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Abstract. The purpose of this paper is to compute the asymptotics of determinants of finite sec-
tions of operators that are trace class perturbations ofToeplitz operators. For example, we consider
the asymptotics in the case where the matrices are of the form (ai−j ± ai+j+1−k)i,j=0...N−1
with k fixed. We will show that this example as well as some general classes of operators
have expansions that are similar to those that appear in the Strong Szegö Limit Theorem. We
also obtain exact identitities for some of the determinants that are analogous to the one derived
independently by Geronimo and Case and by Borodin and Okounkov for finite Toeplitz matrices.
These problems were motivated by certain statistical quantities that appear in random matrix
theory.

1. Introduction

There is a fundamental connection between determinants of certain matrices and
random matrix ensembles. For example, the Circular Unitary Ensemble (CUE) is the
set of N ×N unitary matrices along with the Haar measure as the probability measure.
The probability density function of the distribution for the eigenvalues eiθ1 , . . . , eiθN of
the unitary matrices turns out to be a constant times∏

j<k

|eiθj − eiθk |2.

Given a function f , a linear statistic for this ensemble is a random variable of the form

Xf =
N∑

j=1

f (eiθj).

This quantity is connected to a Toeplitz determinant. More precisely,

1
(2π)NN!

∫ π

−π
· · ·
∫ π

−π

N∏
j=1

eiλ f (eiθj )
∏
j<k

|eiθj − eiθk |2dθ1 . . . dθN
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is identically equal to

det

(
1
2π

∫ π

−π
eiλ f (eiθ )e−i(j−k)θdθ

)
j,k=0,...,N−1

.

In probability terms this means that the inverse Fourier transform of the probability
density of Xf is a Toeplitz determinant. In the opposite sense, the Toeplitz determinant
can be thought of as an average or expectation value with respect to CUE. For a proof of
this and for more general facts about random matrices, we refer the reader to [12, 13].

Thus the asymptotics of the determinant gives us information about the linear
statistic. This is in particular the case when the function f is smooth enough, because
we may then appeal to the Strong Szegö Limit Theorem to tell us asymptotically the
behavior of the probablity density function.

Let us recall this theorem. For general Toeplitz determinants we consider

det (aj−k)j,k=0,...,N−1

where ak denotes the k th Fourier coefficients of some function a ∈ L1(T) , and T

stands for the unit circle in the complex plane. Under appropriate conditions the Strong
Szegö Limit Theorem (see, e.g., [4, 14]) states that

det (aj−k)j,k=0,...,N−1 ∼ (G[a])NE[a] (1)

as N → ∞ , where

G[a] = exp

(
1
2π

∫ π

−π
log a(eiθ) dθ

)
, (2)

E[a] = exp

( ∞∑
k=1

ksks−k

)
(3)

with sk denoting the k th Fourier coefficient of log a. The reader can check that in the
case of linear statistics, where the function a is of the form eiλ f , this implies that the
probability distributions for linear statistics are asymptotically Gaussian (N → ∞ ).

It is also known that different types of random matrix ensembles lead to different
classes of determinants. If one considers, for instance, averages for O+(2N) , the set
of orthogonal matrices with determinant equal to one (or, equivalently, the density
function for certain linear statistics), then the corresponding determinant is that of a
finite Toeplitz plus Hankel matrix. More specifically, it is of the form

det (aj−k + aj+k)j,k=0,...,N−1

where the function a is assumed to be even. Because of this reason we are interested
in the determinants of a sum of a finite Toeplitz plus a “certain type” of Hankel matrix.
For other ensembles further kinds of determinants arise, namely

det (aj−k + aj+k+1)j,k=0,...,N−1

and
det (aj−k − aj+k+2)j,k=0,...,N−1 .
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We refer the interested reader to [1, 7] for derivations of the averages in the above cases
and applications of the results in random matrix theory.

Our goal is to extend as much as possible the Strong Szegö Limit Theorem to these
various types of determinants for both smooth and singular symbols. In this paper we
address the case of smooth symbols.

An outline of the paper is as follows. In the next section we present some Banach
algebra preliminaries and compute some operator determinants. Then we give some
explicit examples of our general theory which correspond to the ones discussed earlier.
We then return to the general setting and derive a Borodin-Okounkov-Geronimo-Case
identity for the various classes of operators and establish the analogue of the Strong
Szegö Limit Theorem. This will allow us to calculate the asymptotics of determinants
of the form

(ai−j ± ai+j+1−k)i,j=0...N−1

where k ∈ Z is fixed. Finally, in the last section, we present some additional results
about our classes of operators.

2. Compatible pairs and computation of operator determinants

We denote by �2 the space of all complex-valued square-summable sequences
{xn}∞n=0 . The set L (�2) is the set of all bounded linear operators on �2 . By C1(�2) we
denote the class of trace class operators on �2 . We refer to [11] for more information
about trace class operators and the related notions of operator traces and determinants.

For a ∈ L∞(T) the Toeplitz operator T(a) and Hankel operator H(a) with
symbol a are the bounded linear operator defined on �2 with matrix representations

T(a) = (aj−k), 0 � j, k < ∞,

and
H(a) = (aj+k+1), 0 � j, k < ∞.

It is well-known that Toeplitz and Hankel operators satisfy the fundamental identities

T(ab) = T(a)T(b) + H(a)H(b̃) (4)
H(ab) = T(a)H(b) + H(a)T(b̃). (5)

In the last two identities b̃(eiθ) = b(e−iθ). It is worthwhile to point out that these
identities imply that

T(abc) = T(a)T(b)T(c), H(abc̃) = T(a)H(b)T(c) (6)

for a, b, c ∈ L∞(T) if an = c−n = 0 for all n > 0 .
The Riesz projection acting on Lp(T) (1 < p < ∞ ) is defined by

P :
∞∑

k=−∞
ake

ikθ →
∞∑
k=0

ake
ikθ .

Finally, we introduce the notion of a compatible pair, which underlies our general
theory in this paper.
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Let S stand for a unital Banach algebra of functions on the unit circle which is
continuously embedded into L∞(T) and which has the following properties:

(i) the Riesz projection P : S → S is well-defined and bounded on S ,
(ii) the symmetric flip a ∈ S �→ ã ∈ S is well defined and bounded on S .

Then we can define

S± =
{

a ∈ S : an = 0 for all (±n) < 0
}
, (7)

S0 =
{

a ∈ S : a = ã
}
. (8)

Moreover, we can make the following basic observations. Each a ∈ S can be
decomposed into a = a+ + a− with a± ∈ S± . The decomposition can be made
unique by requiring that [a−]0 = 0 . Then the mappings a �→ a± are linear and
bounded.

Furthermore, each a ∈ S can be decomposed into a = a0 + a− with a0 ∈ S0

and a− ∈ S− . Indeed, this decomposition can be derived from the previous one by
writing

a = a+ + a− = (a+ + ã+) + (a− − ã+)

and taking a0 = a+ + ã+ and a− − ã+ as the new a− . Again, we can make the
decomposition unique by requiring [a−]0 = 0 . The corresponding projections are
bounded.

A pair [M, S ] will be called a compatible pair if S is a Banach algebra with
the properties described above and if M : a ∈ S �→ M(a) ∈ L (�2) is a linear and
continuous map such that the following conditions are fulfilled:

(a) If a ∈ S , then M(a) − T(a) ∈ C1(�2) and

‖M(a) − T(a)‖C1(�2) � C ‖a‖S .

(b) If a ∈ S− , b ∈ S , c ∈ S0 , then

M(abc) = T(a)M(b)M(c).

(c) M(1) = I .
We will refer to a as the symbol of M(a) .

Let us remark that, assuming (c), condition (b) is equivalent to the conditions that

M(ab) = T(a)M(b), M(bc) = M(b)M(c) (9)

whenever a ∈ S− , b ∈ S , c ∈ S0 .

PROPOSITION 2.1. Let [M, S ] be a compatible pair. Then
(i) H(a)H(b) ∈ C1(�2) for each a, b ∈ S , and there is a constant C such that

‖H(a)H(b)‖C1(�2) � C‖a‖S ‖b‖S for each a, b ∈ S ,

(ii) if a is invertible in S , then T(a−1)M(a) − I and M(a)T(a−1) − I are both in
C1(�2).
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Proof. (i): We first assume that b = b̃. By assumption (a) each of the operators

(M(a) − T(a))M(b), T(a)(M(b) − T(b)), T(ab) − M(ab)

is trace class. If we add these three operators together and use that M(ab) = M(a)M(b) ,
which follows from property (b), we obtain

T(ab) − T(a)T(b) = H(a)H(b),

which is trace class. With a more careful inspection we can derive the norm estimate

‖H(a)H(b)‖C1(�2) � C‖a‖S ‖b‖S .

In general we write b = b0 + b− with b0 ∈ S0 and b− ∈ S− . Then H(b) = H(b0)
and the result follows. The norm estimate also holds because, in particular, the map
b �→ b0 is bounded.

(ii): Assume a is invertible. Then

T(a−1)(M(a) − T(a))

is trace class, and by the first part

T(a−1)T(a) − I = −H(a−1)H(ã)

is also trace class. Hence the sum T(a−1)M(a) − I is trace class. The proof for
M(a)T(a−1) − I is similar. �

Statement (i) of the previous proposition implies that if [M, S ] is a compatible
pair, then S is a suitable Banach algebra in the sense of [6]. It has been shown there
that in such a setting the Strong Szegö Limit Theorem, i.e., the asymptotics (1), holds
for symbols a = eb with b ∈ S .

Let B be a Banach algebra. In what follows we employ the notion of an analytic
B -valued function. The definition of differentiability involves the appropriate norm.
Despite this, we have the fact that an analytic L (H) -valued function whose values are
trace class operators is an analytic C1(H) -valued function. We refer to [10] for more
details.

PROPOSITION 2.2. Let [M, S ] be a compatible pair. Then for each a ∈ S

F1(λ ) = T(e−λa)M(eλa) − I and F2(λ ) = T−1(eλa)M(eλa) − I

are analytic C1(�2) -valued functions.

Proof. The first function is obviously an analytic L (�2) -valued function. It is
trace class valued because of (ii) of the previous proposition.

In order to consider the second function, we decompose a = a+ + a− with
a± ∈ S± . From this we derive (using (6)) that

T(eλa) = T(eλa−)T(eλa+ ).

Hence the inverse exists and is given by

T(eλa)−1 = T(e−λa+)T(e−λa−). (10)
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This shows that also the second function is well defined and L (�2) -valued analytic.
From assumption (a) of the definition of a compatible pair it is easy to conclude

that it is trace class valued. �
In the following two propositions we are going to compute some operator de-

terminants. They will appear later as constants in our asymptotic relations. We use
the following well known facts. If F(λ ) is an analytic function of the form identity
plus trace class, then its determinant det F(λ ) is well defined and an analytic function.
Moreover,

(log det F(λ ))′ =
(detF(λ ))′

detF(λ )
= traceF′(λ )F−1(λ ) = trace F−1(λ )F′(λ ).

The proof of the following propositions is similar to the proof of, for instance, [2,
Thm. 2.5] and [6, Thm. 7.4], where more details are given.

PROPOSITION 2.3. Let [M, S ] be a compatible pair. Then for a ∈ S0 ,

detT(e−a)M(ea) = exp
(
trace(M(a) − T(a)) +

1
2
traceH(a)2

)
. (11)

Proof. Define the entire function

f (λ ) := det T(e−λa)M(eλa).

Now consider the logarithmic derivative of f (λ ) ,

f ′(λ )
f (λ )

= trace
(
M(e−λa)T−1(e−λa)

)(
T(e−λa)M(aeλa) − T(ae−λa)M(eλa)

)
= trace

(
M(a) − T−1(e−λa)T(ae−λa)

)
.

Differentiating again yields

(
f ′(λ )
f (λ )

)′
= trace

(
−T−1(e−λa)T(ae−λa)T−1(e−λa)T(ae−λa)+T−1(e−λa)T(a2e−λa)

)
= trace

(
− T(a)T(a) + T(a2)

)
= traceH(a)2.

The last equality holds by writing a = a− + a+ with a± ∈ S± and considering the
inverse of T(e−λa) as in (10). Integration and fixing the constants by putting λ = 0
yields

f (λ ) = exp
(
λ trace(M(a) − T(a)) +

λ 2

2
traceH(a)2

)
.

This finishes the proof. �
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PROPOSITION 2.4. Let [M, S ] be a compatible pair. Then for a ∈ S ,

detT−1(ea)M(ea) = exp
(
trace(M(a) − T(a)) − 1

2
traceH(a)2

)
. (12)

Proof. We can decompose a = a0 + a− with a− ∈ S− , a0 ∈ S0 . Using (6) it
is easy to see that

f (λ ) := detT−1(eλa)M(eλa) = det T−1(eλa0)M(eλa0).

Now consider the logarithmic derivative of f (λ ) ,

f ′(λ )
f (λ )

= trace
(
M(e−λa0)T(eλa0)

)
×
(
T−1(eλa0)M(a0e

λa0) − T−1(eλa0)T(a0e
λa0)T−1(eλa0)M(eλa0)

)
= trace

(
M(a0) − T(a0e

λa0)T−1(eλa0)
)
.

Differentiating again yields(
f ′(λ )
f (λ )

)′
= trace

(
T(a0e

λa0)T−1(eλa0)T(a0e
λa0)T−1(eλa0) − T(a2

0e
λa0)T−1(eλa0)

)
= trace

(
T(a0)T(a0) − T(a2

0)
)

= −traceH(a0)2.

Integration and fixing the constants by putting λ = 0 yields

f (λ ) = exp
(
λ trace(M(a0) − T(a0)) − λ 2

2
trace H(a0)2

)
.

This implies the desired assertion by noting that H(a−) = 0 and M(a−) = T(a−) by
parts (b) and (c) of the definition of a compatible pair. �

3. Concrete realizations of compatible pairs

While the above formulas are nice, it remains to show that there are some interesting
classes of operators that satisfy the Banach algebra conditions as well as the algebraic
conditions of the previous section. That is, we need to show that there are some
compatible pairs. We would also like to have operators that correspond to the random
matrix examples that were stated in the introduction. The purpose of this section is to
introduce these examples, i.e., concrete realizations. We need to specify the Banach
algebra S and to identify the operators M(a).

For our compatible pairs, it is convenient to take as Banach algebra the Besov class
B1

1. This is the algebra of all functions a defined on the unit circle for which

‖a‖B1
1
:=
∫ π

−π

1
y2

∫ π

−π
|a(eix+iy) + a(eix−iy) − 2a(eix)| dx dy < ∞.
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A function a is in B1
1 if and only if the Hankel operators H(a) and H(ã) are both

trace class. Moreover, the Riesz projection is bounded on B1
1 , and an equivalent norm

is given by

|a0| + ‖H(a)‖C1 + ‖H(ã)‖C1 .

A proof of these facts can be found in [8, 9]. Clearly, the symmetric flip a �→ ã is
bounded on B1

1 . Hence S = B1
1 satisfies the Banach algebra conditions (i) and (ii) in

the definition of a compatible pair.
In the following propositions we define four concrete realizations for M(a) . We

only need to check that the algebraic conditions (a)–(c) are fulfilled. Introduce the
projections

P1 = diag(1, 0, 0, . . . ), Q1 = I − P1

acting on �2 .

PROPOSITION 3.1. The following realizations for the operator M with symbols in
the Besov class B1

1 define compatible pairs [M, B1
1] :

(I) M(a) = T(a) + H(a)
(II) M(a) = T(a) − H(a)

(III) M(a) = T(a) − H(t−1a)
(IV) M(a) = T(a) + H(ta)Q1

Proof. It is easy to see that conditions (a) and (c) are satisfied. Hence we focus on
(b). Taking into account the remark made in connection with (9) we have to show that

M(ab) = M(a)M(b)

under the condition b = b̃ . In order to verify the cases (I) and (II) use (4) and (5) to
obtain

T(ab) ± H(ab) = T(a)T(b) + H(a)H(b) ± T(a)H(b) ± H(a)T(a)

=
(
T(a) ± H(a)

)(
T(b) ± H(b)

)

as desired. In case (III), use in addition (6) to obtain

M(a)M(b) =
(
T(a) − H(t−1a)

)(
T(b) − H(t−1b)

)
= T(a)T(b) + H(t−1a)H(t−1b) − H(t−1a)T(b) − T(a)H(t−1b)

= T(ab) − H(a)P1H(b) − H(t−1ab) + T(t−1a)H(b) − T(a)T(t−1)H(b)

= T(ab) − H(t−1ab) − H(a)P1H(b) + H(a)H(t)H(b)

= T(ab) − H(t−1ab).

Here P1 = H(t) = H(t)2 = I − Q1 and Q1 = T(t)T(t−1) . In case (IV) we have
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M(a)M(b) =
(
T(a) + H(ta)Q1

)(
T(b) + H(tb)Q1

)
= T(a)T(b) + H(ta)Q1H(tb)Q1 + H(ta)Q1T(b) + T(a)H(tb)Q1

= T(a)T(b) + H(a)H(b)Q1 + H(a)T(t−1b) + T(a)H(tb)Q1

= T(ab) − H(a)H(b)P1 + H(a)T(t−1b) + H(tab)Q1 − H(a)T(t−1b)Q1

= T(ab) + H(a)T(b)T(t−1) + H(tab)Q1 − H(a)T(t−1b)Q1

= T(ab) + H(tab)Q1.

This settles the proof. �
Let us remark that the operators (I)-(III) are precisely the infinite matrix versions

of the finite Toeplitz plus Hankel matrices mentioned in the introduction. It is also easily
seen that if we multiply the operator (IV) from the right with diag(2, 1, 1, . . . ) , then we
obtain T(a)+H(ta) . Finally notice the simple fact that the operators (I) and (II) are re-
latedwith one another bymultiplying from the left and rightwith diag(1,−1, 1,−1, . . . )
and replacing the symbol a(t) by a(−t) .

PROPOSITION 3.2. Let a ∈ B1
1 and denote

F[a] = detT−1(a)M(a) (13)

where we assume that there exists a logarithm log a ∈ B1
1 . Then in the above cases

(I)–(IV) the corresponding constants evaluate as follows:

FI [a] = exp
( ∞∑

n=0

[log a]2n+1 − 1
2

∞∑
n=1

n[log a]2n
)

FII[a] = exp
(
−

∞∑
n=0

[log a]2n+1 − 1
2

∞∑
n=1

n[log a]2n
)

FIII [a] = exp
(
−

∞∑
n=1

[log a]2n − 1
2

∞∑
n=1

n[log a]2n
)

FIV [a] = exp
( ∞∑

n=1

[log a]2n − 1
2

∞∑
n=1

n[log a]2n
)

Proof. We only need to note that traceH(log a)2 is
∑∞

n=1 n[log a]2n and check that,
for example, traceH(log a) =

∑∞
n=0[log a]2n+1. �

The proof of the following proposition is almost the same as above.

PROPOSITION 3.3. Let a ∈ B1
1 and denote

F̂[a] = detT(a−1)M(a) (14)

where we assume that there exists a logarithm log a ∈ B1
1 and a = ã . Then in the

above cases (I)–(IV) the corresponding constants evaluate as follows:
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F̂I [a] = exp
( ∞∑

n=0

[log a]2n+1 +
1
2

∞∑
n=1

n[log a]2n
)

F̂II[a] = exp
(
−

∞∑
n=0

[log a]2n+1 +
1
2

∞∑
n=1

n[log a]2n
)

F̂III [a] = exp
(
−

∞∑
n=1

[log a]2n +
1
2

∞∑
n=1

n[log a]2n
)

F̂IV [a] = exp
( ∞∑

n=1

[log a]2n +
1
2

∞∑
n=1

n[log a]2n
)

4. Exact identities for some determinants

In this section we establish some exact identities for the finite sections of the opera-
tors considered in the previous section. These are of the Borodin/Okounkov/Geronimo
/Case type and with these the asymptotics of the determinants will easily follow. For
the Toeplitz analogue of this theorem see [3]. We define the projection PN by

PN : {xn}∞n=0 ∈ �2 �→ {yn}∞n=0 ∈ �2, yn =
{

xn if n < N
0 if n � N

and put QN = I − PN . We are interested in the determinants (where the matrices
or operators are always thought of as acting on the image of the projection of the
appropriate space) of

PNM(a)PN .

We first take the case of even a . Recall the definition of the constant G[a] given in (2).

PROPOSITION 4.1. Let [M, S ] be a compatible pair, and let b+ ∈ S+ . Put
a = a+ã+ = exp(b) with a+ = exp(b+) , b = b+ + b̃+ . Then

det PNM(a)PN = G[a]NF̂[a] det(I + QNKQN),

where

F̂[a] = detT(a−1)M(a) = exp
(
trace(M(b) − T(b)) +

1
2
trace H(b)2

)
,

and K = M(a−1
+ )T(a+) − I.

Proof. We can write

PNM(a)PN = PNM(a)PN

= PNT(a+)T(a−1
+ )M(a)T(ã+)T(ã−1

+ )PN

= PNT(a+)PNT(a−1
+ )M(a)T(ã−1

+ )PNT(ã+)PN .
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The last fact follows since for Toeplitz operators

PNT(a+) = PNT(a+)PN , T(ã+)PN = PNT(ã+)PN .

At this point we have that

det PNM(a)PN = det(PNT(a+)PNT(a−1
+ )M(a)T(ã−1

+ )PNT(ã+)PN)

= det(PNT(a+)PN) · det(PNT(ã+)PN) · detPNT(a−1
+ )M(a)T(ã−1

+ )PN

= [a+]N0 · [ã+]N0 · detPNT(a−1
+ )M(a)T(ã−1

+ )PN .

First it is not hard to check that [a+]0 ·[ã+]0 = G[a] . Now Jacobi’s identity for invertible
operators on Hilbert space which are of the form identity plus trace class operators states
that for projections P and Q = I − P we have

det PAP = (det A) · (det QA−1Q).

We apply this to the above with P = PN , Q = I − PN , and A = T(a−1
+ )M(a)T(ã−1

+ )
to find that

det PNT(a−1
+ )M(a)T(ã−1

+ )PN = detT(a−1
+ )M(a)T(ã−1

+ )

× detQN(T(a−1
+ )M(a)T(ã−1

+ ))−1QN .

To simplfy the last two determinants we note that

detT(a−1
+ )M(a)T(ã−1

+ ) = detT(ã−1
+ )T(a−1

+ )M(a) = det T(a−1)M(a) = F̂[a]

and use Proposition 2.3. Moreover,

(T(a−1
+ )M(a)T(ã−1

+ ))−1 = T(ã+)M(a−1)T(a+) = M(a−1
+ )T(a+)

which is also of the form I plus a trace class operator. We now put all these together,

detPNM(a)PN = G[a]NF̂[a] detQNM(a−1
+ )T(a+)QN ,

and make the observation that this last determinant is the same as

det(PN + QNM(a−1
+ )T(a+)QN) = det(I + QNKQN).

This proves the formula. �
Let us remark that the operator K appearing in the previous proposition becomes

particularly simple in the cases of the four concrete realizations of operators M consid-
ered in the previous section. The precise expressions are as follows:

(I) K = H(a−1
+ ã+)

(II) K = −H(a−1
+ ã+)

(III) K = −H(t−1a−1
+ ã+)

(IV) K = H(ta−1
+ ã+) − T(a−1

+ )H(tã+)
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As for case (IV) notice that the term T(a−1
+ )H(tã+) will be annihilated bymultiplication

with QN from the right (N � 1 ).
The above proposition needs to be slightly changed for non-even functions a . We

include the result for completeness sake, although in our applications a is always even.

PROPOSITION 4.2. Let [M, S ] be a compatible pair, and let b± ∈ S± . Put
a = a+a− = exp(b) with a± = exp(b±) , b = b+ + b− . Then

det PNM(a)PN = G[a]NE[a]F[a] det(I + QNKQN),

where

F[a] = detT−1(a)M(a) = exp
(
trace(M(b) − T(b)) − 1

2
traceH(b)2

)
E[a] = detT(a−1)T(a) = exp

(
traceH(b)H(b̃)

)
,

and K = M(a−a−1
+ ã−1

+ )T(a+ã+a−1
− ) − I.

Proof. The only real difference in the proof is that we must replace ã+ by a− .
The subsequent computations must be modified as follows. Firstly,

det T(a−1
+ )M(a)T(a−1

− ) = detT(a−1
− )T(a−1

+ )M(a) = detT(a−1)M(a).

This we can write as the product

det T(a−1)T(a) · detT(a)−1M(a)

and use Proposition 2.4 to identify the second factor. The first factor is well known from
Toeplitz theory [4, 14]. Since in our setting the Banach algebras S is not specified, one
way to settle the issue is to use the same ideas as in Propositions 2.3 and 2.4. Another
possibility would be to apply a formula due to Pincus (see, e.g., [5]).

Secondly, one computes that

(T(a−1
+ )M(a)T(a−1

− ))−1 = (T(a−1
+ )T(a−ã−1

+ )M(a+ã+)T(a−1
− ))−1

= T(a−)M(a−1
+ ã−1

+ )T(a−1
− ã+)T(a+)

= M(a−a−1
+ ã−1

+ )T(a−1
− ã+a+).

This is again identity plus trace class by Proposition 2.1. �
The above proposition immediately establishes an asymptotic formula for the

determinants since the operators QN tend to zero strongly as do their adjoints. Thus we
arrive at the final results of this section.

THEOREM 4.3. Let [M, S ] be a compatible pair, let b ∈ S and a = exp(b) .
Then

det PNM(a)PN ∼ G[a]NÊ[a] as N → ∞,

where

Ê[a] = exp
(
trace(M(b) − T(b)) − 1

2
traceH(b)2 + traceH(b)H(b̃)

)
.
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It is clear that the formula for E[a] in the previous two theorem simplifies if b is
assumed to be even and then correspond to Proposition 4.1. Also, in the case of the
concrete realizations the traces of M(a) − T(a) are explicit in Proposition 3.2.

We remark here that in the examples of our concrete realizations and with the
symbol eiλ f these theorems tell us that the distributions of the linear statistics are all
Gaussian since as a function of λ the transforms are exponentialsof quadratic functions.

We end this section with an application of the above asymptotics which yield an
expansion for determinants of finite sections of operators of the form T(a) ± H(atk).
These operators are (for general k ) not the ones that yield a compatible pair realization,
but using Jacobi’s identity

det PAP = (det A) · (det QA−1Q), (15)

we can still compute the determinants of their finite sections asymptotically. We prepare
with a basic result still relating to compatible pairs.

PROPOSITION 4.4. Let [M, S ] be a compatible pair. Suppose that a ∈ S such
that log a ∈ S . Then there exists a unique factorization of the form

a(t) = a−(t)a0(t) (16)

such that a−, a−1
− ∈ S− , a0, a

−1
0 ∈ S0 , and [a−]0 = 1 . Moreover, M(a) is invertible

and

M(a)−1 = M(a−1
0 )T(a−1

− ). (17)

Proof. We can decompose log a into b− + b0 with b− ∈ S− , b0 ∈ S0 , and
[b−]0 = 0 . Then we simply put a− = exp(b−) and a0 = exp(b0) in order to obtain
the factorization. Notice that S− and S0 are unital Banach subalgebras of S . To
obtain the uniqueness of the factorization write

a = a(1)
− a(1)

0 = a(2)
− a(2)

0

whence (a(2)
− )−1a(1)

− = a(2)
0 (a(1)

0 )−1 . Apply the fact that the intersection of S− and
S0 are the constant functions only and use the normalization condition to conclude that
the last products are in fact equal to one.

Using the factorization and the basic properties of M(a) we have M(a) =
T(a−)M(a0) and

T(a−)T(a−1
− ) = T(a−1

− )T(a−) = I, M(a0)M(a−1
0 ) = M(a−1

0 )M(a0) = I.

Hence the invertibility of M(a) follows. �

THEOREM 4.5. Let a ∈ B1
1 such that log a ∈ B1

1 . Assume that a = a−a0 is a
factorization of the form (16).
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1. Suppose that k is a negative even integer ( k = −2l , l � 1 ). Then

detPN(T(a) ± H(atk))PN ∼ G[a]N+lE1,±[a] detPl(T(a−1
0 ) ± H(a−1

0 ))Pl

as N → ∞ , where

E1,±[a] = exp
(
±

∞∑
n=1

log a2n+1 − 1
2

∞∑
n=1

n[log a]2n +
∞∑

n=1

n[log a]−n[log a]n
)
.

2. Suppose that k is a negative odd integer less than −1 ( k = −1 − 2l , l � 1 ).
Then

det PN(T(a) − H(atk))PN ∼ G[a]N+lE2[a] detPl(T(a−1
0 ) − H(a−1

0 t−1)Pl

as N → ∞ , where

E2[a] = exp
(
−

∞∑
n=1

log a2n − 1
2

∞∑
n=1

n[log a]2n +
∞∑

n=1

n[log a]−n[log a]n
)
.

3. Suppose that k is a negative odd integer ( k = 1 − 2l , l � 1 ). Then

detPN(T(a) + H(atk))PN ∼ G[a]N+lE3[a] detPl(T(a−1
0 ) + H(a−1

0 t))Pl

as N → ∞ , where

E3[a] = exp
(
− log 2 +

∞∑
n=1

log a2n − 1
2

∞∑
n=1

n[log a]2n +
∞∑
n=1

n[log a]−n[log a]n
)
.

4. We have

detPN(T(a) + H(atk))PN = 0 if N � k � 2,

detPN(T(a) − H(atk))PN = 0 if N � k � 1.

Proof. Case 1. Consider the matrix PN(T(a) ± H(atk))PN . We observe that it is
indeed the right bottom N × N corner of the (N + l) × (N + l) matrix

AN = PN+l(T(a) ± H(a))PN+l.

But this is the same as the matrix QlANQl . Using Jacobi’s identity (15) with P = Ql ,
Q = Pl , we obtain

det(PN(T(a) ± H(atk))PN) = det(PlA
−1
N Pl) · (det AN).

Each of these last two factors can be computed asymptotically. For the second we use
Theorem 4.3 with M(a) = T(a) ± H(a) and the results of Section 3 to conclude that
detAN is asymptotically G[a]N+lE1,±[a] .

For the first we use the fact ([4], Theorem7.20) that the inverses of the finite sections
PN+l(T(a) ± H(a))PN+l converge strongly to the inverse of M(a) = T(a) ± H(a) .
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Notice that M(a) is T(a) plus a compact operator and that M(a) is invertible. The
inverse equals M(a)−1 = M(a−1

0 )T(a−1
− ) . Hence det PlA

−1
N Pl converges to

detPlM(a−1
0 )T(a−1

− )Pl = det PlM(a−1
0 )PlT(a−1

− )Pl = detPlM(a−1
0 )Pl.

Here we use the basic fact that T(a−1
− )Pl = PlT(a−1

− )Pl and the normalization [a−]0 =
1 .

Case 2. The proof is nearly the same only that we now use

AN = PN+l(T(a) − H(at−1))PN+l

and M(a) = T(a) − H(at−1) .
Case 3. Here an additional modification must be made. We consider

AN = PN+l(T(a) + H(at))PN+l

and using Jacobi’s identity we can write

det(PN(T(a) − H(atk))PN) = det(PlA
−1
N Pl) · (det AN).

Furthermore, we observe that

M(a) = T(a) + H(at)Q1 = (T(a) + H(at))R

where

R = diag(1/2, 1, 1, 1, . . . ).

This leads to

det AN = 2 det(PN+lM(a)PN+l), det(PlA
−1
N Pl) =

1
2

det(Pl(PN+lM(a)PN+l)−1Pl).

The last determinant converges to

det(PlM
−1(a)Pl) = det(PlM(a−1

0 )Pl) =
1
2

det(Pl(T(a−1
0 ) + H(a−1

0 t))Pl).

For this reason we get an additional factor 1/2 .
Case 4. Observe that PN(T(a) ± H(atk))PN is given by the matrix

(ai−j ± ai+j−k+1)i,j=0...N−1.

Thus the first column ( j = 0 ) and the k th column ( j = k−1 ) are given by ai ±ai−k+1

and ai−k+1 ± ai , respectively. Hence they are either equal or the negative of each other.
This settles the statements in the case k � 2 . The case k = 1 with the “minus” is
special. Then the first (= k th column) equals zero. �
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5. The general form of M(a)M(a)M(a)

In this section we consider the question of how general the operator M(a) can be.
Let us first state some implications of [M, S ] being a compatible pair. For simplicity,
we will assume that S contains the trigonometric polynomials as a dense subset.

Let us write
K(a) = M(a) − T(a).

Recall that the main property (b) for compatible pairs implies the two conditions stated
in (9), i.e.,

M(ab) = T(a)M(b), M(bc) = M(b)M(c)

whenever a ∈ S− , b ∈ S , c ∈ S0 . These conditions can be restated as

K(ab) = T(a)K(b) (18)

and
K(bc) = K(b)K(c) + T(b)K(c) + K(b)T(c) − H(b)H(c) (19)

for a ∈ S− , b ∈ S , c ∈ S0 . Condition (c) for compatible pairs implies K(1) = 0 ,
and using (18) this shows that K(a) = 0 whenever a ∈ S− . In particular, K(tn) = 0
for n � 0 .

From (18) it also follows that T(t−1)K(tn+1) = K(tn) . Since T(t−1) is the
backward shift operator and K(1) = 0 , it follows that (with respect to the usual matrix
representation) K(tn) can have nonzero entries only in the first n rows. Furthermore, all
but the first row of K(tn+1) can be obtained from the rows of K(tn) . More specifically,
we can conclude that there exist x1, x2, . . . ∈ �2 such that

K(tn) = (xn, xn−1, . . . , x1, 0, 0, . . . )T ,

where we think of the xk ’s and the 0 ’s as infinite column vectors. Equivalently,

K(tn) = e0x
T
n + e1x

T
n−1 + . . . en−1x

T
1 , (20)

where ei = {δi,k}∞k=0 ( i � 0 ) is the standard basis in �2 . Here yxT stands for the rank
one operator

z ∈ �2 �→ 〈 z, x〉 · y ∈ �2.

The vectors xk ∈ �2 can be obtained recursively from x1 . To see this notice that
(for n � 1 )

K(tn+1) = K(t(tn + t−n)),

which using (19) implies

K(tn+1) = K(t)K(tn) + T(t)K(tn) + K(t)T(tn + t−n) − H(t)H(tn).

Now multiply from the left with eT
0 to obtain the relation

xT
n+1 = xT

1 K(tn) + xT
1 T(tn + t−n) − eT

n−1,
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and finally

xn+1 =
n∑

k=1

[x1]n−k · xk + T(tn + t−n)x1 − en−1, [x1]n−k = 〈 x1, en−k〉 . (21)

In other words, the operators K(a) are determined for all trigonometric polyno-
mials once we know the operator K(t) = e0xT

1 , i.e., x1 ∈ �2 . We can also see this last
fact in another way by observing that

M((t + t−1)n) = (T(t + t−1) + e0x
T
1 )n (22)

for n � 1 . This simply follows from the multiplicative property of M(a) for even
symbols. Recall that M(t−n) = T(t−n) for n � 0 .

Now the question is whether each x1 ∈ �2 gives rise by, for instance, the definition
(22) to operators M(a) which are well-defined for all trigonometric polynomials and
satisfy the properties (a)–(c) for compatible pairs. If this is the case and assuming the
density of the trigonometric polynomials in S , then the operator M can be extended
by continuity to all of S . In fact, this question has an algebraic and an analytic part.
The answer to the algebraic part is positive as the following theorem shows. As we will
see later the analytic part can also be answered affirmative provided that the Banach
algebra S is chosen properly.

In what follows let T stand for the algebra of all trigonometric polynomials. We
define T− and T0 as in (7) and (8).

THEOREM 5.1. Let x1 ∈ �2 . Then the definitions

M(t−n) = T(t−n), M((t + t−1)n) = (T(t + t−1) + e0x
T
1 )n, n � 0,

determine uniquely a well defined linear operator M : T → L (�2) , which satisfies
the conditions (b) and (c) of the definition of compatible pairs.

Proof. It is obvious that the definition determines (by linearity) a well defined
linear operator M on T in a unique way. It is also clear that (c) is satisfied. It remains
to show that condition (b) holds, i.e., we have to show that

M(abc) = T(a)M(b)M(c)

holds for a ∈ T− , b ∈ T , and c ∈ T0 . Since an arbitrary function in T can be
represented as a linear combination of t−n and (t + t−1)n , n � 0 , it is not hard to see
(see also (9)) that the only problem is to prove that M(ab) = T(a)M(b) for a ∈ T− ,
b ∈ T0 . We will consider a = t−n and b = tm + t−m and use induction on n + m .
There is nothing to prove when n = 0 or m = 0 . The case n = m = 1 follows from

T(t−1)M(t + t−1) = T(t−1)(T(t + t−1) + e0x
T
1 ) = T(1 + t−2) = M(1 + t−2).

Now let n, m � 1 and n + m > 2 . Then

T(t−n)M(tm + t−m) = T(t−n+1)T(t−1)M(tm + t−m)
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which by the induction arguments equals

T(t−n+1)M(tm−1 + t−m−1) = T(t−n+1)M(tm−1 + t−m+1) + T(t−n+1)T(t−m−1 − t−m+1)

= M(tm−n + t−m−n) + T(t−m−n − t−n−m+2)

= M(tm−n + t−n−m+2)

as desired. �
The remaining analytic problem is the following. Given x1 ∈ �2 , does there exists

a Banach algebra S (satisfying the basic assumptions (i) and (ii) of Section 2) such
that the trigonometric polynomials T are a dense subset in S and such that

‖M(a) − T(a)‖C1(�2) � C · ‖a‖S

holds for all a ∈ T , where M is defined on T as in the previous theorem? If this is
the case, then M can be extended by continuity to all of S , and [M, S ] is a compatible
pair.

We will see below that such Banach algebras S always exist. They depend, in
general, on the given x1 ∈ �2 . Of course, one would like to have S as large as possible.
Our choices of S will probably be more restrictive than necessary. We will not pursue
the question of what might be the “optimal” Banach algebra S any further.

The Banach algebras that we are going to consider are the following ones. For
α � 0 and β � 1 let F�1

α,β stand for the set of all functions a defined on the unit
circle such that its Fourier coefficients satisfy

‖a‖F�1
α,β

:=
∑
n∈Z

(1 + |n|)αβ |n||an| < ∞.

It is easy to see that F�1
α,β are Banach algebras which satisfy the basic assumptions (i)

and (ii) of Section 2 and that T is a dense subset of S .
Let us start with a basic observation. If it is the case that the operators M(tn) are

uniformly bounded in the operator norm for all n > 0 , i.e.,

sup
n>0

‖M(tn)‖L (�2) < ∞,

then [M, S ] is a compatible pair with S = F�1
1,1 . Indeed, if the operators M(tn)

are uniformly bounded in the operator norm, then so are the operators K(tn) . Because
K(tn) = PnK(tn) for n > 0 , we have that ‖K(tn)‖C1(�2) = O(n) . Recall that K(tn) = 0
for n � 0 . Hence

‖K(a)‖C1(�2) �
∑
n>0

|an| · ‖K(tn)‖C1(�2) � C
∑
n>0

|an| · n � C · ‖a‖F�1
1,1

for all a ∈ T as desired.
The hypothesis of the previous assertion is fulfilled in some cases, e.g., for the four

concrete examples considered in Section 3. These examples correspond to the choices
±e0 or e1 or the zero vector for x1 . The hypothesis is not fulfilled in general as one
can see from straightforward computations based on the recurrence relation (21).
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In order to give some information about the general case, and a somewhat less
general, but still important case, we conclude with the following result.

THEOREM 5.2. Let x1 ∈ �2 , and define M : T → L (�2) as in Theorem 5.1.
(i) If x1 
= 0 , then M extends by continuity to S = F�1

0,1+σ with σ = ‖x1‖�∞ ,
and [M, S ] is a compatible pair.

(ii) If x1 ∈ �1 , then M extends by continuity to S = F�1
α,β , and [M, S ] is a

compatible pair, where

(α, β) =

⎧⎨
⎩

(1, 1) if ‖x1‖�1 < 1
(2, 1) if ‖x1‖�1 = 1
(0, ‖x1‖�1) if ‖x1‖�1 > 1.

Proof. We start with the general observation that if

‖K(tn)‖C1(�2) � Cnαβn

for all n � 1 , then M extends by continuity to a linear bounded operator on S = F�1
α,β ,

and the pair [M, S ] is compatible. Indeed, if this holds true, then similar as above it
follows that

‖K(a)‖C1(�2) � C · ‖a‖F�1
α,β

for all a ∈ T . Hence the operator K can be extended by continuity to all of S ,
and its values are trace class. The operator M(a) = T(a) + K(a) can be extended by
continuity as well. It is not hard to see that conditions (a) and (c) of the definition of
compatible pairs are fulfilled. Condition (b) is also fulfilled because T0 and T− are
dense in S0 and S− , respectively.

Thus our goal is now to estimate the trace norm of K(tn) for n � 1 . Using (20)
it follows that

‖K(tn)‖C1(�2) �
n∑

k=1

‖xk‖�2 =: sn.

Here we use the elementary fact that the trace norm of the rank one operator yxT equals
‖x‖ · ‖y‖ . Let us now consider the two cases separately in order to estimate sn .

(i): Put σ = ‖x1‖�∞ > 0 and γ = 2 ‖x1‖�2 + 1 . The recursion (21) implies

‖xn+1‖�2 � σ
n∑

k=1

‖xk‖�2 + γ ,

whence
n+1∑
k=1

‖xk‖�2 � (1 + σ)
n∑

k=1

‖xk‖�2 + γ ,

i.e., sn+1 � (1 + σ)sn + γ . It is now easy to see that sn = O((1 + σ)n) , which implies
the assertion.

(ii): Put � = ‖x1‖�1 and γ = 2 ‖x1‖�2 + 1 . We use again the recurrence relation
(21) in order to conclude that

‖xn+1‖�2 � � max
1�k�n

‖xk‖�2 + γ .
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In case � < 1 , it follows that ‖xn‖ = O(1) , thus sn = O(n) . In case � = 1 , it
follows that ‖xn‖ = O(n) , thus sn = O(n2) . Finally, in case � > 1 , it follows that
‖xn‖ = O(�n) , thus sn = O(�n) . This implies the statements. �
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