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ON SPACES OF OPERATORS WHOSE DUALS ARE ISOMETRIC TO L1(μ)
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Abstract. Following the well-known classification scheme of function spaces whose duals are
isometric to L1(μ) , due to Lindenstrauss, Wulbert and Olsen, in this paper we study the geo-
metric properties of space of compact operators K (E,F) under the assumption that it is in one
of the classes described by Lindenstrauss, Wulbert and Olsen.

1. Introduction

Let E be a complex Banach space such that E∗ is isometric to L1(μ) for some
positive measure μ . Such spaces are called L1 -preduals or Lindenstrauss spaces. Study
of their structure and classification attracted a lot of attention during the 70’. Linden-
strauss and Wulbert ([5]) gave a classification scheme for characterizing several known
classes of function spaces among the preduals of L1(μ) . These results were extended
to complex Banach spaces by Olsen ([7]). See the monograph [4] for more details.

For a Banach space E by E1,S(E),∂eE1 we denote the closed unit ball, the unit
sphere and the set of extreme points of the unit ball respectively. In this paper we are in-
terested in considering spaces E,F such that the space of bounded operators, L (E,F)
or the spaces of compact operators, K (E,F) is in one of the classes in the classifica-
tion scheme and decide whether E∗ and F are also in the same class. It follows from
the results in Chapter 6 of [4] (and by Corollary 5 of [7], in the complex case) that
being an L1 -predual is preserved by ranges of projections of norm one . Since E∗ , F
are isometric to the range of a projection of norm one in K (E,F) (L (E,F)), we have
that E∗ and F are L1 -preduals. These questions when the space of operators is a con-
tinuous function space were considered in [9]. It is well-known that any L1(μ)-space
and any L1 -predual space have the metric approximation property. Thus K (E,F) can
be identified with the injective tensor product E∗ ⊗ε F .

Earliest known examples of L1 -preduals are the abstract M -spaces due to Kaku-
tani (see [4]) which included spaces of the type C(X) and C0(X) . Lindendtrauss, Wul-
bert and Olsen in [5] and [7], have introduced several function spaces that were shown
to be L1 -preduals and have been classified abstractly in terms of extremal concepts. We
now recall some of these.
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For a compact convex set K that is a Choquet simplex, A(K) denotes the space of
complex-valued affine continuous functions on K , equipped with the supremum norm.

Let T denote the unit circle. A compact set X is said to be a Tσ -space, if there is
a continuous map σ : T ×X → X such that σ(1,x) = x and σ(α,σ(β ,x)) = σ(αβ ,x) ,
for x∈X and α,β ∈ T . f ∈C(X) is said to be σ -homogeneous if f (σ(α,x)) =α f (x)
for all x ∈ X and α ∈ T . Cσ (X) denotes the subspace of σ -homogeneous functions.
If for all α �= 1, σ(α, .) has no fixed point in X , then this space is called a CΣ -space.

A complex G-space is a subspace V ⊂C(X) , satisfying a family A of relations,
f (xa) = λaαa f (ya) for xa,ya ∈ X , λa ∈ [0,1] , αa ∈ T , a ∈ A .

It is easy to see that any Cσ -space is a G-space.

From now on we will consider the more general question, if E ⊗ε F is in one of
the classes in the classification scheme and decide whether E and F are also in the
same class? As noted earlier, the assumption implies that E and F are L1 -preduals.
These questions for the case of bounded operators are still open. It was shown in [8]
that if E,F are L1 -preduals, then so is the injective tensor product space E ⊗ε F .

We will be using the identification of ∂e(E ⊗ε F)∗1 as vectors of the form e∗ ⊗ f ∗
where e∗ ∈ ∂eE∗

1 and f ∗ ∈ ∂eF∗
1 (see [11], [6]). Many of the classification results from

[5] and [7] are based on the properties of the extreme points of the unit ball or dual unit
ball. By using the description of the extreme points of the dual unit ball of injective
tensor product spaces, it is not difficult to show that if E ⊗ε F is a G-space, CΣ -space
or a Cσ space then so are the component spaces. For a compact set X if E ⊗ε F is
isometric to C(X) , it follows from the arguments given in the proof of Theorem 2 in
[10] that E,F are isometric to C(M) and C(N) respectively for some compact sets
M,N . See [9] for the case of operators.

Let X be a locally compact space then C0(X) , the space of continuous functions
vanishing at infinity, is an L1 -predual space. This is the only function space in the
classification scheme whose characterization is not wholly based on extremal structure
of the dual unit ball or the unit ball. It has been classified as (see [7, section 6] ) a
complex simplex space, i.e., there exists a maximal face F ⊂ S(C0(X)∗1) of the dual
unit ball, such that the convex hull CO(F ∪{0}) is weak∗ -closed and ∂eC0(X)∗1∪{0}
is a weak∗ - closed set. It can also be seen that when this happens, for any maximal face
F of the unit sphere, CO(F ∪{0}) is weak∗ -closed.

Let E,F be Banach spaces so that E ⊗ε F is isometric to C0(X) for a locally
compact space X . As already noted this implies that E,F are L1 -preduals. We do not
know if our assumption implies that E and F are also C0 -spaces.

2. Main result

We give a positive solution to the problem posed above, when the dual of one
component space is discrete.

THEOREM 1. Let E,F be Banach spaces such that E∗ = �1 . Suppose E ⊗ε F is
isometric to C0(X) for a locally compact and non-compact set X . Then E is isometric
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to C0(L) for a dispersed locally compact metric space L and F is isometric to C0(N)
for a locally compact space N .

Proof. We will first show that E is isometric to C0(L) . Since E ⊗ε F is a C0(X)
space, in view of the results from [7] we have that ∂e(E⊗ε F)∗1∪{0} is a weak∗ -closed
set and for any maximal face G ⊂ S((E ⊗ε F)∗) , CO(G∪{0}) is weak∗ -closed.

Let {e∗α} ⊂ ∂eE∗
1 be a net such that e∗α → e∗ in the weak∗ -topology. Fix an

f ∗ ∈ ∂eF∗
1 . It is easy to see that e∗α ⊗ f ∗ → e∗ ⊗ f ∗ in the weak∗ -topology. Thus

e∗ ⊗ f ∗ ∈ ∂e(E ⊗ε F)∗1 or e∗ ⊗ f ∗ = 0. Hence we have that ∂eE∗
1 ∪ {0} is weak∗ -

closed.
We note that any L1 -predual space has the metric approximation property (see [4,

Chapter 6]). Since E∗ has the Radon-Nikodym property, it follows from [2, Chapter
VIII] that (E ⊗ε F)∗ = E∗ ⊗π F∗ = �1 ⊗π L1(μ) , for some positive measure μ on a
measurable space (Ω,A ) , with F∗ = L1(μ) . We assume without loss of generality
that (Ω,A ,μ) is a complete measure space.

Next let G ⊂ S(E∗) be a maximal face. We use the identification (E ⊗ε F)∗ =
�1⊗π L1(μ) = L1(ν×μ) where ν is the counting measure on N . To show that CO(G∪
{0}) is weak∗ -closed, we use the description of maximal faces of the surface of the unit
ball of L1(λ ) given on page 247 of [7]. Thus G = {xφ : x � 0, ‖x‖ = 1} where φ ∈ �∞

with |φ | = 1. Define φ ′ : N×Ω → C by φ ′((n,ω)) = φ(n) . Then φ ′ ∈ L∞(ν × μ)
and |φ ′| = 1 so that G′ = { fφ ′ : f � 0, ‖ f‖ = 1} is a maximal face. Hence by the
hypothesis again, CO(G′ ∪ {0}) is weak∗ -closed. Let λαgα ⊂CO(G∪{0}) be a net
such that λαgα → g �= 0,where gα ∈ G and λα ∈ [0,1] . Let gα = xαφ . Fix a f0 ∈
L1(μ) with f0 � 0 and ‖ f0‖ = 1. We note that xαφ ⊗ f0 = (xα ⊗ f0)φ ′ . As the nets
involved are norm bounded, it is easy to see that λαxαφ ⊗ f0 → g⊗ f0 in the weak∗ -
topology (convergence need to be checked only at the elements of the dense set E⊗F ).
Clearly xαφ ⊗ f0 = (xα ⊗ f0)φ ′ ∈ G′ . Therefore g⊗ f0 = λφ ′h for some h � 0 and∫

hd(ν×μ)= 1 and λ ∈ (0,1] . Let x0(n) =
∫

h(n,ω)dμ(ω) . Then by Fubini’ theorem
we get that g = λx0φ . Hence CO(G∪{0}) is weak∗ -closed.

Therefore by the remarks in section 6 of [7] we get that E is isometric to C0(L)
for a locally compact metric space L (since E is separable). Since E∗ = �1 , C0(L)∗
does not have any non-atomic measures. Thus L is a dispersed metric space.

We now have, E ⊗ε F = C0(L)⊗ε F = C0(L,F) . Since L is dispersed it has an
isolated point, say l0 . Next note that f → χl0 f is a projection in C0(L,F) such that
C0(L,F) = F⊕∞F ′ (�∞ -direct sum) for some closed subspace F ′ . Now since C0(L,F)
is a C0(.)-space, it follows from Example 1.1.4(a) of [3] which describes �∞ -summands
in C0(.)-spaces, that F is isometric to a C0(N) for a locally compact space N .

REMARK 2. It is clear from the above proof that same arguments work when
E∗ = �1(Γ) for an uncountable discrete set Γ . In general if one takes E = C0(K) for a
locally compact set K , then it is well known that for any Banach space F , E ⊗ε F =
C0(K,F) , the space of continuous F -valued functions vanishing at infinity. However
we do not know how maximal faces of the unit sphere of C0(K,F)∗ look like? When
K is infinite and F is infinite dimensional, it follows from [1] that if the identification
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(C0(K)⊗ε F)∗ = C0(K)∗ ⊗π F∗ holds then either K is dispersed or F∗ has the Radon-
Nikodym property. If F is an L1 -predual, this implies that F∗ = �1(Γ) for a discrete
set Γ . These are the two cases considered above.

REMARK 3. It follows from our arguments here that the question considered above
is related to the question, if a L1(μ) space is isometric to a dual, does there exists a Ba-
nach space from each of the classes, like C(X) , C0(X) , Cσ (X) in the classification
scheme that appears as a predual of L1(μ)? If L1(μ) has a separable predual then
since for any separable L1 -predual space X with a non-separable dual, X∗ is isometric
to C([0,1])∗ ([4, Chapter 6]), the answer is positive. In general we do not know if a
L1(μ) that is a dual space has an abstract M -space as a predual?
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