Corollary 1] (see also [23, Theorem 3], [24,
Theorem 1.5]).

THEOREM 4.2. Let ©(A) € S(M,N) and let

([ emno)

be a simple conservative system with transfer function ©. Then
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1. the functions @o(A) and we(A) take the form

Po(L) = Po(ly — AA)"!B,
vo(A) =C(ly —24) 711 Q.,

where
Q= (97)"SAR), Qu=(95)SAT(H7)"
and Pq is the orthogonal projector from $) onto Q;

2. @o(A) =0 (yo(A)=0)if and only if the system T is observable (controllable).

The defect functions play an essential role in the problems of the system theory, in
particular, in the problem of similarity and unitary similarity of the minimal passive
systems with equal transfer functions [16], [17] and in the problem of optimal and (x)
optimal realizations of the Schur function [14], [15].

4.3. Parametrization of contractive block-operator matrices
Let $, &, 97 and 91 be Hilbert spaces. The following theorem goes back to [19],
[31], [43]; other proofs of the theorem can be found in [38], [39], [9], [11].

THEOREM 4.3. Let AcL($,8), BEL(IMM, R), CeL(9H,MN), and D € L(M,N).

The operator matrix

M L
T:Bﬂ:@ — D
9 R

is a contraction if and only if T is of the form

T =

|:—KA*M+DK*XDM KDA} (4.6)

Dp<M A

where A € L($,8), M € L(M,D4+), K € L(D4,M), and X € L(Dp,Dg+) are con-
tractions, all uniquely determined by T . Furthermore, the following equality holds for
o H [KA*M +Dg-XDy KDA] [h]

al heM, feH:
h
f DyM A ||f

= | Dk (Daf — A*Mh) — K*XDyh||? + || Dx Dash]|?.

2

.7

COROLLARY 4.4. Let

T {KA*M+DK*XDM KDy

] m N
10— 0
DM A 9 ’

be a contraction. Then
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1. T is isometric if and only if
DgDs =0, DxDy =0,
2. T is co-isometric if and only if
Dy+Dp+ =0, Dx+Dg+ = 0.

If T given by (4.6) is unitary, then Dg= =0 <= Dy =0.

Note that the relation DyDz = 0 for contractions Y and Z means that either Z is an
isometry and ¥ =0 or ®z # {0} and Y is an isometry.

Let 7= { {g ﬂ ;I ‘ﬂ,.ﬁ} be a conservative system. Then from Corollary 4.4
we get

(99t = ﬂ ker(Da=A™") = ﬂ ker(Dasn),

n=0 n>1 (4 8)
(.Sﬁ‘f’)L = ﬂ ker(DsA™) = ﬂ ker(Dyn),
n=0 n>1

7is controllable <= (N ker(Dg=) = {0} <—
n>1

<= the operator A is completely non-co-isometric <=
<= the operator A* does not contain a shift,
Tis observable <= () ker(Dy») = {0} <—

n>1
<= the operator A is completely non-isometric <=
<= the operator A does not contain a shift,

T is simple <= the operator A is completely non-unitary.

In [11] we used Theorem 4.3 for connections between transfer function ©,(A) of the

passive system
DC|.
e { |:B A:| ’W’M75§} ’

and the characteristic function of A. In particular, an immediate consequence of (4.6)
is the following relation

Or(A) =K®4+(A)M + Dg-XDy, A €D, (4.9)

where ®,4+(A) is the characteristic function of A*.

Recall that if ©(A) € S($1,2), then there is a uniquely determined decomposi-
tion [47, Proposition V.2.1]

De(0) Do+ (0)
Op(%) 0] :® — @
kerD@(O) kerD@* (0)

b
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where ©,(A) € S(Dg(0);Der(0))> ©p(0) is a pure contraction and @, is a unitary
constant. The function ©,(A) is called the pure part of ©(A) (see [20]). If ©(0)
is isometric (respect., co-isometric), then the pure part is of the form ©,(A) =0 €
S({0},Dg+(0)) (respect., ©,(4) =0 € S(Dg(g),{0})).

From (4.6) and (4.9) we get the following statement.

(o

be a a simple conservative system and let ©(A) be its transfer function. Then

PROPOSITION 4.5. Let

dim®, = dimDg: () = dim(N S kerC”),

and the pure part of © coincides with the Sz.-Nagy—Foias characteristic function of A*.

In addition

1) if ©(0) is isometric then B =0, A is a co-shift of multiplicity diim®g- (o), and
the system T is observable;

2) if ©(0) is co-isometric then C =0, A is a unilateral shift of multiplicity
dim®g(g), and the system T is controllable.

Proof. According to Theorem 4.3 the operator

DC m R
T:BA:@H@
) 9

takes the form (4.6). Since T is unitary, from (4.12) we get that the operators K €
L(D4,M) and M* € L(D4-,9) are isometries and the operator X € L(Dp, Dg+) is
unitary. From (4.9) it follows that the pure part of © is given by

O(A)[ranM* = K@y« (A)M|ranM" : ranM* — ranK.
Thus, the pure part of © coincides with @4+ . Since ranM* = D+, ranK* = Dy,

D =0(0) = K®y-(0)M* = —KA*M*, D* = ©*(0) = —MAK"*,
ranK = N kerK* =91 S kerC*,
ranM* =9 ckerM = M SkerB,

we get (4.10).

Suppose D = ©(0) is an isometry. Then the pure part of © is 0 € S({0},Dp-). It
follows that M = B=0 and D4+ = {0}. Hence, A is co-isometric and since A is a com-
pletely non-unitary contraction, it is a co-shift of multiplicity dim®4 = dimDg+(q),
and the system 7 is observable. Similarly the statement 2) holds.

In this paper we will use a parametrization of a contractive block- operator matrix
based on a fixed upper left block D € L(9t,9%). With this aim we reformulate Theorem
4.3 and Corollary 4.4.
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THEOREM 4.6. The operator matrix

bcp MM
T=lpal ® —@
9 R

is a contraction if and only if D € L(9M, M) is a contraction and the entries A, B, and
C take the form
B=FDp, C =Dp:G,

A=—FD*G+ Dp~LDg,
where the operators F € L(Dp,R), G € L(H,Dp+) and L € L(Dg,Dp+) are con-

tractions. Moreover, operators F, G, and L are uniquely determined. Furthermore,the
following equality holds

“.11)

2

h o * * 2 2
HDT |:f:| - HDF (DDh_D Gf)_F LDGfH +HDLDGfH ) (4_12)
hedM, feH
and
® 2
) _ o *o\ * ) 2 ) N 2
HDF [g] = |ID- (Do 0~ DF*g) ~ GL'Dy-gl P+ 1DuDrgl. 4 13,
pEM, geR

1. the operator T is isometric if and only if

DpDp =0, DL.Dg =0,

2. the operator T is co-isometric if and only if

DG*DD* = O7 DL*DF* = 0’

3. if T is unitary, then Dp+» =0 <= Dg =0.
Let us give connections between the parametrization of a unitary block-operator matrix
T given by (4.6) and (4.11).
PROPOSITION 4.7. Let

T — 7KA*M+DK*XDM KDA -
- Dp<M A |

[ D Dp-G '
~ |FDp —FD*G+Dp-LDg|

503
!
503

be a unitary operator matrix. Then

Dp =ranM*, Dp+ =rank,
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F*:M*P@A*, G=KPy,,
GF f =KPy Mf, f € Dp,
L=AJkerDy.

Proof. Since FDp = Dy«M, KD4 = Dp+G, and by Corollary 4.4 the operators
F, G*, K,and M* are isometries, we get D7, = M*D3.M, D3, = KD;K*, and

Dp =M*Dp~M, Dp- = KDsK".

It follows that ®p =ranM*, Dp+ =ranK, DayxM = FM*D+M, and DAK* = G*KD,K*.
Therefore,
FM* =lp,., G'K=1Iyp,.

It follows
F=M9Dp, G'=K"|Dp-.

Hence, F* = M*Pp,, and G = KPp . In addition
Dj =I5 —MM*Py,, = Bap,., Dg =1y — K*KPs, = Barp,,
—FD*G = —F(—M*AK* + DyX*Dg+)KPy, = APy,
A=—-FD*G —+ DF*LDG = APZ)A + PkerDA* LPkerDA .
On the other hand
A = APQA +APkerDA~

Hence L=A[kerDjy.
Let D : 9t — D1 be a contraction with nonzero defect operators and let

Dp Dp-
0= {0 G]

b — D
FSl'g &
be a bounded operator. Define the transformation (see[10])
_|D 0 Dp+ 0| |0 G| |Dp O
Ap(Q) = [0 FD*G} +[ 0 Iﬁ] {F S} {0 I,-J' .19

Clearly, the operator T = .#p(Q) has the following matrix form

T_[D DpG }'g_fg
FDpS—FD'G|" o ¢

PROPOSITION 4.8. [10]. Let $H,9M, N be separable Hilbert spaces and let D :

0G oo Op
M — N be a contraction with nonzero defect operators. Let Q = {F S} e -8
9 9

be a bounded operator. Then
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1.
Dp Dp+
D
T:.///D(Q):|:B§:|Z@ — D
H H

is a contraction if and only if Q is a contraction. T is isometric (respect., co-
isometric) if and only if Q is isometric (respect., co-isometric);
2. the relations , -
ﬂ ker(B*A™) = ﬂ ker (F*S™),
o =0 (4.15)

ﬂ ker (CA") = ﬂ ker (GS")
n=0 n=0
hold.

5. The Mébius representations

Let T : 1 — $H7 be a contraction. In [44] and [41] were studied the fractional-
linear transformations of the form

Z—Q=T+DrZ(lp, +T*Z) 'Dr =T +Dr(lp,. + ZT*) ' ZDr (5.1
defined on the set ¥7+ of all contractions Z € L(®r,D7+) such that —1 € p(T*Z).
The following result holds.

THEOREM 5.1. [41]. Let the T € L(91,$2) be a contraction and let Z € V7.
Then Q=T + Dr+Z(lo, +T*Z)"'Dr is a contraction,

IDof|I* = ||Dz(In, + T*Z)"'Drfl. f € H1, (5.2)

ranDg C ranDr, and ranDgy = ranDr if and only if ||Z|| < 1. Moreover, if Q €
L(91,92) is a contraction and Q = T + Dr=XDr, where X € L(D7,D7+) then X €
Z=X(Ip, —T*X)"' € ¥7+,

and the operator Q takes the form Q =T +Dr+Z(lp, + T*Z)’IDT.
Observe that from (5.1) one can derive the equalities
Iy, — QT* =Dr+(lp,. + ZT*) ' Dy,
ZranDr = Dr+(I, — QT*)"(Q — T)D7".

The transformation (5.1) is called in [41] the unitary linear-fractional transformation. It
is easy to see that if ||T|| < 1 then the closed unit operator ball in L($);,%,) belongs
to the set ¥7+ and, moreover

T+DrZ(lp, +T*Z) 'Dr = D7 (Z+T)(lp, +T*Z) 'Dr =
=Dr-(lp,. +ZT*) " (2+T)D;'
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forall Z € L(91,92), ||Z]| < 1. Thus, the transformation (5.1) is an operator analog
of a well known Mobius transformation of the complex plane

1| <1

The next theorem is a version of a more general result established by Yu.L. Shmul’yan
in [42].

Z+t
z— —,
1+1z7

THEOREM 5.2. [42]. Let M and N be Hilbert spaces and let the function ©(A)
be from the Schur class S(9,N). Then

1. the linear manifolds ranDg; and ranDeg: ;) do not depend on A eD,

2. for arbitrary Ay, A3, A3 in D the function ©(A) admits the representation
(1) =O(A1) + Dex(1,) ¥ (A)De 1)

where (1) is a holomorphic in D and L (©®(A3)7@®*(A2)) -valued function.

Now using Theorems 5.1 and 5.2 we get Theorem 1.1. Recall that the representa-
tion (1.2) of a function O(A) € S(IN,N) is called the Mobius representation of © and
the function Z(4) € S(Dg(0), Do+(0)) is called the M&bius parameter of ©.

The next result established in [10] provides connections between the realizations
of ©(A) and Z(A) as transfer functions of passive systems.

THEOREM 5.3. [10].

1. Let T= { {D C} ;ﬁﬁ,‘ﬂ,ﬁ} be a passive system and let

BA
r_[pCcl_[ D Dp-G .g_)g
“|BA|~ |FDp —FD*G+ Dp-LDg e

Let ©(A) be the transfer function of T. Then

(a) the Mébius parameter Z(A) of the function O(A) is the transfer function
of the passive system

0 G
V= { {F DF*LDG} ,CDD,@D*J?},

(D) the system T isometric (respect., co-isometric) = the system V isometric
(respect., co-isometric);

(c) the equalities 9, = 9%, H9 = H7 hold and hence the system T is con-
trollable (respect., observable) = the system Vv is controllable (respect.,
observable), the system T is simple (respect., minimal) = the system Vv is
simple (respect., minimal).
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2. Let ©(A) € S(M, M) and let Z(A) be the Mébius parameter of ©(A). Suppose

that the transfer function of the linear system

0G
V/ = { |:F S:| ;96(0)796*(0)a~6}

coincides with Z(A) in a neighborhood of the origin. Then the transfer function
of the linear system

, f ] ©) Dg+(0)G .

coincides with ©(A) in a neighborhood of the origin. Moreover

(a) the equalities 561, = v,, g, = ’;, hold, and hence the system V' is con-
trollable (respect., observable) = the system T’ is controllable (respect.,
observable), the system V' is simple = the system T’ is simple (respect.,
minimal),

(b) the system V' is passive = the system T’ is passive (respect., minimal),

(c) the system V' isometric (respect., co-isometric) = the system T' isometric
(respect., co-isometric).

COROLLARY 5.4. 1) The equivalences

Po(A) =0 <= ¢z(A) =0,
Vo(A) =0 < yz(A)=0

hold.

2) Let [|©(0)[Degg)|| < 1. Suppose p(A) € S(M, £) (w(A) € S(R,MN)) and

o*(&)p(&) = (@ foralmostall £ €T
(1//(5)1//* D2 o+ (&) for almost all & € T).

Then
9(2) = 0(A)Dg g (Ing, + 07 (0)Z(A)) € S(De (o), L)
(qm) = (I +Z(A)0"(0))Dg ) Pog. o W(A) € S(ﬁ,i)@*(o)))
and
¢*(&)P(E) =Dy;) foralmostall &eT
(VW (&) =Dy foramosiall EET).
In particular,

O(A) s inner (respect., co-inner) <= Z(A) is inner (respect., co-inner).
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g ﬂ ;im,‘ﬁ,ﬁ} be a sim-
ple conservative system with transfer function ®(A). By Theorem 4.2 the system 7 is
observable (controllable). As it is proved above the corresponding system v with trans-
fer function Z(A) is conservative and observable (controllable). Theorem 4.2 yields
that ¢z(4) =0 (yz(4) = 0).

Conversely. Let ¢z(A) =0 (yz(A) =0) and let V' be a simple conservative sys-
tem with transfer function Z(A). Again by Theorem 4.2 the system V' is observable
(controllable). As it is already proved the corresponding system 7’ with transfer func-
tion ®(A) is conservative and observable (controllable) as well. Now Theorem 4.2
yields that pg(A) =0 (ye(A) =0).

2) Let ||©(0)[Dg(g)|| < 1. Since

Proof. 1) Let po(A) =0 (wo(A) =0)andlet 7= { {

0"(0)[De-(9) = ((0)[Dgy0)) "

we get ||©7(0)[Dg+(g)|| < 1. It follows that the operators Dg g) [ De() and De+ (o) [ Do (0)
have bounded i 1nverses From (5.2) we obtain the relation

1De(1)De o) 1D + O (OZM))fII* =Dz fIP, 2 €D, f € Doyg)-

The non-tangential limits ©(&) and Z(£) exist for almost all £ € T. It follows the
relation

1De()Peo) e + O (0Z(E))/11 = D7) 17, f € Deyo)

for almost all £ € T. This completes the proof.

THEOREM 5.5. Let A be a completely non-unitary contraction in the Hilbert
space $ and let Z(A) be the Mbius parameter of the Sz.Nagy—Foias characteris-
tic function of A. Then Z(A) is the characteristic function of the operator /i =
APerp, (see (3.2) and (3.3)). Moreover, the following statements are equivalent

(i) the unitary equivalent operators Ay and Ay, are unilateral shifts (co-shifts),
(ii) Do CDas (Dar CDa)

(iii) the Mébius parameter takes the form Z(A) = Alp, (Z* A) = Aly,. ).
Proof. The system

_ | A Dar|,
Z_{|:DA A*:|7©Aa©.4*a~6}

is conservative and simple and its transfer function

D(A) = (—A+ADa(Iy — AA*)'Dy) [ D4
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is the characteristic function of A. Let F and G* be the embedding of the subspaces
D4 and Dy+ into 9, respectively. It follows that

D+ = PkerDAa D¢ :PkerDAw
et L= erDy+. Then
Let L=A*| kerDa-. Th
A* :A*P@A* +A*PkerDA* = 7F(7A*)G+DF*LDG

Let
®(A) = D(0) + Do+ (0)Z(A) (I + D*(0)Z(1)) ' Dop(q), A €D

be the Mobius representation of the function ®(A4). By Theorem 5.3 the system

v={ |2 e Jionmnn}

IDA A*PkerDA*

is conservative and simple and its transfer function is the function Z(4), i.e.,
X -1
Z(A)=APg,. (I = AA"Perp,.) [Da, |A| < 1.

This function is precisely the Sz.-Nagy—Foias characteristic function of the partial isom-
etry M,O = APkeri)A .

Suppose A1 = Perp,Al kerDy is a unilateral shift. Since AkerDy = kerDyx,
we have ker Dy« C kerD, . Equivalently ©4 C ©4+. Hence,

Perp, [Da=0 and (A"Perp,.)"[Pa=0 forall neN.

Therefore,
Z(A) = AP@A* [D4 = /lI@A.

Conversely, suppose Z(A) = Alp, . Then Dy C D4+ = kerDy D ker Dy . It follows
AkerDy CkerDy = Ao 1isisometry.

Since the operator A1 is completely non-unitary, it is a unilateral shift.

COROLLARY 5.6. Let A be a completely non-unitary contraction in a separa-
ble Hilbert space $) and let ||A[Da|| < 1( <= ranDy = D,). Then the following
statements are equivalent

(i) A€ Cy (respect., A€ Cy.),
(i) @€ Co (respect., @ip€Cy.).

Proof. By (2.4) we have ®4(0) = —A|©,4. Then in accordance with [47], Corol-
lary 5.4, and Theorem 5.5 we get the equivalences

A€Cy(Cy.) < ®4(A) isinner (co-inner) <= Z(A) is inner (co-inner)
= o€ Co(Cp.).
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6. Realizations of the Schur iterates

6.1. Realizations of the first Schur iterate

PROPOSITION 6.1. Let ), £, 8 be Hilbert spaces and let F € L(£,9), G €
L(9,R) and L € L(Dg,DF+) be contractions. Let Z,(A) be the transfer function of

the system

0o G ],
v= { {F DF*LDG} ,S,ﬁ,f)} (6.1)

Then the function T'(A) = 2 1Z, (1) is the transfer function of the passive systems

GF  GDp- GF GDp+L
= ,S, ﬁ, 5 = 7 ;2>ﬁ7 )
™ { {LDGF LDGDFJ 9 } n { [DGF Dc;DF*L] 5}

where L = LPy,.
Suppose that the subspaces D+ and D¢ are nontrivial. Then the transfer func-
tions of the passive systems

GF  GDp- GF GDp-L
gl {|:LDGF LDGDF*:| 7£aﬁ7©F }7 gz { |:DGF DGDF*L:| 7£aﬁ7©G} (6 )

are equal to T(L). Moreover, for the orthogonal complements to the controllable and
observable subspaces of the systems v, {1, and §; hold the following relations

(55)" = (.ﬁﬁzl)L NkerF*, (§9)" = (.‘?322)L NkerG,

1 1 (6.3)
D¢ (.622) C(95)", Dpe (.621) C(99)"
If the operators G* and F are isometries, then
1 1
( 21) = (92)" Nker F*, ( 22) = (%5)* NkerG. (6.4)

Proof. We have
Zy(A) = AG(ls, — ADp<LDg) " 'F.

Hence
T = vat ) — Gl — ADpLDG)'F

and T'(0) = GF . It follows that

['(A) —T(0) = G(Is; — ADp+LDG)~'F — GF = AGDp+LD¢(l — ADp+LDg) "' F
= AGDp+(Ig — ALDGDFp+)~'LDGF = AGDp+(Ig — ALDGDFp+)~'LDGF
= AGDp+L(Ig — ADGDp+L) "' DGF,
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[(A) = GF 4+ AGDp+ (I — ALDGDf+)~'LDGF

= GF + AGDp+L(Is, — ADGDp+L) "' DGF. 6.5

The operators

x _| GF GDrp éﬁg
V= \LDGF LDGDg-| - 6 5
and
GF GDFxL £ R
K, = D — D
DGF DGDp+L 5 5

are contraction. Actually, let f € $ and & € £ then one can check that

AT T

= ||F*f — Dph||% + ||DLDG(Dp+f + Fh)|[3 >0
nl 2 h
Hf] | M

Thus, the systems 7y, 12, {1, and & are passive and their transfer functions are pre-
cisely I'(A).

Since L*[ kerDpx =0 and F*f =0 <= Dp-f =f, Gh=0 <= Dgh=nh, by
induction one can derive the following equalities

2
= ||F*Lf — Drh|[%+||D;f]1% >0

N ker (F*(DGL*Dp+)") = ( ker (F*(DGZ*)”)),

n=0 n=0

N ker (G(Dp+LDG)") = () ker (G(DF*Z)”),

n=0 n=0

N ker (F*DGL* (Dp+DGL*)" ) — N ker (F*(DGZ*)")),
n>0 n}l (66)
N ker (GDF* (LDGDp-)" ) = () ker (G(DF*L)"),

n=0 n=>0

N ker( “Dg(L*Dp+Dg)" ) — () ker (F*(DGL*)”DG),
n=0 n=0

N ker (GDF*L(DGDFx Ly ) N ker( (DF*Z)”).
n=0 n>1

From (6.6) follow the relations (6.3) and (6.4).

THEOREM 6.2. Let the system

_ D Dp<G .
t= { [FDD FD*G+DF*LDG} fmmﬁ}

be conservative and simple and let ©(A) be its transfer function. Suppose that the first
Schur iterate ©1(A) of © is non-unitary constant. Then the systems

G- GF G
"= |LDgF LDg

:|;©D7DD*>©F*}>
or GL];©D7©D*a©G}

6.7)
&= DGF DgL
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are conservative and simple and their transfer functions are equal to ©1(A).

Proof. Because the system v is conservative, the operators F and G* are isome-
tries. Since ©1(A) is non-unitary constant, from (6.5) it follows that the operator GF
is non-unitary. Hence by Theorem 4.6 the subspaces ®p+ and ¢ are nontrivial, and
the operator L € L(Dg,DF+) is unitary. In addition, ker F* = Dp+, kerG = D¢, and
the operators Dp+ and D¢ are orthogonal projections in §) onto ker F* and kerG,
respectively. By Theorem 5.3 the system

0 G
V= { [F DF*LDG] ,@DJQD*,ﬁ}

is conservative and simple. One can directly check that the operators

[GF G} Op Do [GF GL},QD Dor

LDGF LDg | * gF* - gF*

are unitary. Hence, the systems {; and {, given by (6.7) are conservative. In our case
relations (6.3) yield equalities

(35 = (95) . 99 = (92)

Taking into account (6.4) and the simplicity of v we get that the systems {; and §, are
simple.

THEOREM 6.3. Let O(A) € S(M,N), Ty = O(0) and let ©(A) be the first

Schur iterate of ©. Suppose
_J{ToCy.
T= { [B A] ,9)?,‘71,57)}

is a simple conservative system with transfer function ©. Then the simple conservative

system

has the transfer function A©1(A) while the simple conservative systems

0 DpC
0
D! B AP,

7©F0>©Fz‘)>f)}

D;({C(D;(}B*)* Dlile[kerDA*
AH(CYDAD;)B H(erDA*A r kerDA*
Dp-!C(Dr,)B')" Dy CAJ kerDy

Peerpy D4 B Prerp,Al kerDy

;©F07©F6>kerDA* } )

(6.8)
&= §©F0’©F37kerDA}

have transfer functions ©1(A). Here the operators D1:017 Di*)l, and DXJ are the

Moore—Penrose pseudo-inverses.
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Proof. Let
T— o C| T DF(*)G _
T |BA|T FDr, —FFSG-FDF*LDG o
7KA*M+DK*XDM KDA
= DyM A|TE e
4 9 9

Then G = Dli(*)lC, F* = DEOIB*, F=M|®Dr,, M= D;*IB. According to Proposition
4.7 we have
Dp+ = FerDys » D6 = Feernys L =AlkerDy.

Hence

GF = D;SIC(DEOIB*)*, DGDp+L = Peerp, Al kerDy,
DGF = PerpyM = Paerp, D' B, GDp+L = D;z;lCP@AA I kerDy,
LDG| kerDp« = APierp, | kerDas, LDGF = APerp, Dy B.

Note that if f € kerDy+ then
APkerDAf = PkerDA*APkerDAf = PkerDA*Af - PkerDA*APBDAf = PkerDA*Af'

Now the statement of theorem follows from Theorem 5.3 and Theorem 6.2.
REMARK 6.4. Since F* = DfolB*, we get F = (DfolB*)* € L(®r,,9). Hence
D;!B®r, = (D;OIB*)*.
Using the Hilbert spaces and operators defined by (3.1) and (3.2), we get

Perp, Dy B ®Dr, = Py D! B ®r, = (Dfol (B* ml,o)) € L(Dr,,91,0)-

In addition
DE?)IC(DEOIB*)* =TI, € L(QF07©FS)~

So,
I Dy/C
G = i * D1, O, 90,1 ¢
A(DL (B 1910)) Agy | .
I DplcA ©
b= 0 ;Ory, Drs, H1.0

(Dfol (B*fﬁl,o))* A

It follows that
ran D;,}C[ﬁw) C ranDr,
5 ;

ran DEOIB*fﬁl,o) CranDr,
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6.2. Schur iterates of the characteristic function

THEOREM 6.5. Let A be a completely non-unitary contraction in a separable
Hilbert space $). Assume kerDy # {0} and let the contractions A, ,, be defined by
(3.1) and (3.2). Then the characteristic functions of the operators

An,07An71,17 cee aAnfm,ma .. ~Al,n71aA0,n

coincide with the pure part of the n-th Schur iterate of the characteristic function ®(A)
of A. Moreover, each operator from the set {A,_xx}7_o is

1. a unilateral shift (respect., co-shift) if and only if the n-th Schur parameter T’
of @ is isometric (respect., co-isometric),

2. the orthogonal sum of a unilateral shift and co-shift if and only if

Or, , #{0}, O #{0} and T, =0 forall m>n. (6.10)
Each subspace from the set {9, i} is trivial if and only if T, is unitary.

Proof. We will prove by induction. The system

_ | =A Dar|,
Z_{|:DA A*:|7©Aa©.4*a~6}

is conservative and simple and its transfer function ®(A) is Sz.-Nagy—Foias character-
istic function of A. Asin Theorem 5.5, let F and G* be the embedding of the subspaces
s and Dy+ into §, respectively. Then D+« = PBerp, = P10, D = FerD =P,
and L = A*[ kerDp« € L(D4+,D,) is unitary operator. The system

0 Pp
V= * A ;9 7© *y
{ |:I©A A PkerDA*] A fJ}

is conservative and simple and its transfer function Z(A) is the Mdbius parameter of
®(A). Constructing the systems given by (6.7) in Theorem 6.2 we get

£ = {{ Po,. D4 Py ,. [ kerDy
A

% % 304, Dax, kerD,
PerD,s [Da A PerD,s [kerDA:| A=A A}

and
4,2 _ P@A* r@A P@A*A* r kerDA*
PerD,s [Da PkerDA*A* [ ker Dy
By Theorem 6.2 the systems {; and {, are conservative and simple and their transfer

functions are precisely the first Schur iterate @ (A4) of ®(A). Note (see (3.1) and (3.2))
that

:| ;@A,DA*,kerDA*} .

A*Peerp,. | kerDy = A7 o, Prerp, A" [ kerDax = Ag ;.

Applying Proposition 4.5 we get that the pure part of ®;(4) coincides with the char-
acteristic functions of the operators A and Ag .
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By Theorem 3.1 completely non-unitary contractions {A,_}?_, are unitarily
equivalent. Assume that their characteristic functions coincide with the pure part of the
n-th Schur iterate ®,,(4) of ®. The first Schur iterate of @, is the function @, (4).
As is already proved above the pure part of @, coincides with the characteristic
function of the operators (A,_xx)1,0 and (A, x)o,1 - From (3.9) it follows

(An—ki)1.0 = Ans1—kk> (Anrk)0,1 = Ank ki1 = Apgl— (k1) ot 1-

Thus, characteristic functions of the unitarily equivalent completely non-unitary con-
tractions {A, 1}y coincide with @, .

Note that the Mobius parameter of the n — 1-th Schur iterate ®,,_; is A®, (1) and
by Theorem 5.5 this function coincides with the characteristic function of the operator
n.0 = AnoPerD e Applying Theorem 5.5 once again, we get that A, is a unilateral
shift if and only if T,isa isometry.

The function ®*(A) is the characteristic function of the operator A* and its Schur
parameters are adjoint to the corresponding Schur parameters of ®. In addition if
B = A" then B, = A,,,. Therefore, Ag, is a unilateral shift if and only if I7, is
isometric. But Aj, is unuitarily equivalent to Ay . Hence, A, ¢ is a co-shift if and
onlyif I, is a co—fsometry. '

It follows that I'; is a unitary if and only if A, o is a unilateral shift and co-shift in
f)n,O — f)n,O = {O} .

Condition (6.10) holds true if and only if @, is identically equal zero. This is
equivalent to the condition that A, (as well and A, 1, Ay—22, ...Ao,) is the or-
thogonal sum of a shift and co-shift.

REMARK 6.6. Theorem 6.5 and Theorem 3.1 yield the following equivalences:

[, is isometry <= kerD,u+1 =kerDyn <= kerDn NkerDy+ = kerD 4,1 NkerDyx
= ... <= kerDynri-xNkerDyw =kerDyn NkerDyu <= ...
<= kerDp C kerDy;

I, is isometry <= kerDan C kerDy+ <= kerD »—1 NkerD .2 = kerD -1 Nker D+

< ... &= kerD ,—r NkerD yur1 = kerD 4u—x NkerD 4.«
< ... <= kerDA*,,H = keI'DA*n;

kerDpn = <ﬂ kerDAl> @ <ﬂ kerDA*l) ,

conditions (6.10) <— =1 I>1
PeerpynA (ﬂ kerDA*z> - <ﬂ kerDA*l) .
>1 >1

In particular, we get the following statement:

if the Schur parameter 1", of the characteristic function of a completely non-
unitary contraction A is non-unitary, but isometry (respect., co-isometry) for some n,
then A is not completely non-isometric, but is completely non-co-isometric (respect., A
is not completely non-co-isometric, but is completely non-isometric); if Iy, is unitary,
then A is completely non-isometric and completely non-co-isometric.
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6.3. Conservative realizations of the Schur iterates

THEOREM 6.7. Let ©(A) € S(MM,N) and let

o= {[3Jmons)

be a simple conservative realization of ©. Then the Schur parameters {Ty}n>1 of ©
can be calculated as follows

My =Dy (DrlB*) s T2 = DRl DR CA (D! DR} (B[ $10)) oo

(6.11)
_pn-1 —1 -1 —1 —1
Ly=Dg! -Dplcar (Dpt DRl (819, 10)) oo
Here the operators Dlikl and Dli,},k =0,1,... are the Moore-Penrose pseudo inverses,
k

the operator
-1 —1 /px *
(Pr) DRl (B 190-10)) € LD, 1,90-10)
is the adjoint to the operator

Dr! D) (B*[$n-10) € L($n-10,9r,,),

and

ran DlirL1 1:01 (B* [.‘73,170)) CranDr,,

...D
ran D;’{l ~~~D;31 (c fﬁo,n)) CranDr

for every n > 1. Moreover, for each n > 1 the unitarily equivalent simple conservative
systems

T, Dl:;{l . DFSI (CA"ik)

T = *
n Ak (D]T‘ILI .. .Dl:()l (B* rfjn,O)) Anfk,k

QF,l,laQF;717ﬁ11—k,k 5 kZO,l,...,l’l (612)

are realizations of the n-th Schur iterate ©, of ©. Here the operator
*
B, = (Dg! Dy (B 1900)) € L(®r, , H0)

is the adjoint to the operator

D! ---Dp) (B[ $100) € L(90,9r,_,)-



92 YURY ARLINSKIT

Proof. We will prove by induction. For n =1 it is already established (see Remark
6.4, (6.8), and (6.9)) that

1 1) "
I =Dplc (D;O B*)

and the systems

I Dl (cA)
(0) o .
T, = B * 01, Pr:, 91,0
: (Drol (B* ff')l,o)) Al 0o
and
[ T D=l (C)]
(1) Ty .
T, = . * ;0r,, D1z, 90,1
1 A(DF()I (B WJLO)) Ao, e

are conservative and simple realizations of ®;. Suppose

(Dl:rif ...Dljol (B*ff)m,o)) Ao

1

is a simple conservative realization of ©,,. Then

(D!, DR (B 1 $9m0)) € L(®r,, . $m0),
D Dyl (CA™) € L($1m0.Dr, ,); Ao € L(Hm0, 9m)-

m—1

By,
Cn

Hence
By =Dp! - Dyl (B'9m0) € L(Hmo.Or, ).

The first Schur iterate of ©,,(4) is the function ©,,,1(4) € S(Dr,,,Dr;,) and the first
Schur parameter of ©,, is I',,4 ;. From (3.4) and (3.9) it follows that

ker Dy, o = Om+1,0s (Am0)1,0 =Am+1,0 € L(Om+1.0,Dmt10)-

Hence by (6.8), and (6.9)

*

Tt =D/ Co (DB ) = Dpl -+ DRICA™ (D! D) (B[ $m0) )
and the system

Fm+1 Dl::% .. D1:61 (CAm+l) - -
N = - ¥ 3 O0, D1, Hm+1,0
mt1 (Drnt...l)rol (B*[ﬁerl?O)) Ami10 m
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is a simple conservative realization of ©,,1 ;. From Theorem 3.1 it follows that the
systems

1. -l -
W En D Drgcam 1
m+l Ak (Dfnf - 'Dfol (B* mm+1,o)) A1k ’

Or,,Ors, Oma1-kk

are unitarily equivalent to the system Tr51()+)1 for k=1,...,m+1 and hence their transfer
functions are equal to ©,,41. This completes the proof.

Let us make a few remarks which follow from (4.9), Proposition 4.5, Theorem 6.5,
and Remark 6.6.

If Dry =0 and Dry, #0,then O, =0, I =0¢€ L(CDF;«V,{O}), Or; =Dry,

and o, = Hon for n > N. The conservative systems T, T,<lk), forn=1,...,N,
and k =0,1,...,n, are observable. The unitarily equivalent observable conservative
systems TI(\,k> are of the form

1yl aN—k
Iy D! DRl (caV+)
0 AN_kk

;Z)FNI’@F;,laﬁNk,k}7 k=0,1,...,N,

#-{

have transfer functions ©y(A) = I'y and the operators Ay_; are unitarily equiva-

lent co-shifts of multiplicity dim®ry, the Schur iterates ©, are null operators from

L({0},Dry) for n > N+ 1 and are transfer functions of the conservative observable
N-1

system
IN41 = 310}, D1, 9o ¢ -
N+1 { : on {0}, Dry, o,N}

If DFI*V =0 and Dr, # 0, then ,Dl";; =0, Dr, = ’DFN, and I, =0¢ L(QFN,{O}),

$no = Hno for n > N. The conservative systems 7, T,Sk) ,forn=1,...,N,and k =
0,1,...,n, are controllable. The unitarily equivalent controllable conservative systems
(k)

Ty~ are of the form

-

have transfer functions ©y(A) =I'y, and the operators Ay_ ; are unitarily equivalent
unilateral shifts of multiplicity dim®r,,, the Schur iterates ©,, are null operators from
L(®r,,{0}) for n > N+ 1, and are transfer functions of the conservative controllable

system
INFL = {

—1 -1
0Dy --Dplc

I'n 0
DR (B 1950)) An-k

Ory >0y, 757)Nk,k} ;

Ak (D’l

Iy-1

k=0,1,...,N,

0
(DFNI - ‘Dfol (B* fﬁNH,O)) Anp

;QFN7{0}7Y)N,0}-
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If the operator I'y is unitary, then the conservative systems 7y, T,<lk) ,forn=1,...,N,
and k=0,1,...,n, are controllable and observable. The unitarily equivalent control-

(k)

lable and observable conservative systems Ty~ are of the form

k I'ny 0
TI(V> = { |: 0 ANk,k:| ;DFN17©F7\11’5§NICJ<}’ k:O>1>"'7N>
and Hyy1-kk ={0} for k=0,1,....N+1.
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