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MATRICES WITH NORMAL DEFECT ONE

DMITRY S. KALIUZHNYI-VERBOVETSKYI, ILYA M. SPITKOVSKY

AND HUGO J. WOERDEMAN

Abstract. A n×n matrix A has normal defect one if it is not normal, however can be embedded
as a north-western block into a normal matrix of size (n + 1)× (n + 1) . The latter is called
a minimal normal completion of A . A construction of all matrices with normal defect one is
given. Also, a simple procedure is presented which allows one to check whether a given matrix
has normal defect one, and if this is the case — to construct all its minimal normal completions.
A characterization of the generic case for each n under the assumption rank(A∗A−AA∗) = 2
(which is necessary for A to have normal defect one) is obtained. Both the complex and the
real cases are considered. It is pointed out how these results can be used to solve the minimal
commuting completion problem in the classes of pairs of n×n Hermitian (resp., symmetric, or
symmetric/antisymmetric) matrices when the completed matrices are sought of size (n+ 1)×
(n+1) . An application to the 2×n separability problem in quantum computing is described.
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