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STRUCTURED DECOMPOSITIONS FOR MATRIX TRIPLES:

SVD–LIKE CONCEPTS FOR STRUCTURED MATRICES

CHRISTIAN MEHL, VOLKER MEHRMANN AND HONGGUO XU

Abstract. Canonical forms for matrix triples (A,G,Ĝ) , where A is arbitrary rectangular and
G , Ĝ are either real symmetric or skew symmetric, or complex Hermitian or skew Hermitian,
are derived. These forms generalize classical singular value decompositions. In [1] a similar
canonical form has been obtained for the complex case. In this paper, we provide an alternative
proof for the complex case which is based on the construction of a staircase-like form with the
help of a structured QR -like decomposition. This approach allows generalization to the real
case.
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