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CONSERVATIVE REALIZATIONS OF THE FUNCTIONS

ASSOCIATED WITH SCHUR’S ALGORITHM FOR

THE SCHUR CLASS OPERATOR–VALUED FUNCTION

YURY ARLINSKIĬ

Dedicated to the memory of Peter Jonas,
remarkable human being and mathematician

(communicated by D. Alpay)

Abstract. Let M and N be separable Hilbert spaces and let Θ(λ) be a function from the Schur
class S(M,N) of contractive functions holomorphic on the unit disk. The operator generaliza-
tion of the classical Schur algorithm associates with Θ the sequence of contractions (the Schur
parameters of Θ ) Γ0 =Θ(0) ∈ L(M,N), Γn ∈ L(DΓn−1 ,DΓ∗n−1

) and the sequence of functions

Θ0 =Θ , Θn ∈ S(DΓn ,DΓ∗n ) n = 1, . . . (the Schur iterates of Θ ) connected by the relations

Γn = Θn(0), Θn(λ) = Γn +λDΓ∗nΘn+1(λ)(I +λΓ∗nΘn+1(λ))−1DΓn , |λ | < 1.

It is well known that the function Θ(λ) ∈ S(M,N) can be realized as the transfer function

Θ(λ) = D+λC(I −λA)−1B

of a linear conservative and simple discrete time-invariant system τ =
{[

D C
B A

]
;M,N,H

}
with

the state space H and the input and output spaces M and N , respectively.
In this paper we give a construction of conservative and simple realizations of the Schur

iterates Θn by means of the conservative and simple realization of Θ .
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1. Introduction

The Schur class S of scalar analytic functions and bounded by one in the unit disc
D = {λ ∈ C : |λ | < 1} plays a prominent role in complex analysis and operator the-
ory as well in their applications in linear system theory and mathematical engineering.
Given a Schur function f (λ ) , which is not a finite Blaschke product, define inductively

f0(λ ) = f (λ ), fn+1(λ ) =
fn(λ )− fn(0)

λ (1− fn(0) fn(λ ))
, n � 0.

It is clear that { fn(λ )} is an infinite sequence of Schur functions and neither of its terms
is a finite Blaschke product. The numbers γn := fn(0) are called the Schur parameters:

S f = {γ0,γ1, . . .}.
Note that

fn(λ ) =
γn +λ fn+1(λ )
1+ γ nλ fn+1

= γn +(1−|γn|2) λ fn+1(λ )
1+ γ nλ fn+1(λ )

, n � 0.

The method of labeling f ∈ S by its Schur parameters is known as the Schur algorithm
and is due to I. Schur [40]. The transformation

S � f (λ ) → ϕ(λ ) =
f (λ )− f (0)

λ (1− f (0) f (λ ))
∈ S

is called now the Schur transformation [4]. In the case when

f (λ ) = eiϕ
N

∏
k=1

λ −λk

1−λ kλ

is a finite Blaschke product of order N , the Schur algorithm terminates at the N -th step.
The sequence of Schur parameters {γn}N

n=0 is finite, |γn| < 1 for n = 0,1, . . . ,N − 1,
and |γN | = 1.

The Schur algorithm for matrix valued Schur class functions has been considered
in the paper of Delsarte, Genin, and Kamp [32] and in the book of Dubovoj, Fritzsche,
and Kirstein [34]. An operator extension of the Schur algorithm was developed by
T. Constantinescu in [29] and with numerous applications is presented in the mono-
graphs of Bakonyi and Constantinescu [20] and Constantinescu [30].

In what follows the class of all continuous linear operators defined on a com-
plex Hilbert space H1 and taking values in a complex Hilbert space H2 is denoted by
L(H1,H2) and L(H) := L(H,H) . The domain, the range, and the null-space of a linear
operator T are denoted by domT , ranT , and kerT , respectively. The set of all regu-
lar points of a closed operator T is denoted by ρ(T ) . We denote by IH the identity
operator in a Hilbert space H and by PL the orthogonal projection onto the subspace
(the closed linear manifold) L . The notation T �L means the restriction of a linear
operator T on the set L . The positive integers will be denoted by N . An operator
T ∈ L(H1,H2) is said to be



CONSERVATIVE REALIZATION OF THE SCHUR ALGORITHM 61

(a) contractive if ‖T‖ � 1;

(b) isometric if ‖T f‖ = ‖ f‖ for all f ∈ H1 ⇐⇒ T ∗T = IH1 ;

(c) co-isometric if T ∗ is isometric ⇐⇒ TT ∗ = IH2 ;

(d) unitary if it is both isometric and co-isometric.

Given a contraction T ∈ L(H1,H2) , the operators

DT := (I−T ∗T )1/2, DT ∗ := (I−TT ∗)1/2

are called the defect operators of T , and the subspaces DT = ranDT , DT ∗ = ranDT ∗
the defect subspaces of T . The dimensions dimDT , dimDT ∗ are known as the defect
numbers of T . The defect operators satisfy the following intertwining relations

TDT = DT ∗T, T ∗DT ∗ = DT T ∗. (1.1)

It follows from (1.1) that TDT ⊂ DT ∗ , T ∗DT ∗ ⊂ DT , and T (kerDT ) = kerDT ∗ ,
T ∗(kerDT ∗) = kerDT . Moreover, the operators T � kerDT and T ∗� kerDT ∗ are isome-
tries and T �DT and T ∗�DT ∗ are pure contractions, i.e., ||T f ||< || f || for f ∈H\{0} .

The Schur class S(H1,H2) is the set of all function Θ(λ ) analytic on the unit disk
D with values in L(H1,H2) and such that ‖Θ(λ )‖� 1 for all λ ∈D . The next theorem
goes back to Shmul’yan [41], [42] and T. Constantinescu [29] (see also [20], [10]) and
plays a key role in the operator Schur algorithm.

THEOREM 1.1. Let M and N be separable Hilbert spaces and let the function
Θ(λ ) be from the Schur class S(M,N). Then there exists a function Z(λ ) from the
Schur class S(DΘ(0),DΘ∗(0)) such that

Θ(λ ) = Θ(0)+DΘ∗(0)Z(λ )(I +Θ∗(0)Z(λ ))−1DΘ(0), λ ∈ D. (1.2)

In what follows we will call the representation (1.2) of a function Θ(λ ) from the
Schur class the Möbius representation of Θ(λ ) and the function Z(λ ) we will call the
Möbius parameter of Θ(λ ) . Clearly, Z(0) = 0 and by Schwartz’s lemma we obtain
that

||Z(λ )|| � |λ |, λ ∈ D.

The operator Schur’s algorithm [20]. Fix Θ(λ ) ∈ S(M,N) , put Θ0(λ ) = Θ(λ )
and let Z0(λ ) be the Möbius parameter of Θ . Define

Γ0 = Θ(0), Θ1(λ ) =
Z0(λ )
λ

∈ S(DΓ0 ,DΓ∗0), Γ1 = Θ1(0) = Z′
0(0).

If Θ0(λ ), . . . ,Θn(λ ) and Γ0, . . . ,Γn have been chosen, then let Zn+1(λ )∈ S(DΓn ,DΓ∗n)
be the Möbius parameter of Θn . Put

Θn+1(λ ) =
Zn+1(λ )

λ
, Γn+1 = Θn+1(0).
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The contractions Γ0 ∈ L(M,N), Γn ∈ L(DΓn−1 ,DΓ∗n−1
) , n = 1,2, . . . are called the

Schur parameters of Θ(λ ) and the function Θn(λ ) ∈ S(DΓn−1 ,DΓ∗n−1
) we will call the

n− th Schur iterate of Θ(λ ) .
Formally for the operator analog of the Schur transformation we have

Θn+1(λ )� ranDΓn =
1
λ

DΓ∗n(IDΓ∗n
−Θn(λ )Γ∗

n)
−1(Θn(λ )−Γn)D−1

Γn
� ranDΓn .

Clearly, the sequence of Schur parameters {Γn} is infinite if and only if the operators Γn

are non-unitary. The sequence of Schur parameters consists of finite number operators
Γ0, Γ1, . . . ,ΓN if and only if ΓN ∈ L(DΓN−1 ,DΓ∗N−1

) is unitary. If ΓN is isometric
(co-isometric) then Γn = 0 for all n > N .

The following theorem is the operator generalization of Schur’s result.

THEOREM 1.2. [29], [20]. There is a one-to-one correspondence between the
Schur class functions S(M,N) and the set of all sequences of contractions {Γn}n�0

such that
Γ0 ∈ L(M,N), Γn ∈ L(DΓn−1 ,DΓ∗n−1

), n � 1. (1.3)

Notice that a sequence of contractions of the form (1.3) is called the choice se-
quence [28].

It is known [37], [27], [13], [8], [21] that every Θ(λ ) ∈ S(M,N) can be realized
as the transfer function

Θ(λ ) = D+λC(IH−λA)−1B

of a linear conservative and simple discrete time-invariant system (see Section 4)

τ =
{[

D C
B A

]
;M,N,H

}
with the state space H and the input and output spaces M and N , respectively. In this
paper we study the problem of the conservative realizations of the Schur iterates of the
function Θ(λ ) ∈ S(M,N) by means of the conservative realization of Θ .

In this connection it should be pointed out that the similar problem for a scalar
generalized Schur and Nevanlinna classes functions has been studied in [1], [2], [3],
[4], [5], [6]. For a scalar finite Blaschke product the realizations of the Schur iterates
are constructed in [36].

Here we describe our main results. Let A be a completely non-unitary contraction
[47] in a separable Hilbert space H . Define the subspaces and operators

Hm,0 = kerDAm , H0,l = kerDA∗l ,
Hm,l = kerDAm ∩kerDA∗l , m, l ∈ N,
Am,l = Pm,lA�Hm,l ,

where Pm,l is the orthogonal projection in H onto Hm,l .
We prove that
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1) if A is a completely non-unitary contraction in a Hilbert space then for every
n ∈ N the operators

An,0, An−1,1, . . . ,A0,n

are unitary equivalent completely non-unitary contractions and their Sz.-Nagy– Foias
characteristic functions [47] coincide with the pure contractive part [47], [20] for the
n -th Schur iterate Φn(λ ) of the characteristic function Φ(λ ) of A ;

2) if Θ(λ ) ∈ S(M,N) is the transfer function of a simple conservative system

τ =
{[

Γ0 C
B A

]
;M,N,H

}
,

then the Schur parameters of Θ take the form

Γ1 = D−1
Γ∗0

C
(
D−1
Γ0

B∗
)∗

, Γ2 = D−1
Γ∗1

D−1
Γ∗0

CA
(
D−1
Γ1

D−1
Γ0

(B∗�H1,0)
)∗

, . . . ,

Γn = D−1
Γ∗n−1

· · ·D−1
Γ∗0

CAn−1
(
D−1
Γn−1

· · ·D−1
Γ0

(B∗�Hn−1,0)
)∗

, . . . ,

and the n -th Schur iterate Θn(λ ) of Θ is the transfer function of the simple conserva-
tive and unitarily equivalent systems

τ(k)
n =

⎧⎨⎩
⎡⎣ Γn D−1

Γ∗n−1
· · ·D−1

Γ∗0
(CAn−k)

Ak
(
D−1
Γn−1

· · ·D−1
Γ0

(B∗�Hn,0)
)∗

An−k,k

⎤⎦ ;DΓn−1 ,DΓ∗n−1
,Hn−k,k

⎫⎬⎭
for k = 0, . . . ,n . Here D−1

Γm
and D−1

Γ∗m are the Moore–Penrose pseudo-inverses. For a
completely non-unitary contraction A with rank one defect operators it was proved in
[12] that the characteristic functions of the operators A1,0 = PkerDAA� kerDA and A0,1 =
PkerDA∗ A� kerDA∗ coincide with the first Schur iterate of the characteristic function of
A . This result has been established using the model of A given by a truncated CMV
matrix. Here we use another approach based on the parametrization of a contractive
block-operator matrix

T =
[
D C
B A

]
:
M
⊕
H

→
N
⊕
K

given in [19], [31], [43], and the construction of the passive realization for the Möbius
parameter Z(λ ) of Θ(λ ) obtained in [10] by means of a passive realization of Θ .

2. Completely non-unitary contractions

Let S be an isometry in a separable Hilbert space H . A subspace Ω in H is called
wandering for V if SpΩ ⊥ SqΩ for all p,q ∈ Z+ , p �= q . Since S is an isometry, the
latter is equivalent to SnΩ ⊥ Ω for all n ∈ N . If H = ∑∞

n=0⊕SnΩ then S is called a
unilateral shift and Ω is called the generating subspace. The dimension of Ω is called
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the multiplicity of the unilateral shift S . It is well known [47, Theorem I.1.1] that the
isometry S is a unilateral shift if and only if

∞⋂
n=0

SnH =
⋂
k�1

kerDS∗k = {0}.

Clearly, if an isometry S is the unilateral shift in H , then Ω = H � SH = DS∗ is the
generating subspace for S . An operator is called co-shift if its adjoint is a unilateral
shift.

A contraction A acting in a Hilbert space H is called completely non-unitary if
there is no nontrivial reducing subspace of A , on which A generates a unitary operator.
Given a contraction A in H , then there is a canonical orthogonal decomposition [47,
Theorem I.3.2]

H = H0 ⊕H1, A = A0⊕A1, Aj = A�H j, j = 0,1,

where H0 and H1 reduce A , the operator A0 is a completely non-unitary contraction,
and A1 is a unitary operator. Moreover,

H1 =

(⋂
n�1

kerDAn

)⋂(⋂
n�1

kerDA∗n

)
.

Since
n−1⋂
k=0

ker(DAAk) = kerDAn ,
n−1⋂
k=0

ker(DA∗A∗k) = kerDA∗n ,

we get ⋂
n�1

kerDAn = H� span {A∗nDAH, n = 0,1, . . .} ,

⋂
n�1

kerDA∗n = H� span {AnDA∗H, n = 0,1, . . .} .
(2.1)

It follows that

A is completely non-unitary ⇐⇒
( ⋂

n�1
kerDAn

)⋂( ⋂
n�1

kerDA∗n

)
= {0} ⇐⇒

⇐⇒ span{A∗nDA, AmDA∗ , n,m � 0} = H.
(2.2)

Note that
kerDA ⊃ kerDA2 ⊃ ·· · ⊃ kerDAn ⊃ ·· · ,

AkerDAn ⊂ kerDAn−1 , n = 2,3, . . . .

From (2.1) we get that the subspaces
⋂

n�1
kerDAn and

⋂
n�1

kerDA∗n are invariant with re-

spect to A and A∗ , respectively, and the operators A� ⋂
n�1

kerDAn and A∗� ⋂
n�1

kerDA∗n



CONSERVATIVE REALIZATION OF THE SCHUR ALGORITHM 65

are unilateral shifts, moreover, these operators are the maximal unilateral shifts con-
tained in A and A∗ , respectively [35, Theorem 1.1, Corollary 1]. By definition [35]
the operator A contains a co-shift V if the operator A∗ contains the unilateral shift V ∗ .
In accordance with the terminology of [21], a contraction A in H is called completely
non-isometric (c.n.i.) if there is no nonzero invariant subspace for A on which A is
isometric. This equivalent to (see [21])⋂

n�1

kerDAn = {0}.

A contraction A is called completely non-co-isometric (c.n.c.-i.) if A∗ is completely
non-isometric. Thus, for a completely non-unitary contraction A we have⋂

n�1
kerDAn = {0} ⇐⇒ A is c.n.i. ⇐⇒ A does not contain a unilateral shift,⋂

n�1
kerDA∗n = {0} ⇐⇒ A is c.n.c.-i. ⇐⇒ A∗ does not contain a unilateral shift.

(2.3)
The function (see [47, Chapter VI])

ΦA(λ ) =
(−A+λDA∗(I−λA∗)−1DA

)
�DA (2.4)

is known as the Sz.-Nagy – Foias characteristic function of a contraction A [47]. This
function belongs to the Schur class S(DA,DA∗) and ΘA(0) is a pure contraction. The
characteristic functions of A and A∗ are connected by the relation

ΦA∗(λ ) = Φ∗
A(λ ), λ ∈ D.

Two operator-valued functions Θ1 ∈ S(M1,N1) and Θ2 ∈ S(M2,N2) coincide
[47] if there are two unitary operators V : N1 → N2 and W : M2 → M1 such that

VΘ1(λ )W = Θ2(λ ), λ ∈ D.

The result of Sz.-Nagy–Foias [47, Theorem VI.3.4] states that two completely non-
unitary contractions A1 and A2 are unitary equivalent if and only if their characteristic
functions ΦA1 and ΦA2 coincide.

It is well known that a function Θ(λ ) from the Schur class S(M,N) has almost
everywhere non-tangential strong limit values Θ(ξ ) , ξ ∈ T , where T = {ξ ∈ C : |ξ |=
1} stands for the unit circle; cf. [47]. A function Θ ∈ S(M,N) is called inner if
Θ∗(ξ )Θ(ξ ) = IM and co-inner if Θ(ξ )Θ∗(ξ ) = IN almost everywhere on ξ ∈ T . A
function Θ ∈ S(M,N) is called bi-inner, if it is both inner and co-inner. A contraction
T on a Hilbert space H belongs to the class C0 · (C·0 ), if

s− lim
n→∞

An = 0 (s− lim
n→∞

A∗n = 0),

respectively. By definition C00 := C0 · ∩C·0 . A completely non-unitary contraction A
belongs to the class C·0 , C0 · , or C00 if and only if its characteristic function ΦA(λ ) is
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inner, co-inner, or bi-inner, respectively (cf. [47, Section VI.2]). Note that for a com-
pletely non-unitary contraction A the equality kerDA = kerDA∗ �= {0} is impossible
because otherwise the subspace kerDA reduces A and A� kerDA is a unitary operator.

We complete this section by a description of completely non-unitary contractions
with constant characteristic functions. Note that ΦA(λ ) = 0 ∈ S({0},DA∗) ⇐⇒ A is
a unilateral shift, and ΦA(λ ) = 0 ∈ S(DA,{0}) ⇐⇒ A is a co-shift.

THEOREM 2.1. Let H be a separable Hilbert space. A completely non-unitary
contraction A with nonzero defect operators has a constant characteristic function if
and only if H is the orthogonal sum

H = H1 ⊕H2

and A takes the operator matrix form

A =
[
S1 Γ
0 S∗2

]
:
H1

⊕
H2

→
H1

⊕
H2

, (2.5)

where S1 and S2 are unilateral shifts in H1 and H2 , respectively, and Γ is a contrac-
tion such that ⎧⎨⎩

ranΓ⊂ DS∗1 , ranΓ
∗ ⊂ DS∗2 ,||Γ f || < || f ||, f ∈ DS∗2 \ {0},||Γ∗h|| < ||h||, h ∈ DS∗1 \ {0}.

(2.6)

In particular, the characteristic function of A is identically equal zero if and only if A
is the orthogonal sum of a shift and co-shift.

Proof. Suppose that the contraction A takes the form (2.5) with unilateral shifts
S1 and S2 , and the contraction Γ with the properties (2.6). Then

D2
A =

[
0 0
0 DS∗2 −Γ∗Γ

]
:
H1

⊕
H2

→
H1

⊕
H2

, (2.7)

and

D2
A∗ =

[
DS∗1 −ΓΓ∗ 0

0 0

]
:
H1

⊕
H2

→
H1

⊕
H2

. (2.8)

Since DS∗1 = kerS∗1 , DS∗2 = kerS∗2 , and DS∗1 and DS∗2 are the orthogonal projections in
H onto DS∗1 and DS∗2 , respectively, we get from (2.6) the relations

DA = DS∗2 , DA∗ = DS∗1 . (2.9)

Taking into account that H2 is an invariant subspace for A∗ , we have

DA∗(IH −λA∗)−1DA = 0.
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Hence ΦA(λ ) = Γ�DS∗2 = const.
Because S1 and S2 are unilateral shifts, we get

H1 = ∑
n�0

⊕Sn
1DS∗1 , H2 = ∑

n�0

⊕Sn
2DS∗2 .

Since H = H1 ⊕H2 , the operator A is completely non-unitary. If Γ = 0 then A is the
orthogonal sum of a shift and co-shift.

Now suppose that the characteristic function of A is a constant. From (2.4) we get

DA∗A∗nDA = 0, DAAnDA∗ = 0, n = 0,1,2, . . . .

It follows

span{DA∗nDA, n = 0,1, . . .} ⊂ kerDA∗ ⇐⇒ ⋂
n�1

kerDAn ⊃ DA∗ ,

span{DAnDA∗ , n = 0,1, . . .} ⊂ kerDA ⇐⇒ ⋂
n�1

kerDA∗n ⊃ DA.

Let
H1 =

⋂
n�1

kerDAn , H2 =
⋂
n�1

kerDA∗n .

Since
AH1 ⊂ H1 and AH1 ⊥ DA∗ ,

we get H1�AH1 ⊃DA∗ and similarly H2�A∗H2 ⊃DA . Let h ∈ H1 and h ⊥ DA∗ .
It follows

h ∈ kerDA∗
⋂(⋂

n�1

kerDAn

)
.

Then h = Ag , g ∈ kerDA . Hence g ∈ ⋂
n�1

kerDAn = H1 , i.e., H1 � AH1 = DA∗ .

Similarly H2 �A∗H2 = DA .
Since A is completely non-unitary contraction, the operators A�H1 and A∗�H2

are unilateral shifts. Therefore

H1 =
∞

∑
n=0

⊕AnDA∗ , H2 =
∞

∑
n=0

⊕A∗nDA. (2.10)

Note that for all ϕ ,ψ ∈ H

(AmDA∗ϕ ,A∗kDAψ) = (DAAm+kDA∗ϕ ,ψ) = 0, m,k = 0,1,2 . . . .

Hence H1 ⊥ H2 . Taking into account (2.10) and the relation

H�H1 = span{A∗nDA, n = 0,1,2 . . .},
we get H�H1 = H2 . Because H1 is invariant with respect to A , the matrix form of
A is of the form (2.5) with unilateral shifts

S1 := A�H1, S2 := A∗�H2,
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and some operator Γ ∈ L(H2,H1) . Since A is a contraction, we have

||Γ f ||2 � ||DS∗2 f ||2, f ∈ H2,

||Γ∗h||2 � ||DS∗1h||2, h ∈ H1.

From (2.7) and (2.8) we get

ran(DS∗2 −Γ∗Γ) = DA, ran(DS∗1 −ΓΓ∗) = DA∗ .

It follows that (2.6) holds true and ΦA(λ ) = Γ .
If A is the orthogonal sum of a shift and co-shift, then, clearly the characteristic

function of A is identically zero.

3. Contractions generated by a contraction

In this section we define and study the subspaces and the corresponding operators
obtained from a contraction A in a separable Hilbert space H .

Suppose kerDA �= {0} . Define the subspaces⎧⎨⎩
H0,0 := H
Hn,0 = kerDAn , H0,m := kerDA∗m ,
Hn,m := kerDAn ∩kerDA∗m , m,n ∈ N.

(3.1)

Let Pn,m be the orthogonal projection in H onto Hn,m . Define the contractions

An,m := Pn,mA�Hn,m ∈ L(Hn,m) (3.2)

and
An,m := An,mPn+1,m�Hn,m ∈ L(Hn,m). (3.3)

In the next theorem we establish the main properties of An,m and An,m .

THEOREM 3.1. Let A be a completely non-unitary contraction. Then

1. the following equalities are valid:{
kerDAk

n,m
= Hn+k,m

kerDA∗k
n,m

= Hn,m+k
, k = 1,2, . . . , (3.4)

{
DAn,m = ran(Pn,mDAn+1),
DA∗

n,m
= ran(Pn,mDA∗m+1)

, (3.5){
AHn,m = Hn−1,m+1, n � 1,
A∗Hn,m = Hn+1,m−1, m � 1

, (3.6){
kerDA k

n,m
= Hn+k,m

kerDA ∗k
n,m

= Hn,m+k
k = 1,2, . . . , (3.7)
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DAn,m = DAn+1,m

DA ∗
n,m

= DA∗
n+1,m

, (3.8)

(An,m)k,l = An+k,m+l ; (3.9)

2. The operators {An,m} and {An,m} are completely non-unitary contractions.

3. The operators
An,0, An−1,1, . . . ,An−k,k, . . . ,A0,n

are unitarily equivalent and

An−1,m+1A f = AAn,m f , f ∈ Hn,m, n � 1. (3.10)

4. The operators
An,0, An−1,1, . . . ,An−k,k, . . . ,A0,n

are unitarily equivalent and

An−1,m+1A f = AAn,m f , f ∈ Hn,m, n � 1. (3.11)

5. the following statements are equivalent

(a) An,0 ∈C·0 (An,0 ∈C0 ·) for some n,

(b) An+1,0 ∈C·0 (An+1,0 ∈C0 ·).

Proof. It is sufficient to prove the first equality from (3.4). From (3.1) and (3.2)
we have

f ∈ Hn,m, f ∈ kerDAk
n,m

⇐⇒
{ || f || = ||An f || = ||A∗m f ||
|| f || = ||Ak

n,m f ||
⇐⇒ A f , . . . ,Ak f ∈ Hn,m ⇐⇒ f ∈ Hn+k,m.

This proves (3.4). Hence

DAn,m = Hn,m �Hn+1,m = Hn,m� (kerDAn+1 ∩kerDA∗m) =
= Hn,m ∩DAn+1 +DA∗m = ran(Pn,mDAn+1),
DA∗

n,m
= Hn,m �Hn,m+1 = Hn,m� (kerDAn ∩kerDA∗m+1) =

= Hn,m ∩DAn +DA∗m+1 = ran(Pn,mDA∗m+1),

i.e., relations (3.5) are valid. Furthermore, if n � 2, then

f ∈Hn,m ⇐⇒
⎧⎨⎩

A f ∈ kerDAn−1 ,
A∗A f = f ,
f ∈ kerDA∗m (for m � 1)

⇐⇒ A f ∈ kerDAn−1∩kerDA∗m+1 = Hn−1,m+1.

If n = 1, then

f ∈ H1,m ⇐⇒
{

A∗A f = f ,
f ∈ kerDA∗m

⇐⇒ A f ∈ kerDA∗m+1 = H0,m+1.
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Similarly A∗Hn,m = Hn+1,m−1, m � 1. Therefore relations (3.6) hold true.
Let ϕ ∈ H , ψ ∈ Hn−1,m+1 . Then A∗ψ ∈ Hn,m and

(APn,mϕ ,ψ) = (Pn,mϕ ,A∗ψ) = (ϕ ,A∗ψ) = (Aϕ ,ψ) = (Pn−1,m+1Aϕ ,ψ).

Hence
APn,m = Pn−1,m+1A. (3.12)

Taking into account (3.6), we get

APn,mAh = Pn−1,m+1AAh, h ∈ Hn,m.

This proves (3.10). Since A isometrically maps Hn,m onto Hn−1,m+1 for n � 1, the
operators An−1,m+1 and An,m are unitarily equivalent, and therefore the operators

An,0, An−1,1, . . . ,An−k,k, . . . ,A0,n

are unitarily equivalent.
Note that (3.4) and (3.6) yield the equalities

⋂
k�1

kerDAk
n,m

= kerDA∗m
⋂( ⋂

j�1
kerDAj

)
= Am

( ⋂
j�1

kerDAj

)
,

⋂
k�1

kerDA∗k
n,m

= kerDAn
⋂( ⋂

j�1
kerDA∗ j

)
= A∗n

( ⋂
j�1

kerDA∗ j

)
.

(3.13)

Since A is a completely non-unitary contraction, we get(⋂
k�1

kerDAk
n,m

)⋂(⋂
k�1

kerDA∗k
n,m

)
= {0}.

It follows that the contractions An,m are completely non-unitary.
Note that Hn−1,m+1 ⊂ Hn−1,m and Hn+1,m ⊂ Hn,m . Using (3.6) we get

An−1,m+1Pn,m+1 = Pn−1,m+1APn,m+1 = APn,m+1,
An,mPn+1,m = Pn,mAPn+1,m = APn+1,m.

In particular, it follows that the operators An,mPn+1,m are partial isometries. From (3.12)
we obtain

APn,m+1A = A2Pn+1,m,

i.e.,
An−1,m+1Pn,m+1A f = AAn,mPn+1,m f for all f ∈ Hn,m.

Because A unitarily maps Hn,m onto Hn−1,m+1 , we get (3.11) and hence, the operators
An−1,m+1 and An,m are unitarily equivalent.

By induction it can be easily proved that for every k ∈ N holds the equality

A k
n,m f = (APn+1,m)k f = AAk−1

n+1,mPn+1,m f , f ∈ Hn,m. (3.14)
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Since A�Hn+1,m is isometric, relations (3.14) imply

||A k
n,m f || = ||Ak−1

n+1,mPn+1,m f ||, f ∈ Hn,m, k ∈ N.

It follows the equivalence of the statements (a) and (b), and

kerDA k
n,m

= kerDAk−1
n+1,m

= Hn+k,m.

Similarly, since (An,mPn+1,m)∗ = A∗
n,mPn,m+1 , we get

kerDA ∗k
n,m

= kerDA∗k−1
n,m+1

= Hn,m+k.

Thus, relations (3.7) are valid. Now we get that the operators An,m = An,mPn+1,m are
completely non-unitary. From (3.4) it follows that

kerDAk
n,m

∩kerDA∗l
n,m

= Hn+k,m∩Hn,m+l =
kerDAn+k ∩kerDA∗m ∩kerDAn ∩kerDA∗m+l = kerDAn+k ∩kerDA∗m+l = Hn+k,m+l .

Hence
(An,m)k,l = Pn+k,m+lPn,mA�Hn+k,m+l = An+k,m+l .

The relation (3.9) yields the following picture for the creation of the operators An,m :

A
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A3,0 A2,1 A1,2 A0,3

· · · · · · · · · · · · · · · · · · · · ·
The process terminates on the N -th step if and only if

kerDAN = {0} ⇐⇒ kerDAN−1 ∩kerDA∗ = {0} ⇐⇒ . . .
⇐⇒ kerDAN−k ∩kerDA∗k = {0} ⇐⇒ . . .kerDA∗N = {0}.

Note that from (2.3), (3.7), and (3.13) we get

PROPOSITION 3.2. Let A be a completely non-unitary contraction. If A does
not contain a unilateral shift (respect., co-shift) then the same is true for the operators
An,m and An,m for all n and m. Conversely, if for some n and m the operator An,m

or An,m does not contain a unilateral shift (respect., co-shift) then the same is valid for
the operator A.
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Let δA = dimDA , δA∗ = dimDA∗ be the defect numbers of a completely non-
unitary contraction A . For n = 1, . . . denote by δn and δ ∗

n the defect numbers of
unitarily equivalent operators {An−m,m}n

m=0 . From the relations (3.5) it follows that

δn = dimDA0,n = dim(ran(P0,nDA)) = dim(DA � (DA∩DA∗n)) ,
δ ∗

n = dimDA∗
n,0

= dim(ran(Pn,0DA∗)) = dim(DA∗ � (DA∗ ∩DAn)) .

Thus
δA � δ1 � · · · � δn � · · · ,
δA∗ � δ ∗

1 � · · · � δ ∗
n � · · · .

Observe also that

δ1 = dim(DA � (DA∩DA∗)) , δ ∗
1 = dim(DA∗ � (DA∩DA∗)) ,

and by induction

δn = dim
(
DAn−1,0 � (DAn−1,0 ∩DA∗

n−1,0
)
)

, δ ∗
n = dim

(
DA∗

n−1,0
� (DAn−1,0 ∩DA∗

n−1,0
)
)

.

4. Passive discrete time-invariant linear systems and their transfer functions

4.1. Basic definitions

Let M,N , and H be separable Hilbert spaces. A linear system

τ =
{[

D C
B A

]
;M,N,H

}
with bounded linear operators A , B , C , D of the form{

σk = Chk +Dξk,
hk+1 = Ahk +Bξk,

k � 0, (4.1)

where {hk} ⊂ H , {ξk} ⊂ M , {σk} ⊂ N , is called a discrete time-invariant system.
The Hilbert spaces M and N are called the input and the output spaces, respectively,
and the Hilbert space H is called the state space. The operators A , B , C , and D are
called the state space operator, the control operator, the observation operator, and the
feedthrough operator of τ , respectively. If the linear operator Tτ defined by the block
form

Tτ =
[
D C
B A

]
:
M
⊕
H

→
N
⊕
H

(4.2)

is contractive, then the corresponding discrete time-invariant system is said to be pas-
sive. If the block operator matrix Tτ is isometric (respect., co-isometric, unitary), then
the system is said to be isometric (respect., co-isometric, conservative). Isometric, co-
isometric, conservative, and passive discrete time-invariant systems have been studied
in [25], [26], [8], [47], [37], [27], [21], [7], [13], [14], [15], [16], [17], [18], [45], [46],
[11], [10], [36].
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The subspaces

Hc
τ := span{AnBM : n = 0,1, . . .} and Ho

τ = span{A∗nC∗N : n = 0,1, . . .} (4.3)

are said to be the controllable and observable subspaces of the system τ , respectively.
The system τ is said to be controllable (respect., observable) if Hc

τ = H (respect.,
Ho
τ = H), and it is called minimal if τ is both controllable and observable. The system

τ is said to be simple if H = clos{Hc
τ +Ho

τ} (the closure of the span). It follows from
(4.3) that

(Hc
τ)

⊥ =
∞⋂

n=0

ker(B∗A∗n), (Ho
τ)

⊥ =
∞⋂

n=0

ker(CAn), (4.4)

and therefore there are the following alternative characterizations:

(a) τ is controllable ⇐⇒
∞⋂

n=0
ker(B∗A∗n) = {0} ;

(b) τ is observable ⇐⇒
∞⋂

n=0
ker(CAn) = {0} ;

(c) τ is simple ⇐⇒
(

∞⋂
n=0

ker(B∗A∗n)
)
∩
(

∞⋂
n=0

ker(CAn)
)

= {0}.

The transfer function

Θτ(λ ) := D+λC(IH−λA)−1B, λ ∈ D, (4.5)

of the passive system τ belongs to the Schur class S(M,N) [13]. Conservative sys-
tems are also called the unitary colligations and their transfer functions are called the
characteristic functions [27].

The examples of conservative systems are given by

Σ=
{[−A DA∗

DA A∗

]
;DA,DA∗ ,H

}
, Σ∗ =

{[−A∗ DA

DA∗ A

]
;DA∗ ,DA,H

}
.

The transfer functions of these systems

ΦΣ(λ ) =
(−A+λDA∗(IH −λA∗)−1DA

)
�DA, λ ∈ D

and
ΦΣ∗(λ ) =

(−A∗ +λDA(IH −λA)−1DA∗
)
�DA∗ , λ ∈ D

are precisely characteristic functions of A and A∗ , correspondingly.
It is well known that every operator-valued function Θ(λ ) from the Schur class

S(M,N) can be realized as the transfer function of some passive system, which can
be chosen as controllable isometric (respect., observable co-isometric, simple conser-
vative, minimal passive); cf. [26], [47], [37], [21], [8] [13], [15], [7]. Moreover, two
controllable isometric (respect., observable co-isometric, simple conservative) systems
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with the same transfer function are unitarily similar: two discrete time-invariant sys-
tems

τ1 =
{[

D C1

B1 A1

]
;M,N,H1

}
and τ2 =

{[
D C2

B2 A2

]
;M,N,H2

}
are said to be unitarily similar if there exists a unitary operator U from H1 onto H2

such that
A1 = U−1A2U, B1 = U−1B2, C1 = C2U ;

cf. [25], [26], [37], [21], [8], [27], [7]. However, a result of D.Z. Arov [13] states that
two minimal passive systems τ1 and τ2 with the same transfer function Θ(λ ) are only
weakly similar, i.e., there is a closed densely defined operator Z : H1 → H2 such that Z
is invertible, Z−1 is densely defined, and

ZA1 f = A2Z f , C1 f = C2Z f , f ∈ domZ, and ZB1 = B2.

4.2. Defect functions of the Schur class functions

The following result [47, Proposition V.4.2] is needed in the sequel.

THEOREM 4.1. Let M be a separable Hilbert space and let N(ξ ) , ξ ∈ T , be an
L(M)-valued measurable function such that 0 �N(ξ )� IM . Then there exist a Hilbert
space K and an outer function ϕ(λ ) ∈ S(M,K) satisfying the following conditions:

(i) ϕ∗(ξ )ϕ(ξ ) � N2(ξ ) a.e. on T;

(ii) if K̃ is a Hilbert space and ϕ̃(λ ) ∈ S(M, K̃) is such that ϕ̃∗(ξ )ϕ̃(ξ ) � N2(ξ )
a.e. on T , then ϕ̃∗(ξ )ϕ̃(ξ ) � ϕ∗(ξ )ϕ(ξ ) a.e. on T .

Moreover, the function ϕ(λ ) is uniquely defined up to a left constant unitary factor.

Assume that Θ(λ )∈ S(M,N) and denote by ϕΘ(ξ ) and ψΘ(ξ ) , ξ ∈ T the outer
functions which are solutions of the factorization problem described in Theorem 4.1
for N2(ξ ) = IM −Θ∗(ξ )Θ(ξ ) and N2(ξ ) = IN −Θ(ξ )Θ∗(ξ ) , respectively. Clearly,
if Θ(λ ) is inner or co-inner, then ϕΘ = 0 or ψΘ = 0, respectively. The functions
ϕΘ(λ ) and ψΘ(λ ) are called the right and left defect functions (or the spectral factors),
respectively, associated with Θ(λ ) ; cf. [20], [22], [23], [24], [35]. The following result
has been established in [35, Theorem 1.1, Corollary 1] (see also [23, Theorem 3], [24,
Theorem 1.5]).

THEOREM 4.2. Let Θ(λ ) ∈ S(M,N) and let

τ =
{[

D C
B A

]
;M,N,H

}
be a simple conservative system with transfer function Θ . Then
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1. the functions ϕΘ(λ ) and ψΘ(λ ) take the form

ϕΘ(λ ) = PΩ(IH −λA)−1B,
ψΘ(λ ) = C(IH −λA)−1�Ω∗,

where
Ω = (Ho

τ)
⊥�A(Ho

τ)
⊥, Ω∗ = (Hc

τ)
⊥�A∗(Hc

τ)
⊥

and PΩ is the orthogonal projector from H onto Ω;

2. ϕΘ(λ ) = 0 (ψΘ(λ ) = 0 ) if and only if the system τ is observable (controllable).

The defect functions play an essential role in the problems of the system theory, in
particular, in the problem of similarity and unitary similarity of the minimal passive
systems with equal transfer functions [16], [17] and in the problem of optimal and (∗)
optimal realizations of the Schur function [14], [15].

4.3. Parametrization of contractive block-operator matrices

Let H, K, M and N be Hilbert spaces. The following theorem goes back to [19],
[31], [43]; other proofs of the theorem can be found in [38], [39], [9], [11].

THEOREM 4.3. Let A∈L(H,K) , B∈L(M,K) , C∈L(H,N) , and D∈L(M,N) .
The operator matrix

T =
[
D C
B A

]
:
M
⊕
H

→
N
⊕
K

is a contraction if and only if T is of the form

T =
[−KA∗M +DK∗XDM KDA

DA∗M A

]
, (4.6)

where A ∈ L(H,K) , M ∈ L(M,DA∗) , K ∈ L(DA,N) , and X ∈ L(DM,DK∗) are con-
tractions, all uniquely determined by T . Furthermore, the following equality holds for
all h ∈ M , f ∈ H: ∥∥∥∥[hf

]∥∥∥∥2

−
∥∥∥∥[−KA∗M +DK∗XDM KDA

DA∗M A

][
h
f

]∥∥∥∥2

= ‖DK(DA f −A∗Mh)−K∗XDMh‖2 +‖DXDMh‖2.

(4.7)

COROLLARY 4.4. Let

T =
[−KA∗M +DK∗XDM KDA

DA∗M A

]
:
M
⊕
H

→
N
⊕
K

be a contraction. Then
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1. T is isometric if and only if

DKDA = 0, DXDM = 0,

2. T is co-isometric if and only if

DM∗DA∗ = 0, DX∗DK∗ = 0.

If T given by (4.6) is unitary, then DK∗ = 0 ⇐⇒ DM = 0 .

Note that the relation DY DZ = 0 for contractions Y and Z means that either Z is an
isometry and Y = 0 or DZ �= {0} and Y is an isometry.

Let τ =
{[

D C
B A

]
;M,N,H

}
be a conservative system. Then from Corollary 4.4

we get

(Hc
τ )

⊥ =
⋂
n�0

ker(DA∗A∗n) =
⋂
n�1

ker(DA∗n),

(Ho
τ )

⊥ =
⋂
n�0

ker(DAAn) =
⋂
n�1

ker(DAn),
(4.8)

τ is controllable ⇐⇒ ⋂
n�1

ker(DA∗n) = {0} ⇐⇒
⇐⇒ the operator A is completely non-co-isometric ⇐⇒
⇐⇒ the operator A∗ does not contain a shift,
τ is observable ⇐⇒ ⋂

n�1
ker(DAn) = {0} ⇐⇒

⇐⇒ the operator A is completely non-isometric ⇐⇒
⇐⇒ the operator A does not contain a shift,
τ is simple ⇐⇒ the operator A is completely non-unitary.

In [11] we used Theorem 4.3 for connections between transfer function Θτ(λ ) of the
passive system

τ =
{[

D C
B A

]
;M,N,H

}
,

and the characteristic function of A . In particular, an immediate consequence of (4.6)
is the following relation

Θτ(λ ) = KΦA∗(λ )M +DK∗XDM, λ ∈ D, (4.9)

where ΦA∗(λ ) is the characteristic function of A∗ .
Recall that if Θ(λ ) ∈ S(H1,H2) , then there is a uniquely determined decomposi-

tion [47, Proposition V.2.1]

Θ(λ ) =
[
Θp(λ ) 0

0 Θu

]
:
DΘ(0)
⊕
kerDΘ(0)

→
DΘ∗(0)
⊕
kerDΘ∗(0)

,
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where Θp(λ ) ∈ S(DΘ(0),DΘ∗(0)) , Θp(0) is a pure contraction and Θu is a unitary
constant. The function Θp(λ ) is called the pure part of Θ(λ ) (see [20]). If Θ(0)
is isometric (respect., co-isometric), then the pure part is of the form Θp(λ ) = 0 ∈
S({0},DΘ∗(0)) (respect., Θp(λ ) = 0 ∈ S(DΘ(0),{0})).

From (4.6) and (4.9) we get the following statement.

PROPOSITION 4.5. Let

τ =
{[

D C
B A

]
;M,N,H

}
be a a simple conservative system and let Θ(λ ) be its transfer function. Then

dimDA = dimDΘ∗(0) = dim(N�kerC∗),
dimDA∗ = dimDΘ(0) = dim(M�kerB), (4.10)

and the pure part of Θ coincides with the Sz.-Nagy–Foias characteristic function of A∗ .
In addition
1) if Θ(0) is isometric then B = 0 , A is a co-shift of multiplicity dimDΘ∗(0), and

the system τ is observable;
2) if Θ(0) is co-isometric then C = 0 , A is a unilateral shift of multiplicity

dimDΘ(0) , and the system τ is controllable.

Proof. According to Theorem 4.3 the operator

T =
[
D C
B A

]
:
M
⊕
H

→
N
⊕
H

takes the form (4.6). Since T is unitary, from (4.12) we get that the operators K ∈
L(DA,N) and M∗ ∈ L(DA∗ ,M) are isometries and the operator X ∈ L(DM,DK∗) is
unitary. From (4.9) it follows that the pure part of Θ is given by

Θ(λ )� ranM∗ = KΦA∗(λ )M� ranM∗ : ranM∗ → ranK.

Thus, the pure part of Θ coincides with ΦA∗ . Since ranM∗ = DA∗ , ranK∗ = DA ,

D = Θ(0) = KΦA∗(0)M∗ = −KA∗M∗, D∗ = Θ∗(0) = −MAK∗,
ranK = N�kerK∗ = N�kerC∗,
ranM∗ = M�kerM = M�kerB,

we get (4.10).
Suppose D =Θ(0) is an isometry. Then the pure part of Θ is 0 ∈ S({0},DD∗) . It

follows that M = B = 0 and DA∗ = {0} . Hence, A is co-isometric and since A is a com-
pletely non-unitary contraction, it is a co-shift of multiplicity dimDA = dimDΘ∗(0) ,
and the system τ is observable. Similarly the statement 2) holds.

In this paper we will use a parametrization of a contractive block- operator matrix
based on a fixed upper left block D∈L(M,N) . With this aim we reformulate Theorem
4.3 and Corollary 4.4.
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THEOREM 4.6. The operator matrix

T =
[
D C
B A

]
:
M
⊕
H

→
N
⊕
K

is a contraction if and only if D ∈ L(M,N) is a contraction and the entries A,B, and
C take the form

B = FDD, C = DD∗G,

A = −FD∗G+DF∗LDG,
(4.11)

where the operators F ∈ L(DD,K) , G ∈ L(H,DD∗) and L ∈ L(DG,DF∗) are con-
tractions. Moreover, operators F, G, and L are uniquely determined. Furthermore,the
following equality holds∥∥∥∥DT

[
h
f

]∥∥∥∥2

= ||DF (DDh−D∗Gf )−F∗LDG f ||2 + ||DLDG f ||2,
h ∈ M, f ∈ H

(4.12)

and ∥∥∥∥DT ∗

[
ϕ
g

]∥∥∥∥2

= ||DG∗ (DD∗ϕ−DF∗g)−GL∗DF∗g||2 + ||DL∗DF∗g||2,
ϕ ∈ N, g ∈ K.

(4.13)

1. the operator T is isometric if and only if

DFDD = 0, DLDG = 0,

2. the operator T is co-isometric if and only if

DG∗DD∗ = 0, DL∗DF∗ = 0,

3. if T is unitary, then DF∗ = 0 ⇐⇒ DG = 0 .

Let us give connections between the parametrization of a unitary block-operator matrix
T given by (4.6) and (4.11).

PROPOSITION 4.7. Let

T =
[−KA∗M +DK∗XDM KDA

DA∗M A

]
=

=
[

D DD∗G
FDD −FD∗G+DF∗LDG

]
:
M
⊕
H

→
N
⊕
H

be a unitary operator matrix. Then

DD = ranM∗, DD∗ = ranK,
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F∗ = M∗PDA∗ , G = KPDA,

GF f = KPDAM f , f ∈ DD,

L = A� kerDA.

Proof. Since FDD = DA∗M , KDA = DD∗G , and by Corollary 4.4 the operators
F , G∗ , K , and M∗ are isometries, we get D2

D = M∗D2
A∗M, D2

D∗ = KD2
AK∗ , and

DD = M∗DA∗M, DD∗ = KDAK∗.

It follows that DD = ranM∗, DD∗ = ranK, DA∗M = FM∗DA∗M, and DAK∗ = G∗KDAK∗.
Therefore,

FM∗ = IDA∗ , G∗K = IDA .

It follows
F = M�DD, G∗ = K∗�DD∗ .

Hence, F∗ = M∗PDA∗ and G = KPDA . In addition

D2
F∗ = IH −MM∗PDA∗ = PkerDA∗ , D2

G = IH −K∗KPDA = PkerDA ,

−FD∗G = −F(−M∗AK∗ +DMX∗DK∗)KPDA = APDA ,
A = −FD∗G+DF∗LDG = APDA +PkerDA∗ LPkerDA .

On the other hand
A = APDA +APkerDA .

Hence L = A� kerDA .
Let D : M → N be a contraction with nonzero defect operators and let

Q =
[
0 G
F S

]
:
DD

⊕
H

→
DD∗
⊕
K

be a bounded operator. Define the transformation (see[10])

MD(Q) =
[
D 0
0 −FD∗G

]
+
[
DD∗ 0
0 IK

][
0 G
F S

][
DD 0
0 IH

]
. (4.14)

Clearly, the operator T = MD(Q) has the following matrix form

T =
[

D DD∗G
FDD S−FD∗G

]
:
M
⊕
H

→
N
⊕
K

.

PROPOSITION 4.8. [10]. Let H,M,N be separable Hilbert spaces and let D :

M→N be a contraction with nonzero defect operators. Let Q =
[
0 G
F S

]
:
DD

⊕
H

→
DD∗
⊕
H

be a bounded operator. Then
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1.

T = MD(Q) =
[
D C
B A

]
:
DD

⊕
H

→
DD∗
⊕
H

is a contraction if and only if Q is a contraction. T is isometric (respect., co-
isometric) if and only if Q is isometric (respect., co-isometric);

2. the relations ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∞⋂
n=0

ker(B∗A∗n) =
∞⋂

n=0

ker(F∗S∗n) ,

∞⋂
n=0

ker(CAn) =
∞⋂

n=0

ker(GSn)
(4.15)

hold.

5. The Möbius representations

Let T : H1 → H2 be a contraction. In [44] and [41] were studied the fractional-
linear transformations of the form

Z → Q = T +DT∗Z(IDT +T ∗Z)−1DT = T +DT∗(IDT∗ +ZT ∗)−1ZDT (5.1)

defined on the set VT ∗ of all contractions Z ∈ L(DT ,DT ∗) such that −1 ∈ ρ(T ∗Z).
The following result holds.

THEOREM 5.1. [41]. Let the T ∈ L(H1,H2) be a contraction and let Z ∈ VT ∗ .
Then Q = T +DT∗Z(IDT +T ∗Z)−1DT is a contraction,

||DQ f ||2 = ||DZ(IDT +T∗Z)−1DT f ||, f ∈ H1, (5.2)

ranDQ ⊆ ranDT , and ranDQ = ranDT if and only if ||Z|| < 1. Moreover, if Q ∈
L(H1,H2) is a contraction and Q = T +DT∗XDT , where X ∈ L(DT ,DT ∗) then X ∈
VT∗ ,

Z = X(IDT −T ∗X)−1 ∈ VT ∗ ,

and the operator Q takes the form Q = T +DT∗Z(IDT +T ∗Z)−1DT .

Observe that from (5.1) one can derive the equalities

IH2 −QT ∗ = DT ∗(IDT∗ +ZT ∗)−1DT ∗ ,
Z� ranDT = DT ∗(IH2 −QT∗)−1(Q−T)D−1

T .

The transformation (5.1) is called in [41] the unitary linear-fractional transformation. It
is easy to see that if ||T || < 1 then the closed unit operator ball in L(H1,H2) belongs
to the set VT∗ and, moreover

T +DT∗Z(IDT +T ∗Z)−1DT = D−1
T ∗ (Z +T )(IDT +T ∗Z)−1DT =

= DT ∗(IDT∗ +ZT ∗)−1(Z +T )D−1
T



CONSERVATIVE REALIZATION OF THE SCHUR ALGORITHM 81

for all Z ∈ L(H1,H2), ||Z|| � 1. Thus, the transformation (5.1) is an operator analog
of a well known Möbius transformation of the complex plane

z → z+ t

1+ t z
, |t| � 1.

The next theorem is a version of a more general result established by Yu.L. Shmul’yan
in [42].

THEOREM 5.2. [42]. Let M and N be Hilbert spaces and let the function Θ(λ )
be from the Schur class S(M,N). Then

1. the linear manifolds ranDΘ(λ ) and ranDΘ∗(λ ) do not depend on λ ∈ D,

2. for arbitrary λ1, λ2 , λ3 in D the function Θ(λ ) admits the representation

Θ(λ ) = Θ(λ1)+DΘ∗(λ2)Ψ(λ )DΘ(λ3),

where Ψ(λ ) is a holomorphic in D and L
(
DΘ(λ3),DΘ∗(λ2)

)
-valued function.

Now using Theorems 5.1 and 5.2 we get Theorem 1.1. Recall that the representa-
tion (1.2) of a function Θ(λ ) ∈ S(M,N) is called the Möbius representation of Θ and
the function Z(λ ) ∈ S(DΘ(0),DΘ∗(0)) is called the Möbius parameter of Θ .

The next result established in [10] provides connections between the realizations
of Θ(λ ) and Z(λ ) as transfer functions of passive systems.

THEOREM 5.3. [10].

1. Let τ =
{[

D C
B A

]
;M,N,H

}
be a passive system and let

T =
[
D C
B A

]
=
[

D DD∗G
FDD −FD∗G+DF∗LDG

]
:
M
⊕
H

→
N
⊕
H

.

Let Θ(λ ) be the transfer function of τ . Then

(a) the Möbius parameter Z(λ ) of the function Θ(λ ) is the transfer function
of the passive system

ν =
{[

0 G
F DF∗LDG

]
;DD,DD∗ ,H

}
;

(b) the system τ isometric (respect., co-isometric) ⇒ the system ν isometric
(respect., co-isometric);

(c) the equalities Hc
ν = Hc

τ , Ho
ν = Ho

τ hold and hence the system τ is con-
trollable (respect., observable) ⇒ the system ν is controllable (respect.,
observable), the system τ is simple (respect., minimal) ⇒ the system ν is
simple (respect., minimal).
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2. Let Θ(λ ) ∈ S(M,N) and let Z(λ ) be the Möbius parameter of Θ(λ ) . Suppose
that the transfer function of the linear system

ν ′ =
{[

0 G
F S

]
;DΘ(0),DΘ∗(0),H

}
coincides with Z(λ ) in a neighborhood of the origin. Then the transfer function
of the linear system

τ ′ =
{[

Θ(0) DΘ∗(0)G
FDΘ(0) −FΘ∗(0)G+S

]
;M,N,H

}
coincides with Θ(λ ) in a neighborhood of the origin. Moreover

(a) the equalities Hc
τ ′ = Hc

ν ′ , Ho
τ ′ = Ho

ν ′ hold, and hence the system ν ′ is con-
trollable (respect., observable) ⇒ the system τ ′ is controllable (respect.,
observable), the system ν ′ is simple ⇒ the system τ ′ is simple (respect.,
minimal),

(b) the system ν ′ is passive ⇒ the system τ ′ is passive (respect., minimal),

(c) the system ν ′ isometric (respect., co-isometric) ⇒ the system τ ′ isometric
(respect., co-isometric).

COROLLARY 5.4. 1) The equivalences

ϕΘ(λ ) = 0 ⇐⇒ ϕZ(λ ) = 0,
ψΘ(λ ) = 0 ⇐⇒ ψZ(λ ) = 0

hold.
2) Let ||Θ(0)�DΘ(0)|| < 1. Suppose ϕ(λ ) ∈ S(M,L) (ψ(λ ) ∈ S(K,N)) and

ϕ∗(ξ )ϕ(ξ ) = D2
Θ(ξ ) for almost all ξ ∈ T(

ψ(ξ )ψ∗(ξ ) = D2
Θ∗(ξ ) for almost all ξ ∈ T

)
.

Then

ϕ̃(λ ) := ϕ(λ )D−1
Θ(0)(IDΘ(0) +Θ∗(0)Z(λ )) ∈ S(DΘ(0),L)(

ψ̃(λ ) := (IDΘ∗(0) +Z(λ )Θ∗(0))D−1
Θ∗(0)PDΘ∗(0)ψ(λ ) ∈ S(K,DΘ∗(0))

)
and

ϕ̃∗(ξ )ϕ̃(ξ ) = D2
Z(ξ ) for almost all ξ ∈ T(

ψ̃(ξ )ψ̃∗(ξ ) = D2
Z∗(ξ ) for almost all ξ ∈ T

)
.

In particular,

Θ(λ ) is inner (respect., co-inner) ⇐⇒ Z(λ ) is inner (respect., co-inner).
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Proof. 1) Let ϕΘ(λ ) = 0 (ψΘ(λ ) = 0) and let τ =
{[

D C
B A

]
;M,N,H

}
be a sim-

ple conservative system with transfer function Θ(λ ) . By Theorem 4.2 the system τ is
observable (controllable). As it is proved above the corresponding system ν with trans-
fer function Z(λ ) is conservative and observable (controllable). Theorem 4.2 yields
that ϕZ(λ ) = 0 (ψZ(λ ) = 0).

Conversely. Let ϕZ(λ ) = 0 (ψZ(λ ) = 0) and let ν ′ be a simple conservative sys-
tem with transfer function Z(λ ) . Again by Theorem 4.2 the system ν ′ is observable
(controllable). As it is already proved the corresponding system τ ′ with transfer func-
tion Θ(λ ) is conservative and observable (controllable) as well. Now Theorem 4.2
yields that ϕΘ(λ ) = 0 (ψΘ(λ ) = 0).

2) Let ||Θ(0)�DΘ(0)|| < 1. Since

Θ∗(0)�DΘ∗(0) =
(
Θ(0)�DΘ(0)

)∗
,

we get ||Θ∗(0)�DΘ∗(0)||< 1. It follows that the operators DΘ(0)�DΘ(0) and DΘ∗(0)�DΘ∗(0)
have bounded inverses. From (5.2) we obtain the relation

||DΘ(λ )D
−1
Θ(0)(IDΘ(0) +Θ∗(0)Z(λ )) f ||2 = ||DZ(λ ) f ||2, λ ∈ D, f ∈ DΘ(0).

The non-tangential limits Θ(ξ ) and Z(ξ ) exist for almost all ξ ∈ T . It follows the
relation

||DΘ(ξ )D
−1
Θ(0)(IDΘ(0) +Θ∗(0)Z(ξ )) f ||2 = ||DZ(ξ ) f ||2, f ∈ DΘ(0).

for almost all ξ ∈ T. This completes the proof.

THEOREM 5.5. Let A be a completely non-unitary contraction in the Hilbert
space H and let Z(λ ) be the Möbius parameter of the Sz.Nagy–Foias characteris-
tic function of A. Then Z(λ ) is the characteristic function of the operator A1,0 =
APkerDA (see (3.2) and (3.3)). Moreover, the following statements are equivalent

(i) the unitary equivalent operators A1,0 and A0,1 are unilateral shifts (co-shifts),

(ii) DA ⊂ DA∗ (DA∗ ⊂ DA ),

(iii) the Möbius parameter takes the form Z(λ ) = λ IDA (Z∗(λ ) = λ IDA∗ ).

Proof. The system

Σ =
{[−A DA∗

DA A∗

]
;DA,DA∗ ,H

}
is conservative and simple and its transfer function

Φ(λ ) =
(−A+λDA∗(IH −λA∗)−1DA

)
�DA
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is the characteristic function of A . Let F and G∗ be the embedding of the subspaces
DA and DA∗ into H , respectively. It follows that

DF∗ = PkerDA , DG = PkerDA∗ .

Let L = A∗� kerDA∗ . Then

A∗ = A∗PDA∗ +A∗PkerDA∗ = −F(−A∗)G+DF∗LDG

Let
Φ(λ ) = Φ(0)+DΦ∗(0)Z(λ )(I +Φ∗(0)Z(λ ))−1DΦ(0), λ ∈ D

be the Möbius representation of the function Φ(λ ) . By Theorem 5.3 the system

ν =
{[

0 PDA∗
IDA A∗PkerDA∗

]
;DA,DA∗ ,H

}
is conservative and simple and its transfer function is the function Z(λ ) , i.e.,

Z(λ ) = λPDA∗
(
IH −λA∗PkerDA∗

)−1 �DA, |λ | < 1.

This function is precisely the Sz.-Nagy–Foias characteristic function of the partial isom-
etry A1,0 = APkerDA .

Suppose A1,0 = PkerDAA� kerDA is a unilateral shift. Since AkerDA = kerDA∗ ,
we have kerDA∗ ⊂ kerDA . Equivalently DA ⊂ DA∗ . Hence,

PkerDA∗ �DA = 0 and (A∗PkerDA∗ )
n�DA = 0 for all n ∈ N.

Therefore,
Z(λ ) = λPDA∗ �DA = λ IDA .

Conversely, suppose Z(λ ) = λ IDA . Then DA ⊂ DA∗ ⇒ kerDA ⊃ kerDA∗ . It follows

AkerDA ⊂ kerDA ⇒ A1,0 is isometry.

Since the operator A1,0 is completely non-unitary, it is a unilateral shift.

COROLLARY 5.6. Let A be a completely non-unitary contraction in a separa-
ble Hilbert space H and let ||A�DA|| < 1( ⇐⇒ ranDA = DA) . Then the following
statements are equivalent

(i) A ∈C·0 (respect., A ∈C0 ·) ,

(ii) A1,0 ∈C·0 (respect., A1,0 ∈C0 ·) .

Proof. By (2.4) we have ΦA(0) = −A�DA. Then in accordance with [47], Corol-
lary 5.4, and Theorem 5.5 we get the equivalences

A ∈C·0 (C0 ·) ⇐⇒ ΦA(λ ) is inner (co-inner) ⇐⇒ Z(λ ) is inner (co-inner)
⇐⇒ A1,0 ∈C·0 (C0 ·).
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6. Realizations of the Schur iterates

6.1. Realizations of the first Schur iterate

PROPOSITION 6.1. Let H , L , K be Hilbert spaces and let F ∈ L(L,H) , G ∈
L(H,K) and L ∈ L(DG,DF∗) be contractions. Let Zν (λ ) be the transfer function of
the system

ν =
{[

0 G
F DF∗LDG

]
;L,K,H

}
(6.1)

Then the function Γ(λ ) = λ−1Zν (λ ) is the transfer function of the passive systems

η1 =
{[

GF GDF∗
LDGF LDGDF∗

]
;L,K,H

}
, η2 =

{[
GF GDF∗ L̃
DGF DGDF∗ L̃

]
;L,K,H

}
,

where L̃ = LPDG .
Suppose that the subspaces DF∗ and DG are nontrivial. Then the transfer func-

tions of the passive systems

ζ1 =
{[

GF GDF∗
LDGF LDGDF∗

]
;L,K,DF∗

}
, ζ2 =

{[
GF GDF∗ L̃
DGF DGDF∗ L̃

]
;L,K,DG

}
(6.2)

are equal to Γ(λ ). Moreover, for the orthogonal complements to the controllable and
observable subspaces of the systems ν , ζ1 , and ζ2 hold the following relations

(Hc
ν)

⊥ =
(
Hc
ζ1

)⊥ ∩kerF∗, (Ho
ν)

⊥ =
(
Ho
ζ2

)⊥ ∩kerG,

DG

(
Hc
ζ2

)⊥ ⊂ (Hc
ν )

⊥ , DF∗
(
Ho
ζ1

)⊥ ⊂ (Ho
ν)

⊥ .
(6.3)

If the operators G∗ and F are isometries, then(
Ho
ζ1

)⊥
= (Ho

ν)
⊥ ∩kerF∗,

(
Hc
ζ2

)⊥
= (Hc

ν)
⊥ ∩kerG. (6.4)

Proof. We have

Zν(λ ) = λG(IH−λDF∗LDG)−1F.

Hence

Γ(λ ) =
Zν (λ )
λ

= G(IH −λDF∗LDG)−1F

and Γ(0) = GF . It follows that

Γ(λ )−Γ(0) = G(IH −λDF∗LDG)−1F −GF = λGDF∗LDG(IH −λDF∗LDG)−1F
= λGDF∗(IH −λLDGDF∗)−1LDGF = λGDF∗(IH −λ L̃DGDF∗)−1L̃DGF
= λGDF∗ L̃(IH −λDGDF∗ L̃)−1DGF,
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Γ(λ ) = GF +λGDF∗(IH −λLDGDF∗)−1LDGF
= GF +λGDF∗ L̃(IH −λDGDF∗ L̃)−1DGF.

(6.5)

The operators

K1 =
[

GF GDF∗
LDGF LDGDF∗

]
:
L
⊕
H

→
K
⊕
H

and

K2 =
[

GF GDF∗ L̃
DGF DGDF∗ L̃

]
:
L
⊕
H

→
K
⊕
H

are contraction. Actually, let f ∈ H and h ∈ L then one can check that∥∥∥∥[hf
]∥∥∥∥2

−
∥∥∥∥K1

[
h
f

]∥∥∥∥2

= ||F∗ f −DFh||2L + ||DLDG(DF∗ f +Fh)||2H � 0,∥∥∥∥[hf
]∥∥∥∥2

−
∥∥∥∥K2

[
h
f

]∥∥∥∥2

= ||F∗L̃ f −DFh||2L + ||DL̃ f ||2H � 0.

Thus, the systems η1 , η2, ζ1 , and ζ2 are passive and their transfer functions are pre-
cisely Γ(λ ) .

Since L̃∗� kerDF∗ = 0 and F∗ f = 0 ⇐⇒ DF∗ f = f , Gh = 0 ⇐⇒ DGh = h , by
induction one can derive the following equalities⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⋂
n�0

ker(F∗(DGL∗DF∗)n) =
⋂

n�0
ker
(
F∗(DGL̃∗)n)

)
,⋂

n�0
ker(G(DF∗LDG)n) =

⋂
n�0

ker
(
G(DF∗ L̃)n

)
,⋂

n�0
ker
(
F∗DGL̃∗(DF∗DGL̃∗)n

)
=
⋂

n�1
ker
(
F∗(DGL̃∗)n)

)
,⋂

n�0
ker
(
GDF∗(L̃DGDF∗)n

)
=
⋂

n�0
ker
(
G(DF∗ L̃)n

)
,⋂

n�0
ker
(
F∗DG(L̃∗DF∗DG)n

)
=
⋂

n�0
ker
(
F∗(DGL̃∗)nDG

)
,⋂

n�0
ker
(
GDF∗ L̃(DGDF∗ L̃)n

)
=
⋂

n�1
ker
(
G(DF∗ L̃)n

)
.

(6.6)

From (6.6) follow the relations (6.3) and (6.4).

THEOREM 6.2. Let the system

τ =
{[

D DD∗G
FDD −FD∗G+DF∗LDG

]
;M,N,H

}
be conservative and simple and let Θ(λ ) be its transfer function. Suppose that the first
Schur iterate Θ1(λ ) of Θ is non-unitary constant. Then the systems

ζ1 =
{[

GF G
LDGF LDG

]
;DD,DD∗ ,DF∗

}
,

ζ2 =
{[

GF GL
DGF DGL

]
;DD,DD∗ ,DG

} (6.7)
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are conservative and simple and their transfer functions are equal to Θ1(λ ) .

Proof. Because the system ν is conservative, the operators F and G∗ are isome-
tries. Since Θ1(λ ) is non-unitary constant, from (6.5) it follows that the operator GF
is non-unitary. Hence by Theorem 4.6 the subspaces DF∗ and DG are nontrivial, and
the operator L ∈ L(DG,DF∗) is unitary. In addition, kerF∗ = DF∗ , kerG = DG , and
the operators DF∗ and DG are orthogonal projections in H onto kerF∗ and kerG ,
respectively. By Theorem 5.3 the system

ν =
{[

0 G
F DF∗LDG

]
;DD,DD∗ ,H

}
is conservative and simple. One can directly check that the operators

[
GF G

LDGF LDG

]
:
DD

⊕
DF∗

→
DD∗
⊕
DF∗

,

[
GF GL
DGF DGL

]
:
DD

⊕
DG

→
DD∗
⊕
DG

are unitary. Hence, the systems ζ1 and ζ2 given by (6.7) are conservative. In our case
relations (6.3) yield equalities

(Hc
ν)

⊥ =
(
Hc
ζ1

)⊥
, (Ho

ν)
⊥ =

(
Ho
ζ2

)⊥
.

Taking into account (6.4) and the simplicity of ν we get that the systems ζ1 and ζ2 are
simple.

THEOREM 6.3. Let Θ(λ ) ∈ S(M,N) , Γ0 = Θ(0) and let Θ1(λ ) be the first
Schur iterate of Θ . Suppose

τ =
{[

Γ0 C
B A

]
;M,N,H

}
is a simple conservative system with transfer function Θ . Then the simple conservative
system

ν =

{[
0 D−1

Γ∗0
C

D−1
A∗ B APkerDA

]
,DΓ0 ,DΓ∗0 ,H

}
has the transfer function λΘ1(λ ) while the simple conservative systems

ζ1 =

{[
D−1
Γ∗0

C(D−1
Γ0

B∗)∗ D−1
Γ∗0

C� kerDA∗

APkerDAD−1
A∗ B PkerDA∗ A� kerDA∗

]
;DΓ0 ,DΓ∗0 ,kerDA∗

}
,

ζ2 =

{[
D−1
Γ∗0

C(D−1
Γ0

B∗)∗ D−1
Γ∗0

CA� kerDA

PkerDAD−1
A∗ B PkerDAA� kerDA

]
;DΓ0 ,DΓ∗0 ,kerDA

} (6.8)

have transfer functions Θ1(λ ) . Here the operators D−1
Γ0

, D−1
Γ∗0

, and D−1
A∗ are the

Moore–Penrose pseudo-inverses.



88 YURY ARLINSKIĬ

Proof. Let

T =
[
Γ0 C
B A

]
=
[

Γ0 DΓ∗0G
FDΓ0 −FΓ∗

0G+DF∗LDG

]
=

=
[−KA∗M +DK∗XDM KDA

DA∗M A

]
:
M
⊕
H

→
N
⊕
H

.

Then G = D−1
Γ∗0

C , F∗ = D−1
Γ0

B∗, F = M�DΓ0 , M = D−1
A∗ B . According to Proposition

4.7 we have
DF∗ = PkerDA∗ , DG = PkerDA , L = A� kerDA.

Hence

GF = D−1
Γ∗0

C(D−1
Γ0

B∗)∗, DGDF∗L = PkerDAA� kerDA,

DGF = PkerDAM = PkerDAD−1
A∗ B, GDF∗L = D−1

Γ∗0
CPDAA� kerDA,

LDG� kerDA∗ = APkerDA� kerDA∗ , LDGF = APkerDAD−1
A∗ B.

Note that if f ∈ kerDA∗ then

APkerDA f = PkerDA∗ APkerDA f = PkerDA∗ A f −PkerDA∗ APDA f = PkerDA∗ A f .

Now the statement of theorem follows from Theorem 5.3 and Theorem 6.2.

REMARK 6.4. Since F∗ = D−1
Γ0

B∗ , we get F =
(
D−1
Γ0

B∗
)∗ ∈ L(DΓ0 ,H). Hence

D−1
A∗ B�DΓ0 =

(
D−1
Γ0

B∗
)∗

.

Using the Hilbert spaces and operators defined by (3.1) and (3.2), we get

PkerDAD−1
A∗ B�DΓ0 = P1,0D

−1
A∗ B�DΓ0 =

(
D−1
Γ0

(B∗�H1,0)
)∗ ∈ L(DΓ0 ,H1,0).

In addition
D−1
Γ∗0

C(D−1
Γ0

B∗)∗ = Γ1 ∈ L(DΓ0 ,DΓ∗0).

So,

ζ1 =

⎧⎨⎩
⎡⎣ Γ1 D−1

Γ∗0
C

A
(
D−1
Γ0

(B∗�H1,0)
)∗

A0,1

⎤⎦ ;DΓ0 ,DΓ∗0 ,H0,1

⎫⎬⎭ ,

ζ2 =

⎧⎨⎩
⎡⎣ Γ1 D−1

Γ∗0
CA(

D−1
Γ0

(B∗�H1,0)
)∗

A1,0

⎤⎦ ;DΓ0 ,DΓ∗0 ,H1,0

⎫⎬⎭ .

(6.9)

It follows that
ran
(
D−1
Γ∗0

C�H1,0

)
⊂ ranDΓ∗1 ,

ran
(
D−1
Γ0

B∗�H1,0

)
⊂ ranDΓ1
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6.2. Schur iterates of the characteristic function

THEOREM 6.5. Let A be a completely non-unitary contraction in a separable
Hilbert space H . Assume kerDA �= {0} and let the contractions An,m be defined by
(3.1) and (3.2). Then the characteristic functions of the operators

An,0,An−1,1, . . . ,An−m,m, . . .A1,n−1,A0,n

coincide with the pure part of the n-th Schur iterate of the characteristic function Φ(λ )
of A. Moreover, each operator from the set {An−k,k}n

k=0 is

1. a unilateral shift (respect., co-shift) if and only if the n-th Schur parameter Γn

of Φ is isometric (respect., co-isometric),

2. the orthogonal sum of a unilateral shift and co-shift if and only if

DΓn−1 �= {0}, DΓ∗n−1
�= {0} and Γm = 0 for all m � n. (6.10)

Each subspace from the set {Hn−k,k}n
k=0 is trivial if and only if Γn is unitary.

Proof. We will prove by induction. The system

Σ =
{[−A DA∗

DA A∗

]
;DA,DA∗ ,H

}
is conservative and simple and its transfer function Φ(λ ) is Sz.-Nagy–Foias character-
istic function of A . As in Theorem 5.5, let F and G∗ be the embedding of the subspaces
DA and DA∗ into H , respectively. Then DF∗ = PkerDA = P1,0, DG = PkerDA∗ = P0,1 ,
and L = A∗� kerDA∗ ∈ L(DA∗ ,DA) is unitary operator. The system

ν =
{[

0 PDA∗
IDA A∗PkerDA∗

]
;DA,DA∗ ,H

}
is conservative and simple and its transfer function Z(λ ) is the Möbius parameter of
Φ(λ ) . Constructing the systems given by (6.7) in Theorem 6.2 we get

ζ1 =
{[

PDA∗ �DA PDA∗ � kerDA

A∗PkerDA∗ �DA A∗PkerDA∗ � kerDA

]
;DA,DA∗ ,kerDA

}
and

ζ2 =
{[

PDA∗ �DA PDA∗A
∗� kerDA∗

PkerDA∗ �DA PkerDA∗ A
∗� kerDA∗

]
;DA,DA∗ ,kerDA∗

}
.

By Theorem 6.2 the systems ζ1 and ζ2 are conservative and simple and their transfer
functions are precisely the first Schur iterate Φ1(λ ) of Φ(λ ) . Note (see (3.1) and (3.2))
that

A∗PkerDA∗ � kerDA = A∗
1,0, PkerDA∗ A

∗� kerDA∗ = A∗
0,1.

Applying Proposition 4.5 we get that the pure part of Φ1(λ ) coincides with the char-
acteristic functions of the operators A1,0 and A0,1 .
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By Theorem 3.1 completely non-unitary contractions {An−k,k}n
k=0 are unitarily

equivalent. Assume that their characteristic functions coincide with the pure part of the
n -th Schur iterate Φn(λ ) of Φ . The first Schur iterate of Φn is the function Φn+1(λ ) .
As is already proved above the pure part of Φn+1 coincides with the characteristic
function of the operators (An−k,k)1,0 and (An−k,k)0,1 . From (3.9) it follows

(An−k,k)1,0 = An+1−k,k, (An−k,k)0,1 = An−k,k+1 = An+1−(k+1),k+1.

Thus, characteristic functions of the unitarily equivalent completely non-unitary con-
tractions {An+1−k,k}n+1

k=0 coincide with Φn+1 .
Note that the Möbius parameter of the n−1-th Schur iterate Φn−1 is λΦn(λ ) and

by Theorem 5.5 this function coincides with the characteristic function of the operator
An,0 = An,0PkerDAn,0

. Applying Theorem 5.5 once again, we get that An,0 is a unilateral

shift if and only if Γn is a isometry.
The function Φ∗(λ ) is the characteristic function of the operator A∗ and its Schur

parameters are adjoint to the corresponding Schur parameters of Φ . In addition if
B = A∗ then Bn,m = A∗

m,n . Therefore, A∗
0,n is a unilateral shift if and only if Γ∗

n is
isometric. But A∗

0,n is unuitarily equivalent to A∗
n,0 . Hence, An,0 is a co-shift if and

only if Γn is a co-isometry.
It follows that Γn is a unitary if and only if An,0 is a unilateral shift and co-shift in

Hn,0 ⇐⇒ Hn,0 = {0} .
Condition (6.10) holds true if and only if Φn is identically equal zero. This is

equivalent to the condition that An,0 (as well and An−1,1, An−2,2, . . .A0,n) is the or-
thogonal sum of a shift and co-shift.

REMARK 6.6. Theorem 6.5 and Theorem 3.1 yield the following equivalences:

Γn is isometry ⇐⇒ kerDAn+1 = kerDAn ⇐⇒ kerDAn ∩kerDA∗ = kerDAn−1 ∩kerDA∗
⇐⇒ . . . ⇐⇒ kerDAn+1−k ∩kerDA∗k = kerDAn−k ∩kerDA∗k ⇐⇒ . . .
⇐⇒ kerDA∗n ⊂ kerDA;

Γ∗
n is isometry ⇐⇒ kerDAn ⊂ kerDA∗ ⇐⇒ kerDAn−1 ∩kerDA∗2 = kerDAn−1 ∩kerDA∗
⇐⇒ . . . ⇐⇒ kerDAn−k ∩kerDA∗k+1 = kerDAn−k ∩kerDA∗k
⇐⇒ . . . ⇐⇒ kerDA∗n+1 = kerDA∗n ;

conditions (6.10) ⇐⇒

⎧⎪⎪⎨⎪⎪⎩
kerDAn =

( ⋂
l�1

kerDAl

)
⊕
(⋂

l�1
kerDA∗l

)
,

PkerDAn A

(⋂
l�1

kerDA∗l

)
⊂
(⋂

l�1
kerDA∗l

)
.

In particular, we get the following statement:
if the Schur parameter Γn of the characteristic function of a completely non-

unitary contraction A is non-unitary, but isometry (respect., co-isometry) for some n,
then A is not completely non-isometric, but is completely non-co-isometric (respect., A
is not completely non-co-isometric, but is completely non-isometric); if Γn is unitary,
then A is completely non-isometric and completely non-co-isometric.
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6.3. Conservative realizations of the Schur iterates

THEOREM 6.7. Let Θ(λ ) ∈ S(M,N) and let

τ0 =
{[

Γ0 C
B A

]
;M,N,H

}
be a simple conservative realization of Θ . Then the Schur parameters {Γn}n�1 of Θ
can be calculated as follows

Γ1 = D−1
Γ∗0

C
(
D−1
Γ0

B∗
)∗

, Γ2 = D−1
Γ∗1

D−1
Γ∗0

CA
(
D−1
Γ1

D−1
Γ0

(B∗�H1,0)
)∗

, . . . ,

Γn = D−1
Γ∗n−1

· · ·D−1
Γ∗0

CAn−1
(
D−1
Γn−1

· · ·D−1
Γ0

(B∗�Hn−1,0)
)∗

, . . . .
(6.11)

Here the operators D−1
Γk

and D−1
Γ∗k

,k = 0,1, . . . are the Moore-Penrose pseudo inverses,

the operator (
D−1
Γn−1

· · ·D−1
Γ0

(B∗�Hn−1,0)
)∗ ∈ L(DΓn−1 ,Hn−1,0)

is the adjoint to the operator

D−1
Γn−1

· · ·D−1
Γ0

(B∗�Hn−1,0) ∈ L(Hn−1,0,DΓn−1),

and

ran
(
D−1
Γn−1

· · ·D−1
Γ0

(B∗�Hn,0)
)
⊂ ranDΓn ,

ran
(
D−1
Γ∗n−1

· · ·D−1
Γ∗0

(C�H0,n)
)
⊂ ranDΓ∗n

for every n � 1 . Moreover, for each n � 1 the unitarily equivalent simple conservative
systems

τ(k)
n =

⎧⎨⎩
⎡⎣ Γn D−1

Γ∗n−1
· · ·D−1

Γ∗0
(CAn−k)

Ak
(
D−1
Γn−1

· · ·D−1
Γ0

(B∗�Hn,0)
)∗

An−k,k

⎤⎦ ;

DΓn−1 ,DΓ∗n−1
,Hn−k,k

⎫⎬⎭ , k = 0,1, . . . ,n (6.12)

are realizations of the n-th Schur iterate Θn of Θ . Here the operator

Bn =
(
D−1
Γn−1

· · ·D−1
Γ0

(B∗�Hn,0)
)∗ ∈ L(DΓn−1 ,Hn,0)

is the adjoint to the operator

D−1
Γn−1

· · ·D−1
Γ0

(B∗�Hn,0) ∈ L(Hn,0,DΓn−1).
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Proof. We will prove by induction. For n = 1 it is already established (see Remark
6.4, (6.8), and (6.9)) that

Γ1 = D−1
Γ∗0

C
(
D−1
Γ0

B∗
)∗

and the systems

τ(0)
1 =

⎧⎨⎩
⎡⎣ Γ1 D−1

Γ∗0
(CA)(

D−1
Γ0

(B∗�H1,0)
)∗

A1,0

⎤⎦ ;DΓ0 ,DΓ∗0 ,H1,0

⎫⎬⎭
and

τ(1)
1 =

⎧⎨⎩
⎡⎣ Γ1 D−1

Γ∗0
(C)

A
(
D−1
Γ0

(B∗�H1,0)
)∗

A0,1

⎤⎦ ;DΓ0 ,DΓ∗0 ,H0,1

⎫⎬⎭
are conservative and simple realizations of Θ1. Suppose

τ(0)
m =

⎧⎨⎩
⎡⎣ Γm D−1

Γ∗m−1
· · ·D−1

Γ∗0
(CAm)(

D−1
Γm−1

· · ·D−1
Γ0

(B∗�Hm,0)
)∗

Am,0

⎤⎦ ;DΓm−1 ,DΓ∗m−1
,Hm,0

⎫⎬⎭
is a simple conservative realization of Θm . Then

Bm =
(
D−1
Γm−1

· · ·D−1
Γ0

(B∗�Hm,0)
)∗ ∈ L(DΓm−1 ,Hm,0),

Cm = D−1
Γ∗m−1

· · ·D−1
Γ∗0

(CAm) ∈ L(Hm,0,DΓ∗m−1
), Am,0 ∈ L(Hm,0,Hm,0).

Hence

B∗
m = D−1

Γm−1
· · · D−1

Γ0
(B∗�Hm,0) ∈ L(Hm,0,DΓm−1).

The first Schur iterate of Θm(λ ) is the function Θm+1(λ ) ∈ S(DΓm ,DΓ∗m) and the first
Schur parameter of Θm is Γm+1. From (3.4) and (3.9) it follows that

kerDAm,0 = Hm+1,0, (Am,0)1,0 = Am+1,0 ∈ L(Hm+1,0,Hm+1,0).

Hence by (6.8), and (6.9)

Γm+1 = D−1
Γ∗mCm

(
D−1
Γm

B∗
m

)∗
= D−1

Γ∗m · · ·D
−1
Γ∗0

CAm
(
D−1
Γm

· · ·D−1
Γ0

(B∗�Hm,0)
)∗

and the system

τ(0)
m+1 =

⎧⎨⎩
⎡⎣ Γm+1 D−1

Γ∗m · · ·D
−1
Γ∗0

(CAm+1)(
D−1
Γm

· · ·D−1
Γ0

(B∗�Hm+1,0)
)∗

Am+1,0

⎤⎦ ;DΓm ,DΓ∗m ,Hm+1,0

⎫⎬⎭
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is a simple conservative realization of Θm+1 . From Theorem 3.1 it follows that the
systems

τ(k)
m+1 =

⎧⎨⎩
⎡⎣ Γm D−1

Γ∗m · · ·D
−1
Γ∗0

(CAm+1−k)

Ak
(
D−1
Γm

· · ·D−1
Γ0

(B∗�Hm+1,0)
)∗

Am+1−k,k

⎤⎦ ;

DΓm ,DΓ∗m ,Hm+1−k,k

⎫⎬⎭
are unitarily equivalent to the system τ(0)

m+1 for k = 1, . . . ,m+1 and hence their transfer
functions are equal to Θm+1 . This completes the proof.

Let us make a few remarks which follow from (4.9), Proposition 4.5, Theorem 6.5,
and Remark 6.6.

If DΓN = 0 and DΓ∗N �= 0, then DΓn = 0, Γ∗
n = 0 ∈ L(DΓ∗N ,{0}) , DΓ∗n = DΓ∗N ,

and H0,n = H0,N for n � N . The conservative systems τ0 , τ(k)
n , for n = 1, . . . ,N ,

and k = 0,1, . . . ,n , are observable. The unitarily equivalent observable conservative

systems τ(k)
N are of the form

τ(k)
N =

{[
ΓN D−1

Γ∗N−1
· · ·D−1

Γ∗0
(CAN−k)

0 AN−k,k

]
;DΓN−1 ,DΓ∗N−1

,HN−k,k

}
, k = 0,1, . . . ,N,

have transfer functions ΘN(λ ) = ΓN and the operators AN−k,k are unitarily equiva-
lent co-shifts of multiplicity dimDΓ∗N , the Schur iterates Θn are null operators from
L({0},DΓ∗N ) for n � N + 1 and are transfer functions of the conservative observable
system

τN+1 =

{[
0 D−1

Γ∗N−1
· · ·D−1

Γ∗0
C

0 A0,N

]
;{0},DΓ∗N ,H0,N

}
.

If DΓ∗N = 0 and DΓN �= 0, then DΓ∗n = 0, DΓn = DΓN , and Γn = 0 ∈ L(DΓN ,{0}) ,
Hn,0 = HN,0 for n � N . The conservative systems τ0 , τ(k)

n , for n = 1, . . . ,N , and k =
0,1, . . . ,n , are controllable. The unitarily equivalent controllable conservative systems

τ(k)
N are of the form

τ(k)
N =

{[
ΓN 0

Ak
(
D−1
ΓN−1

· · ·D−1
Γ0

(B∗�HN,0)
)∗

AN−k,k

]
;DΓN−1 ,DΓ∗N−1

,HN−k,k

}
,

k = 0,1, . . . ,N,

have transfer functions ΘN(λ ) = ΓN , and the operators AN−k,k are unitarily equivalent
unilateral shifts of multiplicity dimDΓN , the Schur iterates Θn are null operators from
L(DΓN ,{0}) for n � N +1, and are transfer functions of the conservative controllable
system

τN+1 =

{[
0 0(

D−1
ΓN

· · ·D−1
Γ0

(B∗�HN+1,0)
)∗

AN,0

]
;DΓN ,{0},HN,0

}
.
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If the operator ΓN is unitary, then the conservative systems τ0 , τ(k)
n , for n = 1, . . . ,N ,

and k = 0,1, . . . ,n , are controllable and observable. The unitarily equivalent control-

lable and observable conservative systems τ(k)
N are of the form

τ(k)
N =

{[
ΓN 0
0 AN−k,k

]
;DΓN−1 ,DΓ∗N−1

,HN−k,k

}
, k = 0,1, . . . ,N,

and HN+1−k,k = {0} for k = 0,1, . . . ,N +1.
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