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Abstract. A n×n matrix A has normal defect one if it is not normal, however can be embedded
as a north-western block into a normal matrix of size (n + 1)× (n + 1) . The latter is called
a minimal normal completion of A . A construction of all matrices with normal defect one is
given. Also, a simple procedure is presented which allows one to check whether a given matrix
has normal defect one, and if this is the case — to construct all its minimal normal completions.
A characterization of the generic case for each n under the assumption rank(A∗A−AA∗) = 2
(which is necessary for A to have normal defect one) is obtained. Both the complex and the
real cases are considered. It is pointed out how these results can be used to solve the minimal
commuting completion problem in the classes of pairs of n×n Hermitian (resp., symmetric, or
symmetric/antisymmetric) matrices when the completed matrices are sought of size (n+ 1)×
(n+1) . An application to the 2×n separability problem in quantum computing is described.

1. Introduction

A matrix N ∈ Cn×n is called normal if N∗N = NN∗ . For a non-normal A ∈ Cn×n

it is natural to inquire what is the smallest p ∈ N such that A has a normal completion[
A ∗
∗ ∗
]
∈ C

(n+p)×(n+p). (1.1)

This smallest p is called the normal defect of A , denoted nd(A) , and a normal comple-
tion of size (n+nd(A))× (n+nd(A)) is called minimal.

The normal completion problem as above was introduced in [12], and it was ob-
served there that among completions (1.1) there exist those being scalar multiples of
a unitary matrix. The smallest value of p required for such a completion is called
the unitary defect of A , denoted ud(A) , and the corresponding completions are called
minimal unitary completions of A . In fact, ud(A) is simply the number (counting the
multiplicities) of the singular values of A different from ‖A‖ , and is therefore strictly
less than n . Moreover, it was shown in [12] how a minimal unitary completion of A
can be constructed using the singular value decomposition (SVD) of A . Obviously,
nd(A) � ud(A) .
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It is easy to find examples of matrices with nd(A) < ud(A) . For instance, if A is
normal and not a multiple of a unitary matrix then nd(A) = 0 < ud(A) . However, in
all such examples known until recently, the matrix A was unitarily reducible, that is,
unitarily similar to a block diagonal matrix with more than one block. It is then natural
to ask (see [12] and a further discussion in [8]) whether the equality nd(A) = ud(A)
holds for all unitarily irreducible matrices A ∈ C

n×n . We will show in Examples 2.23
and 2.24 that this question has a negative answer.

In this paper, we study matrices with normal defect one and their minimal normal
completions. We notice some appearances of these matrices in the literature: the rela-
tions between the spectra of such matrices and of their minimal normal completions,
along with applications to the location problem for the roots of a complex polynomial
and its derivative, were considered in [9]; it was shown in [8] that weighted shift matri-
ces with unimodular weights have normal defect one.

All matrices A with normal defect one must satisfy

rank(A∗A−AA∗) = 2 (1.2)

(see Corollary 2.6), which throughout the paper will be referred to as the rank condition.
The manifold of n×n matrices satisfying (1.2) will be denoted Mn .

For 2× 2 matrices, the unitary defect is at most 1. Therefore, any non-normal
matrix A of size 2×2 has normal defect 1 , and the (necessary) rank condition is also
sufficient for nd(A) = 1. The sufficiency of the rank condition takes also place for
3×3 matrices (Corollary 2.11), while for larger matrices it is not always the case, see
Example 2.12.

In Section 2, we obtain several equivalent characterizations of matrices A ∈ Cn×n

with nd(A) = 1. One of them (Theorem 2.1) serves for construction of all matrices A
with nd(A) = 1. Another one (Theorem 2.3) is used to describe a procedure which al-
lows one to check whether nd(A) = 1, and if this is the case — to construct all minimal
normal completions of A ; see Section 2.2. Finally, the characterization in Theorem 2.4
becomes handy when solving a separability problem originated in quantum computing;
see description of Section 5 below. Section 2.3 provides a further analysis which allows
us to refine the procedure from Section 2.2 and to describe the generic situation for each
n under the assumption that rank condition (1.2) holds.

The minimal normal completion problem in the setting of real matrices is treated
in a separate Section 3. The real counterpart of the normal defect of a matrix A ∈
Rn×n , denoted rnd(A) , is defined. We show that rnd(A) = 1 if and only if nd(A) = 1.
(The question on whether rnd(A) = nd(A) for an arbitrary A ∈ Rn×n remains open.)
However, the results in the real case are not immediate consequences of their complex
counterparts, and required an additional study. The real counterpart of Theorem 2.1 is
obtained for matrices A ∈ Rn×n of even size n only, while a construction of all real
matrices with rnd(A) = 1 in the case of odd n is left as an open problem. The real
analogue of Theorem 2.3, as well as the procedure for verification that rnd(A) = 1 and
for construction of all minimal real normal completions, have a slightly different form
which splits into two cases. The generic situation in each matrix dimension is also
described, however in the real case the analysis happens to be more straightforward
than its counterpart in the complex case.
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In Section 4, we show how to restate our results from Sections 2 and 3 in terms
of commuting completions of a pair of Hermitian (resp., symmetric and antisymmet-
ric) matrices, where the completed matrices are also Hermitian (resp., symmetric and
antisymmetric). The results for pairs of Hermitian matrices are used then to solve an
analogous problem in the class of pairs of symmetric matrices.

In Section 5, we use the connection between the normal completion problem and
the 2× n separability problem, that was established in [13], to obtain Theorem 5.1
which gives easily verifiable necessary and sufficient conditions for a positive semidef-
inite matrix M ∈ C2n×2n with a rank one Schur complement to be 2× n separable.
Moreover, a new proof is given for the result by Woronowicz [14] (see Theorem 5.2),
which establishes, for n � 3, the 2× n separability for a positive semidefinite matrix
M ∈ C2n×2n satisfying the Peres test.

2. The complex case

2.1. Construction of matrices with normal defect one.

THEOREM 2.1. Let A∈Cn×n be not normal. The following statements are equiv-
alent:

(i) nd(A) = 1 .

(ii) There exist a contraction matrix C ∈ Cn×n with ud(C) = 1 , a diagonal matrix
D ∈ Cn×n , and a scalar μ ∈ C such that

A = CDC∗ + μIn. (2.1)

(iii) There exist a unitary matrix V ∈ Cn×n , a normal matrix N ∈ Cn×n , and scalars
t : 0 � t < 1 , μ ∈ C such that

V ∗AV = MNM + μIn, (2.2)

where M = diag(1, . . . ,1,t) .

Proof. (i)⇐⇒(ii) Let nd(A) = 1, and let

[
A x
y∗ z

]
∈ C(n+1)×(n+1) be a minimal

normal completion of A . Then there exist a diagonal matrix Λ ∈ C
n×n , a scalar μ ∈ C ,

and a unitary matrix U =
[
U11 U12

U21 U22

]
∈ C(n+1)×(n+1) such that[

A x
y∗ z

]
=
[
U11 U12

U21 U22

][
Λ 0
0 μ

][
U∗

11 U∗
21

U∗
12 U22

]
. (2.3)

The latter equality is equivalent to the following system:

A = U11ΛU∗
11 + μU12U

∗
12 = U11(Λ− μIn)U∗

11 + μIn, (2.4)

x = U11ΛU∗
21 + μU12U22 = U11(Λ− μIn)U∗

21, (2.5)

y∗ = U21ΛU∗
11 + μU22U

∗
12 = U21(Λ− μIn)U∗

11, (2.6)

z = U21ΛU∗
21 + μU22U22 = U21(Λ− μIn)U∗

21 + μ . (2.7)



404 D. S. KALIUZHNYI-VERBOVETSKYI, I. M. SPITKOVSKY AND H. J. WOERDEMAN

Setting C = U11 and D = Λ− μIn , we obtain (2.1) from (2.4).
Conversely, if (2.1) holds, we set U11 = C , Λ = D + μIn and obtain (2.4). For

U =
[
U11 U12

U21 U22

]
a minimal unitary completion of C , we define x,y ∈ Cn and z ∈ C

by (2.5)–(2.7). Then (2.3) holds, i.e., the matrix

[
A x
y∗ z

]
∈ C(n+1)×(n+1) is a normal

completion of A , and thus ndA = 1.
(ii)⇐⇒(iii) If (ii) holds, let C = V diag(1, . . . ,1,t)W ∗ be the SVD of C (here

V,W ∈ Cn×n are unitary, 0 � t < 1, and M = diag(1, . . . ,1,t) ∈ Cn×n ). Then, clearly,
N = W ∗DW is normal, and (2.2) follows.

Conversely, if (2.2) holds, then N = W ∗DW with D diagonal and W unitary.
Clearly, for C = V diag(1, . . . ,1,t)W ∗ we have ud(C) = 1, and (2.1) follows. �

REMARK 2.2. Observe that the matrix A given by (2.2) happens to be normal if
and only if the product MNM is normal, that is

MNM2N∗M = MN∗M2NM. (2.8)

Since N itself is normal, (2.8) holds if and only if

MNZN∗M = MN∗ZNM, (2.9)

where Z = diag(0, . . . ,0,1) . Partitioning N as

N =
[
N0 g
h∗ α

]
,

where α is scalar, and rewriting (2.9) block-wise, we see that it is equivalent to

gg∗ = hh∗, tαh = tαg.

These conditions mean simply that g differs from h by a scalar multiple of absolute
value one and, if tα �= 0, this scalar must be α/α . Consequently, A is not normal if
and only if this is not the case.

Observe also that if t �= 0 (so that M is invertible) and N is also invertible, then
(2.8) can be written as

M2N∗N−1 = N−1N∗M2. (2.10)

But N is normal, so that N∗ commutes with N−1 . Condition (2.10) therefore means
simply that N∗N−1 (= N−1N∗ ) commutes with M2 . In other words, A in this case is
normal if and only if en := col(0, . . . ,0,1) is an eigenvector of N∗N−1 . In turn, this
happens if and only if en belongs to the sum of eigenspaces of N with the correspond-
ing eigenvalues lying on the same line through the origin.

Representation (2.1) or (2.2) in Theorem 2.1, together with Remark 2.2, allow one
to construct all matrices A with nd(A) = 1. However, as we mentioned in Section 1,
this does not give an easy way to check whether a given matrix has normal defect one.
A procedure for this is our further goal.
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2.2. Identification of matrices with nd(A) = 1 and construction of all minimal
normal completions of A

In the following two theorems, we establish necessary and sufficient conditions
for a matrix A to have normal defect one, and for any matrix A with nd(A) = 1 we
describe all its minimal normal completions. Here and throughout the rest of the paper,
we set T = {z ∈ C : |z| = 1} .

THEOREM 2.3. Let A ∈ Cn×n . Then

(i) nd(A) = 1 if and only if rank(A∗A−AA∗) = 2 and the equation

PA∗(x1u1 + x2u2) = PA(x2u1 + x1u2) (2.11)

has a solution pair x1,x2 ∈ C satisfying

|x1|2−|x2|2 = d. (2.12)

Here u1,u2 ∈ Cn are the unit eigenvectors of the matrix A∗A−AA∗ corresponding to
its nonzero eigenvalues λ1 = d(> 0) and λ2 = −d , and

P = In−u1u
∗
1−u2u

∗
2

is the orthogonal projection of Cn onto null(A∗A−AA∗) .

(ii) If nd(A) = 1 , x1 and x2 satisfy (2.11) and (2.12), and μ ∈ T is arbitrary then
the matrix

B =
[

A μ(x1u1 + x2u2)
μ(x2u∗1 + x1u∗2) z

]
(2.13)

is a minimal normal completion of A. Here

z = a11− 1
d

(x2(a12x1−a21x2)+ x1(a12x1−a21x2)) (2.14)

and
a11 = u∗1Au1, a12 = u∗1Au2, a21 = u∗2Au1. (2.15)

All minimal normal completions of A arise in this way.

THEOREM 2.4. Let A ∈ Cn×n . Then nd(A) = 1 if and only if there exist linearly
independent x,y ∈ Cn such that

A∗A−AA∗ = xx∗ − yy∗ (2.16)

and the vectors x,y,A∗x,Ay are linearly dependent. In this case, there exist z ∈ C and
ν ∈ T such that the matrix

B =
[
A νx
y∗ z

]
(2.17)

is normal.
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In order to prove Theorems 2.3 and 2.4 we will need several auxiliary statements.

LEMMA 2.5. Let A ∈ Cn×n . Then nd(A) = 1 if and only if there exist linearly
independent vectors x,y ∈ C

n satisfying (2.16) and a scalar z ∈ C such that

(A− zIn)∗x = (A− zI)y. (2.18)

Proof. If nd(A) = 1 then there exists a normal matrix B =
[
A x
y∗ z

]
∈C(n+1)×(n+1) .

The identity B∗B = BB∗ is equivalent to (2.16)&(2.18) (the identity x∗x = y∗y follows
from (2.16) since trace(A∗A−AA∗) = 0, and is therefore redundant). Clearly, x and y
are linearly independent, otherwise the right-hand side of (2.16) is 0 and A is normal.

Conversely, if x,y ∈ Cn are linearly independent, z ∈ C , and (2.16)&(2.18) hold

then the matrix B =
[
A x
y∗ z

]
∈ C(n+1)×(n+1) is normal. Since the right-hand side of

(2.16) is not 0, the matrix A is not normal, thus nd(A) = 1. �

COROLLARY 2.6. If nd(A) = 1 then rank(A∗A−AA∗) = 2 .

If the rank condition is satisfied, one can find the unit eigenvectors u1 and u2 of the
matrix A∗A−AA∗ corresponding to its eigenvalues λ1 = d(> 0) and λ2 = −d , which
are determined uniquely up to a scalar factor. There is more freedom in a choice of
other eigenvectors u3 , . . . , un , which form an orthonormal basis of null(A∗A−AA∗) .
Suppose that such vectors are chosen. Then U =

[
u1 u2 u3 . . . un

] ∈ Cn×n is a unitary

matrix, and the matrix Ã = U∗AU satisfies

Ã∗Ã− ÃÃ∗ = H, (2.19)

where
H = diag(d,−d,0, . . . ,0) ∈ C

n×n. (2.20)

LEMMA 2.7. If Ã ∈ Cn×n satisfies (2.19) then Ã has the form

Ã =

⎡⎣a11 a12 u
a21 a22 v
w∗ q∗ S

⎤⎦ ,

where ai j ( i, j = 1,2 ) are scalars,

a11 = a22, (2.21)

and u∗,v∗,w∗,q∗ ∈ C
n−2 satisfy

uu∗ = qq∗, vv∗ = ww∗, uv∗ = wq∗, uw∗ = vq∗. (2.22)
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Proof. We have

trace(ÃH) = trace(ÃÃ∗Ã− Ã2Ã∗) = 0,

which implies (2.21). Then, from the equality

(Ã∗Ã− ÃÃ∗)12 = 0

we obtain that uv∗ = wq∗ . Next, from the observation

trace(Ã∗HÃ+ ÃHÃ∗) = trace(Ã∗(Ã∗Ã− ÃÃ∗)Ã+ Ã(Ã∗Ã− ÃÃ∗)Ã∗)

= trace(Ã∗2Ã2 − Ã∗ÃÃ∗Ã+ ÃÃ∗ÃÃ∗ − Ã2Ã∗2) = 0

we obtain
uu∗− vv∗+ww∗ −qq∗ = 0, (2.23)

and from the equality
trace((Ã∗Ã− ÃÃ∗)33) = 0

(where the 33-block is of size (n−2)× (n−2)) we obtain

uu∗ + vv∗ = ww∗ +qq∗. (2.24)

Combining (2.23) and (2.24), we obtain that uu∗ = qq∗ and vv∗ = ww∗ . From the
observation

trace(ÃHÃ) = trace(Ã(Ã∗Ã− ÃÃ∗)Ã)

= trace(ÃÃ∗Ã2− Ã2Ã∗Ã) = 0

we obtain that uw∗ = vq∗ . �

LEMMA 2.8. Suppose that

Ã =

⎡⎣a11 a12 u
a21 a11 v
w∗ q∗ S

⎤⎦ ∈ C
n×n (2.25)

satisfies (2.19) with H as in (2.20). Then the matrix B̃ =
[
Ã x
y∗ z

]
∈ C(n+1)×(n+1) is

normal if and only if

x = col(x1,x2,0, . . . ,0) ∈ C
n, y = col(y1,y2,0, . . . ,0) ∈ C

n, (2.26)

|x1|2 −|x2|2 = d, (2.27)

y1 = eiθx2, y2 = eiθx1, (2.28)

for some θ ∈ R , and the following identities hold:

(a11− z)x1 +a21x2 = (a11− z)y1 +a12y2, (2.29)

a12x1 +(a11− z)x2 = a21y1 +(a11− z)y2, (2.30)

u∗x1 + v∗x2 = w∗y1 +q∗y2. (2.31)
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Proof. It follows from Lemma 2.5 applied to the matrix Ã as above (see also

Lemma 2.7 which justifies that a22 = a11 ) that nd(Ã)= 1 and B̃=
[
Ã x
y∗ z

]
∈C(n+1)×(n+1)

is a minimal normal completion of Ã if and only if x and y are linearly independent and
(2.16)&(2.18) hold with A replaced by Ã . Since in this case H = xx∗−yy∗ , the vectors
x and y have the form (2.26). Indeed, for any vector h ∈ Cn which is orthogonal to y
and not orthogonal to x , we have

0 �= Hh = xx∗h ∈ range(H)∩ span(x).

Similarly, for any vector g ∈ Cn which is orthogonal to x and not orthogonal to y , we
have

0 �= Hg = −yy∗g ∈ range(H)∩ span(y),

thus both x and y are in range(H) . Next, the identity H = xx∗ − yy∗ holds if and only
if

|x1|2 −|x2|2 = d = |y2|2−|y1|2, x1x2 = y1y2,

or equivalently, (2.28) holds with some θ ∈ R . Clearly, (2.18) with A replaced by Ã ,
is equivalent to (2.29)–(2.31). �

REMARK 2.9. If Ã is as in Lemma 2.8 and B̃ =
[
Ã x
y∗ z

]
∈ C(n+1)×(n+1) is a mini-

mal normal completion of Ã then so is[
Ã μx
μy∗ z

]
=
[
In 0
0 μ

][
Ã x
y∗ z

][
In 0
0 μ

]
for any μ ∈ T . Therefore, if x , y and z are as in Lemma 2.8 then the matrix⎡⎢⎢⎣

a11 a12 u e−iθ/2x1

a21 a11 v e−iθ/2x2

w∗ q∗ S 0
e−iθ/2x2 e−iθ/2x1 0 z

⎤⎥⎥⎦
is a minimal normal completion of Ã . This observation leads to the following statement.

LEMMA 2.10. Suppose that

Ã =

⎡⎣a11 a12 u
a21 a11 v
w∗ q∗ S

⎤⎦ ∈ C
n×n

satisfies (2.19) with H as in (2.20). Then nd(A) = 1 if and only if there exist x1,x2 ∈ C

satisfying (2.12) and such that

u∗x1 + v∗x2 = w∗x2 +q∗x1. (2.32)
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In this case, the matrix ⎡⎢⎢⎣
a11 a12 u x1

a21 a11 v x2

w∗ q∗ S 0
x2 x1 0 z

⎤⎥⎥⎦ , (2.33)

where z is given by (2.14), is a minimal normal completion of Ã .

Proof. The statement follows from Lemma 2.8, Remark 2.9, and the observation
that, if y1 = x2 and y2 = x1 , then (2.31) becomes (2.32). Solving (2.29) or (2.30)
(which are equivalent in this case) for z gives (2.14). �

Proof of Theorem 2.3. (i) By Corollary 2.6 the rank condition, rank(A∗A−AA∗)=
2, is necessary for A to have normal defect one, thus we can assume that this condition
holds. Let u1 and u2 be the unit eigenvectors of the matrix A∗A−AA∗ corresponding
to its eigenvalues λ1 = d(> 0) and λ2 = −d , and let u3 , . . . , un be an arbitrary or-
thonormal basis of null(A∗A−AA∗) . Define a unitary matrix U =

[
u1 . . . un

] ∈ Cn×n

and an isometry U ′ =
[
u3 . . . un

] ∈ Cn×(n−2) . Then

U ′U ′∗ = P, (2.34)

and the matrix Ã = U∗AU has the form (2.25), where the scalars ai j are defined by
(2.15),

u = u∗1AU ′, v = u∗2AU ′, w∗ = U ′∗Au1, q∗ = U ′∗Au2. (2.35)

According to Lemma 2.10, nd(Ã) = 1 (and hence nd(A) = 1) if and only if (2.32)
is satisfied with some x1,x2 ∈ C subject to (2.12). By (2.35), equation (2.32) can be
written as

(U ′∗A∗u1)x1 +(U ′∗A∗u2)x2 = (U ′∗Au1)x2 +(U ′∗Au2)x1.

Multiplying on the left by U ′ and taking into account that U ′ : C
n−2 → C

n is an isom-
etry satisfying (2.34), we obtain an equivalent equation

u∗x1 +v∗x2 = w∗x2 +q∗x1, (2.36)

with the vectors

u∗ = PA∗u1, v∗ = PA∗u2, w∗ = PAu1, q∗ = PAu2. (2.37)

Note that these vectors are defined independently of the choice of u3 , . . . , un . Since
(2.36) is equivalent to (2.11), this proves part (i) of this theorem.

(ii) If nd(A) = 1 and Ã is defined as in part (i), then nd(Ã) = 1. By Lemma 2.10,
for any x1,x2 ∈ C satisfying (2.11) (or equivalently, (2.32)) and (2.12), the matrix in
(2.33) is a minimal normal completion of Ã . By Remark 2.9, so is
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B̃ =

⎡⎢⎢⎣
a11 a12 u μx1

a21 a11 v μx2

w∗ q∗ S 0
μx2 μx1 0 z

⎤⎥⎥⎦ , (2.38)

with an arbitrary μ ∈ T . By Lemma 2.8, all minimal normal completions of Ã arise
in this way. Since Ã = U∗AU and U is unitary, all minimal normal completions of A
have the form

B =
[
U 0
0 1

]
B̃

[
U∗ 0
0 1

]
=
[

A μ(x1u1 + x2u2)
μ(x2u∗1 + x1u∗2) z

]
,

where B̃ is any of the matrices defined in (2.38). This proves part (ii). �

Proof of Theorem 2.4. If nd(A) = 1 then there exists a normal matrix

B =
[
A x
y∗ z

]
∈ C

(n+1)×(n+1).

By Lemma 2.5, (2.16) holds and A∗x− zx = Ay− zy , i.e., x,y,A∗x,Ay are linearly de-
pendent.

Conversely, suppose that A∗A−AA∗ = xx∗ − yy∗ is satisfied with some linearly
independent vectors x,y ∈ Cn , and the vectors x,y,A∗x,Ay are linearly dependent.
Clearly, in this case rank(A∗A−AA∗)= 2. Choose an orthonormal eigenbasis u1, . . . ,un

of the matrix A∗A−AA∗ and define a unitary matrix U =
[
u1 . . . un

]
as in the proof

of Theorem 2.3. By Lemma 2.7, the matrix Ã = U∗AU has the form (2.25). Define
new linearly independent vectors x̃ =U∗x , ỹ =U∗y . Then Ã∗Ã− ÃÃ∗ = x̃x̃∗− ỹỹ∗ . As
in the proof of Lemma 2.8, we conclude that (2.26)–(2.28) hold with x̃ and ỹ in the
place of x and y . Since x,y,A∗x,Ay are linearly dependent, so are x̃, ỹ, Ã∗x̃, Ãỹ , i.e., the
matrix [

x̃ ỹ Ã∗x̃ Ãỹ
]
=

⎡⎣x̃1 ỹ1 a11x̃1 +a21x̃2 a11y1 +a12y2
x̃2 ỹ2 a12x̃1 +a11x̃2 a21ỹ1 +a11ỹ2

0 0 u∗x̃1 + v∗x̃2 w∗ỹ1 +q∗ỹ2

⎤⎦ ∈ C
n×4

has rank less than 4. Therefore u∗x̃1 + v∗x̃2 and w∗ỹ1 + q∗ỹ2 are linearly dependent.
The identities ỹ1 = eiθ x̃2 and ỹ2 = eiθ x̃1 , together with the first three identities in (2.22),
imply that there is φ ∈ R such that

u∗x̃1 + v∗x̃2 = (w∗ỹ1 +q∗ỹ2)eiφ = (w∗x̃2 +q∗x̃1)ei(θ+φ).

Putting x0
1 = x̃1e−i θ+φ

2 and x0
2 = x̃2e−i θ+φ

2 , we obtain

u∗x0
1 + v∗x0

2 = w∗x0
2 +q∗x0

1.

By Lemma 2.10, nd(Ã) = 1, and therefore nd(A) = 1.
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The last statement of the theorem is obtained as follows. Let

x0 = col(x0
1,x

0
2,0, . . . ,0), y0 = col(x0

2,x
0
1,0, . . . ,0),

and

z = a11− 1
d

(
x0
2(a12x

0
1−a21x

0
2)+ x0

1(a12x
0
1−a21x

0
2)
)

(see (2.14)). By Lemma 2.10, the matrix B̃ =
[

Ã x0

y0∗ z

]
is a minimal normal completion

of Ã . Then

B =

[
U 0

0 ei φ−θ2

][
Ã x0

y0∗ z

][
U∗ 0

0 ei θ−φ2

]
=
[
A e−iφx
y∗ z

]
is a minimal normal completion of A , i.e., we obtain (2.17) with ν = e−iφ . �

Applying Theorem 2.4 to 3×3 matrices, we obtain the following.

COROLLARY 2.11. A matrix A ∈ C
3×3 has normal defect one if and only if

rank(A∗A−AA∗) = 2.

Proof. The necessity of the rank condition has been established in Corollary 2.6.
The sufficiency follows from Theorem 2.4, since any four vectors in C3 are linearly
dependent. �

In the following example, we show that for n > 3 the rank condition (1.2) is not
sufficient for A to have normal defect one.

EXAMPLE 2.12. Let

A =

⎡⎢⎢⎢⎣
0 0 1 −i
2 0 0 0
0 1 1√

2
i√
2

0 −i i√
2
− 1√

2

⎤⎥⎥⎥⎦ .

Note that A (= Ã) is already of the form (2.25). We have

A∗A−AA∗ =

⎡⎢⎢⎣
2 0 0 0
0 −2 0 0
0 0 0 0
0 0 0 0

⎤⎥⎥⎦ .

Equation (2.32) in this case takes the form

x1

[
1
i

]
= x1

[
1
−i

]
,

and it has no solutions with |x1|2−|x2|2 = 2 > 0. Thus, by Lemma 2.10, nd(A) > 1.
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REMARK 2.13. If rank(A∗A−AA∗) = 2 and u1,u2 ∈Cn are the unit eigenvectors
of A∗A−AA∗ corresponding to the eigenvalues λ1 = d(> 0) and λ2 = −d , then the
vectors x =

√
du1 and y =

√
du2 satisfy (2.16). Indeed, u1 and u2 are orthogonal,

hence linearly independent, and span(u1,u2) = range(A∗A−AA∗) . For arbitrary a,b ∈
C , we have

(A∗A−AA∗)(au1 +bu2) = d(au1−bu2) = d(u1u
∗
1−u2u

∗
2)(au1 +bu2),

therefore A∗A−AA∗ = d(u1u∗1−u2u∗2) .
However, as the following example shows, these x and y do not necessarily satisfy

the conditions of Theorem 2.4.

EXAMPLE 2.14. Let

A =

⎡⎢⎢⎢⎢⎣
0 0 1√

2
i√
2

0 0 1 i

1 1√
2

√
3

2 −
√

3
2 i

i i√
2
−

√
3

2 i −
√

3
2

⎤⎥⎥⎥⎥⎦ .

Then

A∗A−AA∗ =

⎡⎢⎢⎣
1 0 0 0
0 −1 0 0
0 0 0 0
0 0 0 0

⎤⎥⎥⎦= e1e
∗
1 − e2e

∗
2,

where e1 and e2 are standard basis vectors, which are the eigenvectors of the ma-
trix A∗A−AA∗ corresponding to its eigenvalues λ1 = 1 and λ2 = −1. However, the
vectors x = e1 , y = e2 , A∗x = col(0,0, 1√

2
,− i√

2
) , Ay = col(0,0, 1√

2
, i√

2
) are linearly

independent. On the other hand, we have nd(A) = ud(A) = 1: one of minimal normal
completions of A (in fact, its minimal unitary completion) is

B =

⎡⎢⎢⎢⎢⎢⎢⎣
0 0 1√

2
i√
2

√
2

0 0 1 i −1

1 1√
2

√
3

2 −
√

3
2 i 0

i i√
2
−

√
3

2 i −
√

3
2 0

−1
√

2 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦ .

We are able now to describe a procedure to determine whether nd(A) = 1 for a
given matrix A ∈ C

n×n , i.e., whether equation (2.11) in Theorem 2.3 has a solution
pair x1,x2 ∈ C satisfying (2.12). Moreover, this procedure allows one to find all such
solutions, and then, applying part (ii) of Theorem 2.3, all minimal normal completions
of an arbitrary matrix A with nd(A) = 1.
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The procedure

Begin

Step 1. Verify the condition rank(A∗A−AA∗) = 2. If it is satisfied – go to Step 2.
Otherwise, stop: nd(A) > 1.

Step 2. Rewrite (2.11) in the form (2.36), where u , v , w , q are defined in (2.37)
(see Theorem 2.3 for the definition of P , u1 , and u2 ). Let

u = uR + iuI, v = vR + ivI, q = qR + iqI, w = wR + iwI,

where uT
R ,uT

I ,vT
R ,vT

I ,qT
R ,qT

I ,wT
R ,wT

I ∈ Rn , and let

x1 = xR1 + ixI1, x2 = xR2 + ixI2,

where xR1,xI1,xR2,xI2 ∈ R . Then (2.36) becomes

[
uT

R −qT
R uT

I +qT
I vT

R −wT
R vT

I +wT
I

−uT
I +qT

I uT
R +qT

R −vT
I +wT

I vT
R +wT

R

]⎡⎢⎢⎣
xR1

xI1

xR2

xI2

⎤⎥⎥⎦= 0. (2.39)

Denote

Q =
[

uT
R −qT

R uT
I +qT

I vT
R −wT

R vT
I +wT

I
−uT

I +qT
I uT

R +qT
R −vT

I +wT
I vT

R +wT
R

]
.

Find m = rank(Q) .
Step 3. Depending on m , consider the following cases.

(1) m = 0. In this case, u = v = q = w = 0, and then (2.36) holds with any x1,x2 ∈C

such that |x1|2−|x2|2 = d . Therefore, nd(A) = 1. Go to Step 4.

(2) 1 � m � 3. In this case, (2.39) has nontrivial solutions. Let F ∈ R4×(4−m) be
a matrix whose columns are linearly independent solutions of (2.39). Then x =
col(xR1,xI1,xR2,xI2) ∈ R

4 is a solution of (2.39) if and only if x = Fh , with

h ∈ R4−m . Setting F =
[
F1

F2

]
where F1,F2 ∈ R2×(4−m) , write |x1|2 − |x2|2 > 0

as
hT (FT

1 F1 −FT
2 F2)h > 0.

Therefore, nd(A) = 1 if and only if the matrix K = FT
1 F1 −FT

2 F2 has at least
one positive eigenvalue. If this is not the case, stop: nd(A) > 1. Otherwise, for
any h in the level hyper-surface hTKh = d , define[

xR1

xI1

]
= F1h,

[
xR2

xI2

]
= F2h,

and thus obtain x1 = xR1 + ixI1 , x2 = xR2 + ixI2 satisfying (2.36) and such that
|x1|2−|x2|2 = d . Go to Step 4.
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(3) m = 4. In this case, (2.39), and hence (2.36), has no nontrivial solutions, and
nd(A) > 1. Stop.

Step 4. For each pair x1,x2 ∈ C obtained in Step 3, find minimal normal comple-
tions of A as described by (2.13)–(2.15).

End

REMARK 2.15. If m = 1 then K always has a positive eigenvalue and nd(A) = 1.
Indeed, in this case F is a full rank matrix of size 4× 3. Since null(F2) �= {0} and
null(F) = {0} , for a nonzero vector h ∈ null(F2) we have

hTKh = hTFT
1 F1h > 0.

EXAMPLE 2.16. It was shown in [8] that for any weighted shift matrix

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 a1 0 . . . 0
...

. . .
. . .

. . .
...

...
. . .

. . . 0
...

. . . an−1

0 . . . . . . . . . 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
with weights a j ∈ T (which is, clearly, unitarily irreducible as having a single cell in
its Jordan form), nd(A) = ud(A) = 1, and for n � 4 all its minimal normal completions
B are also minimal unitary completions and have the form

B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 a1 0 . . . 0 0
...

. . .
. . .

. . .
...

...
...

. . .
. . . 0

...
...

. . . an−1 0
0 . . . . . . . . . 0 ζ
ρ 0 . . . . . . . . . . . . 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
with ζ ,ρ ∈ T . Our procedure gives an alternative proof of this result — we leave the
details to the reader as an exercise. We also note that, as was mentioned in [8], for
n = 2 or 3 there exist non-unitary minimal normal completions of such weighted shift
matrices. Our procedure gives the full description of these completions B . Namely, for
n = 2

B =

⎡⎣ 0 a1 μx2

0 0 μx1

μx1 μx2 a1x2
2 +a1x1x2

⎤⎦ ,
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where μ ∈ T and x1,x2 ∈ C : |x1|2−|x2|2 = 1 are arbitrary, and for n = 3

B =

⎡⎢⎢⎣
0 a1 0 μx2

0 0 a2 0
0 0 0 μx1

μx1 0 μx2 0

⎤⎥⎥⎦ ,

where μ ∈ T and x1,x2 ∈ C : |x1|2−|x|22 = 1, a1x2 = a2x2 are arbitrary.

We will present more applications of this method in Examples 2.23 and 2.24.

2.3. The generic case.

The procedure described in Section 2.2, which is based on part (i) of Theorem 2.3,
allows one to check whether a given matrix A∈ Cn×n has normal defect one, and if this
is the case — to solve the system of equations (2.11)–(2.12). Part (ii) of Theorem 2.3
describes all minimal normal completions of A . That procedure verifies first the rank
condition, and then uses only the two nonzero eigenvalues, λ1 = d and λ2 = −d , and
the two corresponding unit eigenvectors, u1 and u2 , of A∗A−AA∗ . The vector equation
(2.39) in that procedure is equivalent to a system of 2n real scalar linear equations with
4 unknowns.

In this section, we show how the procedure in Section 2.2 can be refined by using
a special choice of the eigenbasis for the matrix A∗A−AA∗ , i.e., a special construction
of orthonormal eigenvectors u3 , . . . , un corresponding to the zero eigenvalue. This
additional analysis is rewarded by obtaining a system of n−2 (as opposed to 2n ) real
linear equations with 4 unknowns. Moreover, it allows us to describe the generic situ-
ation under the assumption that the rank condition is satisfied. The refined procedure is
based on the following theorem (the proof of which is given later in this section).

THEOREM 2.17. Let A ∈ Cn×n satisfy the rank condition (1.2) and let u1 and
u2 be the unit eigenvectors of the matrix A∗A−AA∗ corresponding to its eigenvalues
λ1 = d(> 0) and λ2 = −d . Then

(i) There exist orthonormal vectors u3, . . . ,un ∈ null(A∗A−AA∗) (and thus the ma-
trix W =

[
u1 . . . un

] ∈ Cn×n is unitary) such that the matrix Ã = W ∗AW has the
form

Ã =

⎡⎣a11 a12 u
a21 a11 v
vT uT S

⎤⎦ , (2.40)

with ai j ’s defined in (2.15).

(ii) nd(A) = 1 if and only if the equation

Im(u∗x1 + v∗x2) = 0 (2.41)

has a solution pair x1,x2 ∈ C satisfying

|x1|2−|x2|2 = d. (2.42)
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(iii) If nd(A) = 1 , x1 and x2 satisfy (2.41) and (2.42), and μ ∈ T is arbitrary then
the matrix B defined in (2.13) is a minimal normal completion of A.

All minimal normal completions of A arise in this way.

REMARK 2.18. The matrix W in Theorem 2.17 can be constructed explicitly, as
will become clear from the proof of the theorem.

Let A ∈ Cn×n satisfy the rank condition. We define the vectors u∗,v∗,w∗,q∗ ∈
range(P) ⊂ Cn by (2.37) (see also Theorem 2.3 for the definition of P , u1 , and u2 ).
Since these vectors can be viewed as the images of vectors u∗,v∗,w∗,q∗ ∈ Cn−2 under
an isometry so that (2.22) holds (see Lemma 2.7 and the proof of Theorem 2.3), we
have

uu∗ = qq∗, vv∗ = ww∗, uv∗ = wq∗, uw∗ = vq∗. (2.43)

The first three equalities mean that the linear operator

X : span(uT ,vT ) −→ span(q∗,w∗) (2.44)

defined via
X : uT 
−→ q∗, vT 
−→ w∗ (2.45)

is a well defined unitary operator. In order to interpret the last equality in (2.43) we need
an intermission for some definitions and results on (complex) symmetric operators and
matrices (see, e.g., [7, Section 4.4]).

For a subspace H in Ck , denote its complex dual by

H := {h ∈ C
k : h ∈ H }.

We will say that a C-linear operator L : H → H is symmetric if hTLg = gTLh (or,
equivalently, 〈Lg,h〉 = 〈Lh,g〉 in the standard inner product in Ck ) for all g,h∈ H . It
is clear that a C-linear operator L : Ck → Ck is symmetric if and only if its matrix in a
standard basis of Ck is complex symmetric, i.e, L = LT . In general, a C-linear operator
L : H → H is symmetric if and only if its matrix in any pair of orthonormal bases
B = {h j}k

j=1 ⊂ H and B = {hj}k
j=1 ⊂ H is complex symmetric, i.e., 〈Lh j,hi〉 =

〈Lhi,h j〉, i, j = 1, . . . ,k.
We can restate this also in a coordinate-free form. Let G and H be two sub-

spaces in Ck . For a C-linear operator L : G → H we define its transpose as the
unique C-linear operator LT : H → G which satisfies hT Lg = gT LT h (or, equiva-

lently, 〈Lg,h〉 = 〈Lh,g〉) for all g ∈ G , h ∈ H ). Explicitly, LT h = L∗h for every
h∈H . This, in particular, implies that (LM)T = MT LT for two C-linear operators L ,
M . If one interprets a vector h ∈ H as an operator h : C → H then its transpose hT

can be interpreted as the operator hT : H → C , and then the identity hT Lg = gT LT h
can be viewed also as gTLT h = (hT Lg)T . Finally, a C-linear operator L : H → H is
symmetric if and only if L = LT .

We also observe that a matrix of a C-linear operator L : G → H in a pair of
orthonormal bases B1 and B2 and a matrix of LT : H →G in the pair of orthonormal
bases B2 and B1 are transposes of each other.
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LEMMA 2.19. Let H and L be subspaces in Ck such that H ⊂ L , and let
Y : H → L be an isometry such that PH Y : H → H is a symmetric operator. Then
there exists a unitary and symmetric operator Ỹ : L → L such that Ỹ |H = Y .

Proof. We have

L = H ⊕G ⊕K ,

where G = range(PL�HY ) and K = L � (H ⊕G ) . The Takagi decomposition (see,
e.g., [7]) of the symmetric operator PH Y , in a coordinate-free form, is

PH Y = UΣUT ,

where U : Cdim(H ) → H is a unitary operator such that Ue1 , . . . , Uedim(H ) are the

eigenvectors of PH YPH Y , and Σ : Cdim(H ) → Cdim(H ) is an operator whose matrix
in the standard basis of Cdim(H ) is diagonal, with the singular values of PH Y on the
diagonal. The operator PGY can be represented as

PGY = V (I
Cdim(H ) −Σ2)1/2UT ,

where V : Cdim(H ) → G is a coisometry, with

V |range(I
Cdim(H )−Σ2) : range(I

Cdim(H ) −Σ2) → G

unitary. Define the operator J : K → K for some pair of orthonormal bases B =
{κ j}dim(K )

j=1 ⊂ K , B = {κ j}dim(K )
j=1 ⊂ K as

J

(
dim(K )

∑
j=1

α jκ j

)
=

dim(K )

∑
j=1

α jκ j, α1, . . . ,αdim(K ) ∈ C.

Clearly, J is symmetric, and the matrix of J in the pair of bases B and B is Idim(K ) .
It is straightforward to verify that the operator

Ỹ :=

⎡⎣ UΣUT U(I
Cdim(H ) −Σ2)1/2VT 0

V (I
Cdim(H ) −Σ2)1/2UT −VΣVT 0

0 0 J

⎤⎦ :

H
⊕
G
⊕
K

→

H
⊕
G
⊕
K

has the desired properties. �

COROLLARY 2.20. The unitary operator X defined by (2.44)–(2.45) can be ex-
tended to a unitary and symmetric operator X̃ : range(P) → range(P) .
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Proof. Since uT ,vT ∈ range(P) and q∗,w∗ ∈ range(P) (see (2.37)), the operator
X can be viewed as an isometry X : span(uT ,vT ) → range(P) . The last identity in
(2.43) means that the operator

Pspan(u∗,v∗)X : span(uT ,vT ) → span(u∗,v∗)

is symmetric. Then the statement of this corollary follows from Lemma 2.19, where we
set k = n−2,

H = span(uT ,vT ) = span(PAT u1,PATu2),

Y = X and L = range(P) . �

REMARK 2.21. It can be shown that the unitary and symmetric operator X̃ in
Corollary 2.20 can be constructed bypassing Lemma 2.19 and using instead the fol-
lowing remarkable theorem from [14]: If A ∈ Cn×n and x,y ∈ Cn are such that A∗A−
AA∗ = xx∗ − yy∗ then there exists an antiunitary involution ι on Cn such that ιx = y
and ιAι = A∗ . (A mapping ι : Cn → Cn is called an antiunitary involution if ι2 = In
and 〈ιh, ιg〉 = 〈g,h〉 for every h,g ∈ C

n , in the standard inner product in C
n .) Our

Lemma 2.19 seems to be of independent interest, and can be applied to other problems
as well.

Proof of Theorem 2.17. (i) The operator X̃ in Corollary 2.20, which is constructed
as in Lemma 2.19 for the given matrix A , is symmetric and unitary, and thus has a
Takagi factorization (see [7]) X̃ = GGT where G : C

n−2 → range(P) is unitary. One
can view G as an isometry G′ : Cn−2 → Cn with the same range as G :

range(G′) = range(G) = range(P).

Clearly, the columns u3 , . . . , un of the standard matrix of G′ are orthonormal, and
hence, together with u1 and u2 , form an orthonormal eigenbasis of A∗A−AA∗ . We
also have G′G′∗ = P . We then extend X̃ to the operator X ′ = G′G′T : Cn → Cn . The
operator represented by the matrix A in the standard basis of Cn , in the basis u1 , . . . ,
un has the matrix

Ã =

⎡⎣ u∗1
u∗2
G′∗

⎤⎦A
[
u1 u2 G′]=

⎡⎣ a11 a12 u∗1AG′
a21 a11 u∗2AG′

G′∗Au1 G′∗Au2 G′∗AG′

⎤⎦ .

We have

(u∗1AG′)T = G′T AT u1 = G′∗G′G′T ATu1 = G′∗X ′ATu1 = G′∗X ′PAT u1

= G′∗PAu2 = G′∗Au2,

and similarly,
(u∗2AG′)T = G′∗Au1.

Setting u = u∗1AG′ , v = u∗2AG′ , S = G′∗AG′ , and W =
[
u1 u2 u3 . . . un

]
, we see that

Ã = W ∗AW has the form (2.40), which proves part (i).
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(ii) It follows from Lemma 2.10 that nd(A) = nd(Ã) = 1 if and only if there exist
x1,x2 ∈ C satisfying (2.42) such that

u∗x1 + v∗x2 = vT x2 +uTx1.

Since the last equation is equivalent to (2.41), this proves part (ii).
(iii) This part is proved in the same way as part (ii) of Theorem 2.3. �
Let u,v ∈ Cn−2 be as in Theorem 2.17, u = uR + iuI , v = vR + ivI , where uT

R , uT
I ,

vT
R , vT

I ∈ Rn−2 . Let x1 = xR1 + ixI1 , x2 = xR2 + ixI2 , where xR1 , xI1 , xR2 , xI2 ∈ R .
Then (2.41) can be written as

Qx = 0, (2.46)

where

Q =
[−uT

I uT
R −vT

I vT
R

] ∈ R
(n−2)×4, x =

⎡⎢⎢⎣
xR1

xI1

xR2

xI2

⎤⎥⎥⎦ ∈ R
4. (2.47)

REMARK 2.22. Observe that replacing u , v , w , and q in (2.39) by u , v , v , and
u as in Theorem 2.17 we obtain an equivalent condition, i.e., equation (2.46) replaces
(2.39) with the matrix Q replacing Q . Thus instead of 2n real linear equations with 4
unknowns we obtain n−2 real linear equations with 4 unknowns. Let m = rank(Q) .
Then, for all possible cases of m , the procedure for checking whether nd(A) = 1, and
if this is the case — for constructing all minimal normal completions of A , is exactly
the same as described is Section 2.2, with Q in the place of Q .

We describe now the generic situation for each n , under the assumption that
rank(A∗A−AA∗) = 2. In other words, we obtain certain topological characterization of
the set of matrices with normal defect one in each matrix dimension.

The generic case

Let A ∈ Cn×n satisfy the rank condition. Consider the following possibilities for
the value of n , and describe the situation for each case separately.

n = 2 or n = 3 Vectors u , v as in Theorem 2.17 do not arise (when n = 2) or are
scalars (when n = 3). Then m = rank(Q) � 1, and nd(A) = 1 (for the case where
m = 1 it follows from Remark 2.15). This gives a new proof of the statement on
2×2 matrices in Section 1 and of Corollary 2.11.

n = 4 or n = 5 In these cases, m � 2 (resp., m � 3). Thus, equation (2.46) (see also
(2.47)) has nontrivial solutions. Both the situation where the matrix K , con-
structed from Q instead of Q , has at least one positive eigenvalue (in which case
nd(A) = 1) and where K has no positive eigenvalues (in which case nd(A) > 1)
occur on sets with nonempty interior in the relative topology of the manifolds
M4 and M5 (see page 402 for the definition of Mn ).

n � 6 In this case, generically m = 4, thus (2.46) has no nontrivial solutions. There-
fore, generically nd(A) > 1. Still, there are matrices A with nd(A) = 1, which
can be constructed, e.g., using Theorem 2.1 and Remark 2.2.
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2.4. Normal defect and unitary defect

In this section, we give two examples which show that the question in [12] (see
also [8]) asking whether nd(A) = ud(A) for any unitarily irreducible matrix A has a
negative answer. In the first example, A has a single cell in its Jordan form, and in the
second example, A has three distinct eigenvalues. We also present all minimal normal
completions of A in both examples.

EXAMPLE 2.23. Let

A =

⎡⎣1 0 0
0 1 1
1 0 1

⎤⎦ .

Then

A∗A =

⎡⎣2 0 1
0 1 1
1 1 2

⎤⎦ , AA∗ =

⎡⎣1 0 1
0 2 1
1 1 2

⎤⎦ ,

and

A∗A−AA∗ =

⎡⎣1 0 0
0 −1 0
0 0 0

⎤⎦ .

Clearly, the rank condition holds. It follows from Corollary 2.11 that nd(A) = 1. Since
the only eigenvalue of A is 1 , and A− I is nilpotent of order 3, A has a single cell in
its Jordan form, and hence A is unitarily irreducible. The characteristic polynomial of
A∗A is

p(λ ) = (2−λ )2(1−λ )+2λ−3.

We have p(0) = 1 > 0, p(1) =−1 < 0, p(2) = 1 > 0, and p(4) =−7 < 0. Therefore,
p(λ ) has three distinct roots, in intervals (0,1) , (1,2) , and (2,4) , i.e., A has three
distinct singular values. Therefore, ud(A) = 2. We also observe that A has the form
(2.40). The procedure described in Section 2.2 together with Theorem 2.3 (or its refined
version described in Remark 2.22 together with Theorem 2.17) gives that all minimal
normal completions of A have the form

B =

⎡⎢⎢⎣
1 0 0 μx1

0 1 1 μx2

1 0 1 0
μx2 μx1 0 1

⎤⎥⎥⎦ ,

with arbitrary μ ∈ T , and x1 ∈ C , x2 ∈ R satisfying |x1|2− x2
2 = 1.

EXAMPLE 2.24. Let

A =

⎡⎣0 1 0
1 0 1
0 1 3

2 i

⎤⎦ .
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Changing the basis, we obtain Ã =U∗AU , where

U =

⎡⎢⎣ 0 0 1
1√
2

1√
2

0

− i√
2

i√
2

0

⎤⎥⎦
is unitary and

Ã =

⎡⎢⎣
3i
4

i
4

1√
2

− 7i
4

3i
4

1√
2

1√
2

1√
2

0

⎤⎥⎦
satisfies

Ã∗Ã− ÃÃ∗ =

⎡⎣3 0 0
0 −3 0
0 0 0

⎤⎦ .

Clearly, rank(A∗A−AA∗) = rank(Ã∗Ã− ÃÃ∗) = 2. By Corollary 2.11, nd(A) = 1. We
also observe that Ã has the form (2.40). The matrix A is unitarily irreducible. Indeed,
matrices

Re(A) =

⎡⎣0 1 0
1 0 1
0 1 0

⎤⎦ and Im(A) =

⎡⎣0 0 0
0 0 0
0 0 3

2

⎤⎦
do not have common eigenvectors. Next we show that ud(A) = 2. The characteristic
polynomial of A∗A ,

p(λ ) = (1−λ )(2−λ )
(

13
4

−λ
)

+
13
4
λ − 17

4
,

has values p(0) = 9
4 > 0, p(1) = −1 < 0, p(2) = 9

4 > 0, p(5) = −9 < 0. Therefore,
p(λ ) has three distinct roots, in intervals (0,1) , (1,2) , and (2,5) , i.e., A has three
distinct singular values. Thus, ud(A) = 2. Note that in this example A has three

distinct eigenvalues, λ1 = i , λ2 =
√

23+i
4 , λ3 = −√

23+i
4 . The procedure described in

Section 2.2 together with Theorem 2.3 (or its refined version described in Remark 2.22
together with Theorem 2.17) gives that all minimal normal completions of Ã have the
form

B̃ =

⎡⎢⎢⎢⎢⎣
3i
4

i
4

1√
2

μ(h1 + ih3)
− 7i

4
3i
4

1√
2

μ(h2− ih3)
1√
2

1√
2

0 0

μ(h2− ih3) μ(h1 + ih3) 0
h1h3+5h2h3+i(3−2h1h2+2h2

2)
3

⎤⎥⎥⎥⎥⎦ ,

with arbitrary μ ∈ T , and h1,h2,h3 ∈ R : h2
1 − h2

2 = 3. Correspondingly, all minimal
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normal completions of A have the form

B =

⎡⎢⎢⎢⎢⎣
0 1 0 0
1 0 1 μ h1+h2√

2

0 1 3
2 i μ 2h3+i(h2−h1)√

2

0 μ h1+h2√
2

μ 2h3+i(h2−h1)√
2

h1h3+5h2h3+i(3−2h1h2+2h2
2)

3

⎤⎥⎥⎥⎥⎦ .

3. The real case

Let A ∈ Rn×n . We define the real normal defect of A , rnd(A) , as the smallest

nonnegative p such that a matrix

[
A ∗
∗ ∗
]
∈ R(n+p)×(n+p) is normal (such a matrix with

the minimal possible p is a minimal real normal completion of A). It is clear that
rnd(A) � nd(A) .

We also define the orthogonal defect of A as the smallest nonnegative s such that

a matrix

[
A ∗
∗ ∗
]
∈ R(n+s)×(n+s) is a multiple of an orthogonal matrix (such a matrix

with the minimal possible s is a minimal orthogonal completion of A). In fact, the
orthogonal defect of A coincides with ud(A) , so that it does not require a separate
notation. Indeed, since a minimal orthogonal completion of a real matrix is obtained
using the same construction as for a minimal unitary completion (see [12]), the only
difference being that the real SVD is involved, the size of this minimal orthogonal
completion is the same as for a minimal unitary completion.

Clearly, rnd(A) � ud(A) . We will show later (Example 3.5) that there exist or-
thogonally irreducible matrices A for which the strict inequality takes place.

3.1. Construction of real matrices of even size with real normal defect one

The following theorem is an analogue of Theorem 2.1 for the case of real n× n
matrices with n even.

THEOREM 3.1. Let A∈ Rn×n , where n = 2k , be not normal. The following state-
ments are equivalent:

(i) rnd(A) = 1 .

(ii) There exist a contraction matrix C ∈ Rn×n with ud(C) = 1 , a block diagonal
matrix D ∈ Rn×n of the form

D = diag

([
α1 β1

−β1 α1

]
, . . . ,

[
α� β�

−β� α�

]
,α2�+1, . . . ,α2k

)
, (3.1)

and a scalar μ ∈ R such that

A = CDCT + μIn. (3.2)
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(iii) There exist an orthogonal matrix V ∈ Rn×n , a normal matrix N ∈ Rn×n , and
scalars t,μ ∈ R , with 0 � t < 1 , such that

VT AV = MNM + μIn, (3.3)

where M = diag(1, . . . ,1,t) .

Proof. (i)⇐⇒(ii) Let rnd(A) = 1, and let

[
A x
yT z

]
∈ R(n+1)×(n+1) be a minimal

real normal completion of A . Then (see, e.g., [4, Section IX.13]) there exist a block
diagonal matrix Λ ∈ Rn×n of the form

Λ= diag

([
μ1 β1

−β1 μ1

]
, . . . ,

[
μ� β�

−β� μ�

]
,μ2�+1, . . . ,μ2k

)
,

a scalar μ ∈ R , and an orthogonal matrix O =
[
O11 O12

O21 O22

]
∈ R(n+1)×(n+1) such that

[
A x
yT z

]
=
[
O11 O12

O21 O22

][
Λ 0
0 μ

][
OT

11 OT
21

OT
12 O22

]
. (3.4)

Here we used the fact that n is even, and thus the (n+1)× (n+1) real normal matrix[
A x
yT z

]
has at least one real eigenvalue. The last equality is equivalent to the following

system:

A = O11ΛOT
11 + μO12O

T
12 = O11(Λ− μIn)OT

11 + μIn, (3.5)

x = O11ΛOT
21 + μO12O22 = O11(Λ− μIn)OT

21, (3.6)

yT = O21ΛOT
11 + μO22O

T
12 = O21(Λ− μIn)OT

11, (3.7)

z = O21ΛOT
21 + μO2

22 = O21(Λ− μIn)OT
21 + μ . (3.8)

Setting C = O11 and D = Λ− μIn , we obtain (3.2) from (3.5).
Conversely, if (3.2) holds, we set O11 = C , Λ = D + μIn and obtain (3.5). For

O =
[
O11 O12

O21 O22

]
a minimal orthogonal completion of C , we define x,y ∈ Rn and z ∈ R

by (3.6)–(3.8). Then (3.4) holds, i.e., the matrix

[
A x
yT z

]
∈R(n+1)×(n+1) is a real normal

completion of A , and thus rnd(A) = 1.
(ii)⇐⇒(iii) If (ii) holds, let C = V diag(1, . . . ,1,t)WT be the SVD of C (here

V,W ∈ Rn×n are orthogonal, 0 � t < 1, and M = diag(1, . . . ,1,t) ∈ Rn×n ). Clearly,
N = WT DW is normal, and (3.3) follows.

Conversely, if (3.3) holds, then N = WT DW with D block diagonal of the form
(3.1) and W orthogonal. For C = V diag(1, . . . ,1,t)WT we have ud(C) = 1, and (3.2)
follows. �
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REMARK 3.2. Remark 2.2 can be restated in the real case as follows. The matrix
A of even size, given by (3.3), is not normal if and only if, in the matrix

N =
[
N0 g
hT α

]
partitioned so that α is scalar, g �= h and, in the case where tα = 0, also g �= −h .
Moreover, if both M and N are invertible then A is not normal if and only if the
standard basis vector en is not an eigenvector of NT N−1 . The statement in the last
sentence of Remark 2.2 is, in general, not valid in the real case.

Open problem: What is an analogue of Theorem 3.1 for the case of odd n?

In the case of even n , similarly to the complex case, representation (3.2) or (3.3)
in Theorem 3.1, along with Remark 3.2, allow one to construct all matrices A with
rnd(A) = 1. However, this does not give a way to check whether a given real matrix
has real normal defect one. A procedure for this is our further goal.

3.2. Identification of matrices with rnd(A) = 1 and construction of their minimal
real normal completions

The following theorem is the real counterpart of Theorem 2.3.

THEOREM 3.3. Let A ∈ Rn×n . Then

(i) rnd(A) = 1 if and only if rank(AT A−AAT ) = 2 and at least one of the equations

(PATu1−PAu2)x1 +(PATu2−PAu1)x2 = 0, (3.9)

(PATu1 +PAu2)x1 +(PATu2 +PAu1)x2 = 0, (3.10)

has a solution pair x1,x2 ∈ R satisfying

x2
1− x2

2 = d. (3.11)

Here u1,u2 ∈ Rn are the unit eigenvectors of the matrix AT A−AAT corresponding to
its nonzero eigenvalues λ1 = d(> 0) and λ2 = −d , and

P = In−u1u
T
1 −u2u

T
2 (3.12)

is the orthogonal projection of Rn onto null(AT A−AAT ) .

(ii) If rnd(A) = 1 then at least one of the following cases occurs:

Case 1. If x1 and x2 satisfy (3.9) and (3.11) then the matrix

B1 =
[

A x1u1 + x2u2

x2uT
1 + x1uT

2 z

]
(3.13)
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is a minimal real normal completion of A. Here

z = a11− 1
d

(x1 + x2)(a12x1−a21x2) (3.14)

and

a11 = uT
1 Au1, a12 = uT

1 Au2, a21 = uT
2 Au1; (3.15)

Case 2. If x1 and x2 satisfy (3.10) and (3.11) then the matrix

B2 =
[

A x1u1 + x2u2

−x2uT
1 − x1uT

2 z

]
(3.16)

is a minimal real normal completion of A. Here

z = a11 +
1
d

(x1 − x2)(a12x1 +a21x2) (3.17)

and ai j ’s are defined by (3.15).

Any minimal real normal completion of A arises in this way, i.e., either as in Case 1 or
as in Case 2 above.

Proof. Since rnd(A) = 1 implies nd(A) = 1, it follows from Corollary 2.6 that the
rank condition is necessary for rnd(A) = 1. For real A it takes the form rank(AT A−
AAT ) = 2. Without loss of generality, we can assume that the rank condition is satisfied.
Then we find the unit eigenvectors u1,u2 ∈R

n of the matrix ATA−AAT corresponding
to its eigenvalues λ1 = d(> 0) and λ2 = −d . Let u3 , . . . , un be an orthonormal basis
for null(AT A−AAT ) . Then U ′ =

[
u3 . . . ,un

] ∈ Rn×(n−2) is an isometry, and

U ′U ′T = P, (3.18)

where P is defined in (3.12). The matrix Ã =UT AU , where U =
[
u1 . . . un

]
is orthog-

onal, has the form

Ã =

⎡⎣a11 a12 u
a21 a11 v
wT qT S

⎤⎦ (3.19)

(the identity a11 = uT
1 Au1 = uT

2 Au2 is established in the same way as in Lemma 2.7).
As in Lemma 2.8, we obtain that rnd(Ã) = 1 (and therefore, rnd(A) = 1) if and only if
there exist x1,x2,y1,y2,z ∈ R such that the matrix

B̃ =

⎡⎢⎢⎣
a11 a12 u x1

a21 a11 v x2

wT qT S 0
y1 y2 0 z

⎤⎥⎥⎦ ∈ R
(n+1)×(n+1) (3.20)
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is normal if and only if there exist x1,x2,y1,y2,z ∈ R such that

(a11− z)x1 +a21x2 = (a11− z)y1 +a12y2, (3.21)

a12x1 +(a11− z)x2 = a21y1 +(a11− z)y2, (3.22)

uT x1 + vTx2 = wT y1 +qTy2, (3.23)

x2
1 − y2

1 = y2
2− x2

2 = d, (3.24)

x1x2 = y1y2. (3.25)

It follows from (3.24) and (3.25) that either y1 = x2 , y2 = x1 or y1 = −x2 , y2 = −x1 .
We will consider these two cases separately.

Case 1: y1 = x2 , y2 = x1 . Identities (3.21)–(3.24) become

(a11− z)x1 +a21x2 = (a11− z)x2 +a12x1, (3.26)

a12x1 +(a11− z)x2 = a21x2 +(a11− z)x1, (3.27)

(uT −qT )x1 +(vT −wT )x2 = 0, (3.28)

x2
1− x2

2 = d. (3.29)

Clearly, (3.26) and (3.27) are equivalent, and it follows from (3.26) and (3.29) that

z = a11− a12x1−a21x2

x1− x2
= a11− 1

d
(x1 + x2)(a12x1−a21x2)

(cf. (2.14)). Next, it follows from (3.19) that

uT = U ′T AT u1, vT = U ′TAT u2, wT = U ′T Au1, qT = U ′TAu2.

Multiplying both parts of these equalities on the left by U ′ and taking into account
(3.18), we obtain vectors

uT = U ′uT = PATu1, vT = U ′vT = PATu2, (3.30)

wT = U ′wT = PAu1, qT = U ′qT = PAu2. (3.31)

Since U ′ is an isometry, (3.28) is equivalent to

(uT −qT )x1 +(vT −wT )x2 = 0. (3.32)

Note that the definition of vectors uT ,vT ,wT ,qT ∈ range(P) ⊂ Rn in (3.30)–(3.31)
is independent of U ′ , i.e., of the choice of basis vectors u3 , . . . , un in range(P) =
null(AT A−AAT ) .

Case 2: y1 = −x2 , y2 = −x1 . Identities (3.21)–(3.24) become

(a11− z)x1 +a21x2 = −(a11− z)x2−a12x1, (3.33)

a12x1 +(a11− z)x2 = −a21x2− (a11− z)x1, (3.34)

(uT +qT )x1 +(vT +wT )x2 = 0, (3.35)

x2
1 − x2

2 = d. (3.36)
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Clearly, (3.33) and (3.34) are equivalent, and it follows from (3.33) and (3.36) that

z = a11 +
a12x1 +a21x2

x1 + x2
= a11 +

1
d

(x1− x2)(a12x1 +a21x2).

Next, we obtain vectors uT ,vT ,wT ,qT ∈ range(P) ⊂ Rn as in Case 1. Since U ′ is an
isometry, (3.35) is equivalent to

(uT +qT )x1 +(vT +wT )x2 = 0. (3.37)

It follows from the analysis of cases above that rnd(A) = 1 if and only if at least
one of the equations (3.32) and (3.37) has a solution pair x1,x2 ∈ R satisfying (3.11),
which proves part (i).

If x1,x2 satisfy (3.32) (resp., (3.37)) and (3.11) then y1 = x2 , y2 = x1 and z defined
by (3.14) (resp., y1 = −x2 , y2 = −x1 and z defined by (3.17)) determine the minimal
real normal completion B̃ of the matrix Ã by (3.20). Then the matrix

B =
[
U 0
0 1

]⎡⎢⎢⎣
a11 a12 u x1

a21 a11 v x2

wT qT S 0
y1 y2 0 z

⎤⎥⎥⎦[UT 0
0 1

]
=
[

A u1x1 +u2x2

y1uT
1 + y2uT

2 z

]

is a minimal real normal completion of A . Since B = B1 in Case 1 and B = B2 in Case
2, this proves part (ii) of the theorem. �

COROLLARY 3.4. For a matrix A ∈ Rn×n , rnd(A) = 1 if and only if nd(A) = 1 .

Proof. Since we have nd(A) � rnd(A) , it suffices to prove that if nd(A) = 1 then
rnd(A) = 1. Suppose that nd(A) = 1. Then, as described in Section 2.2, equation (2.39)
has a solution x = col(xR1,xI1,xR2,xI2) ∈ R4 with

x2
R1 + x2

I1 > x2
R2 + x2

I2 (3.38)

(see Theorem 2.3). The matrix Q in this (real) case has the form

Q =
[
uT −qT 0 vT −wT 0

0 uT +qT 0 vT +wT

]
.

Thus, in this case (2.39) is equivalent to the pair of equations

(uT −qT )xR1 +(vT −wT )xR2 = 0,

(uT +qT )xI1 +(vT +wT )xI2 = 0.

Since in (3.38) either x2
R1 > x2

R2 or x2
I1 > x2

I2 , at least one of the equations (3.32) or
(3.37) (or equivalently, at least one of the equations (3.9) and (3.10)) has a solution pair
x1,x2 ∈ R with x2

1 > x2
2 (and thus, a solution pair x1,x2 ∈ R satisfying x2

1 − x2
2 = d ),

which by Theorem 3.3 means that rnd(A) = 1. �
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Open problem: Is it true that for any A ∈ Rn×n one has rnd(A) = nd(A)?

As in the complex case, we will describe now a procedure (in this setting based
on Theorem 3.3) which allows one to determine whether rnd(A) = 1 for a given matrix
A ∈ Rn×n . Moreover, this procedure allows one to find all solutions of (3.9) and of
(3.10) subject to (3.11), and then, applying part (ii) of Theorem 3.3, all minimal real
normal completions of A when rnd(A) = 1.

The procedure

Begin

Step 1. Check the rank condition. If it holds — go to Step 2. Otherwise, stop:
rnd(A) > 1.

Step 2. Write (3.9) in the form (3.32), where u , v , w , q are defined by (3.30)
and (3.31) (see Theorem 3.3 for the definition of P , u1 , and u2 ). Find m1 = rank(uT −
qT ,vT −wT ) .

Step 3. Depending on m1 , consider the following cases.

(1a) m1 = 0. In this case, any x1,x2 ∈ R with x2
1 − x2

2 = d solve (3.32).

(1b) m1 = 1, i.e., uT − qT = αb , vT −wT = βb , with some nonzero vector b ∈
range(P) and α,β ∈ R , and additionally |α| � |β | . In this case, (3.32) is equiv-
alent to αx1 +βx2 = 0, and has no solutions satisfying (3.11).

(1c) m1 = 1, i.e., uT − qT = αb , vT −wT = βb , with some nonzero vector b ∈
range(P) and α,β ∈ R , and additionally |α| < |β | . In this case, (3.32) is equiv-
alent to αx1 +βx2 = 0, and has the solutions

x1 = ±β
√

d
β 2−α2 , x2 = ∓α

√
d

β 2 −α2

satisfying (3.11).

(1d) m1 = 2. In this case, (3.32) has only a zero solution, and thus has no solutions
satisfying (3.11).

Step 4. Write (3.10) in the form (3.37), where u , v , w , q are defined by (3.30)
and (3.31). Find m2 = rank(uT +qT ,vT +wT ) .

Step 5. Depending on m2 , consider the following cases.

(2a) m2 = 0. In this case, any x1,x2 ∈ R with x2
1 − x2

2 = d solve (3.37).

(2b) m2 = 1, i.e., uT + qT = γh , vT + wT = δh , with some nonzero vector h ∈
range(P) and γ,δ ∈ R , and additionally |γ| � |δ | . In this case, (3.37) is equiva-
lent to γx1 + δx2 = 0, and has no solutions satisfying (3.11).
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(2c) m2 = 1, i.e., uT + qT = γh , vT + wT = δh , with some nonzero vector h ∈
range(P) and γ,δ ∈ R , and additionally |γ| < |δ | . In this case, (3.37) is equiva-
lent to γx1 + δx2 = 0, and has the solutions

x1 = ±δ
√

d
δ 2− γ2 , x2 = ∓γ

√
d

δ 2 − γ2

satisfying (3.11).

(2d) m2 = 2. In this case, (3.37) has only a zero solution, and thus has no solutions
satisfying (3.11).

Step 6. rnd(A)= 1 if and only if neither of the combinations (1b)&(2b), (1b)&(2d),
(1d)&(2b), (1d)&(2d) occur. If it does, stop: rnd(A) > 1. Otherwise, for each pair
x1,x2 ∈ R obtained at Step 3, find a minimal real normal completion of A as described
in (3.13)–(3.15); for each pair x1,x2 ∈ R obtained at Step 4, find a minimal real normal
completion of A as described in (3.15)–(3.17).

End

Of course, if one is interested only in checking whether rnd(A) = 1, the procedure
can be terminated as soon as any of cases (1a), (1c), (2a), (2c) occurs.

EXAMPLE 3.5. In Example 2.23,

A =

⎡⎣1 0 0
0 1 1
1 0 1

⎤⎦
is a matrix with real entries, and

AT A−AAT =

⎡⎣1 0 0
0 −1 0
0 0 0

⎤⎦ ,

so that the rank condition is satisfied. By Corollaries 2.11 and 3.4, rnd(A) = 1. We
have u1 = e1 , u2 = e2 , and

P = I−u1u
T
1 −u2u

T
2 =

⎡⎣0 0 0
0 0 0
0 0 1

⎤⎦ .

Then, in the procedure above, uT = qT = 0, vT = wT = e3 . Since m1 = rank(uT −
qT ,vT −wT ) = 0, as in Case (1a), any x1,x2 ∈ R with x2

1 − x2
2 = 1 solve (3.32). We

have y1 = x2 and y2 = x1 . According to (3.14), z = 1. Therefore, for any x1 ∈ R such
that |x1| � 1, ⎡⎢⎢⎢⎢⎣

1 0 0 x1

0 1 1 ±
√

x2
1 −1

1 0 1 0

±
√

x2
1−1 x1 0 1

⎤⎥⎥⎥⎥⎦



430 D. S. KALIUZHNYI-VERBOVETSKYI, I. M. SPITKOVSKY AND H. J. WOERDEMAN

is a minimal real normal completion of A . We also have

m2 = rank(uT +qT ,vT +wT ) = rank(0,2e3) = 1,

and as in Case (2c), h = e3 , γ = 0, δ = 2, so that x1 = ±1 = −y2,x2 = 0 = −y1 .
According to (3.17), z = 1. Thus, ⎡⎢⎢⎣

1 0 0 ±1
0 1 1 0
1 0 1 0
0 ∓1 0 1

⎤⎥⎥⎦
is a minimal real normal completion of A . Therefore, the set of minimal real normal
completions of A arises from Cases (1a) and (2c). Note that the minimal real normal
completions of A in this example are special cases of minimal normal completions of

A as in (2.13), where x1 ∈ R : |x1| � 1, x2 = ±
√

x2
1−1, and μ = 1, or where x1 = i ,

x2 = 0, and μ =±i . We know from Example 2.23 that ud(A) = 2 and that A is unitarily
(and therefore orthogonally) irreducible. This example shows that rnd(A) < ud(A) is
possible for an orthogonally irreducible matrix A .

3.3. The generic case

We will describe now the generic situation in each matrix dimension n . As in the
complex case, a finer analysis is needed for this. However, in the real case our analysis
is more straightforward and does not use a “heavy machinery” of symmetric extensions.

For a real matrix A satisfying the rank condition, it follows from Lemma 2.7 that
the following identities hold:

uuT = qqT , vvT = wwT , uvT = wqT , uwT = vqT . (3.39)

Consequently,

(u+q)(u−q)T = 0, (v+w)(v−w)T = 0, (v+w)(u−q)T = 0, (u+q)(v−w)T = 0,

i.e., each of the vectors (u + q)T and (v + w)T is orthogonal to each of the vectors
(u−q)T and (v−w)T . Note that the vectors uT , vT , wT , and qT belong to range(P)
whose dimension is n−2.

Restricting our attention to real matrices in Mn , we now consider different values
of n separately.

n = 2 In this case, vectors uT ,vT ,wT , and qT do not arise, thus necessarily rnd(A) =
1. This follows also from the fact that nd(A) = 1 by Corollary 3.4.

n = 3 In this case, vectors uT ,vT ,wT , and qT are collinear, and in view of (3.39)
either uT = qT and vT = wT , or uT = −qT and vT = −wT . Thus either Case
(1a) or Case (2a) in the Procedure occurs. Therefore, necessarily rnd(A) = 1
(this follows also from Corollaries 2.11 and 3.4).
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n = 4 Generically, uT �=±qT , and vT �=±wT . Since dim(range(P)) = 2, the vectors
(u+q)T and (v+w)T are collinear and orthogonal to (u−q)T and (v−w)T ,
which are also collinear. Then both the combination of Case (1b) and Case (2b),
and the combination of Case (1c) and Case (2c) (and thus, both rnd(A) = 1 and
rnd(A) > 1) occur on the sets whose interior is nonempty in the relative topology
of the manifold M4 . Indeed, the first combination occurs when we fix uT ,qT

and make vvT = wwT small enough, and the second combination occurs when
we fix vT ,wT and make uuT = qqT small enough.

n = 5 Generically, uT �=±qT , and vT �=±wT . Since dim(range(P)) = 3, at least one
of the pairs of vectors (generically, only one such pair), (u+q)T and (v+w)T

or (u−q)T and (v−w)T , is collinear. As in the case n = 4, for a collinear pair,
both cases (b) and (c) occur on the sets whose interior is nonempty in the relative
topology of M5 . Thus, combinations of Case (1b) and Case (2d), Case (1d) and
Case (2b) (where rnd(A) > 1), and combinations of Case (1c) and Case (2d),
Case (1d) and Case (2c) (where rnd(A) = 1) occur on the sets whose interior is
nonempty in the relative topology of M5 .

n � 6 Since dim(range(P)) � 4, the pairs (u+q)T , (v+w)T and (u−q)T , (v−w)T

are generically linearly independent. Therefore, the combination of Case (1d)
and Case (2d) (corresponding to rnd(A) > 1) occurs generically.

Thus, we see that the generic situation in the real case is similar to the one in the
complex case.

4. Commuting completion problems

The problem of finding commuting completions of a N -tuple of n× n matrices
was raised in [3], where a special emphasis was placed on symmetric completions of
N -tuples of symmetric matrices. In [8], an inverse completion (Aext,Bext) of a pair
(A,B) was constructed. Namely, Aext , Bext by definition satisfy AextBext = αI with
a non-zero scalar α , and therefore commute. Our results from Sections 2 and 3 can
be used to tackle commuting completion problems in the classes of Hermitian (resp.,
symmetric, or symmetric/antisymmetric) pairs of matrices.

4.1. The commuting Hermitian completion problem.

Let (A1,A2) be a pair of Hermitian matrices of size n×n . We define the commut-
ing Hermitian defect of A1 and A2 , denoted chd(A1,A2) , as the smallest p such that

there exist commuting Hermitian matrices B1 =
[
A1 ∗
∗ ∗
]

and B2 =
[
A2 ∗
∗ ∗
]

of size (n+

p)×(n+ p) . We call such a pair (B1,B2) of size (n+chd(A1,A2))×(n+chd(A1,A2))
a minimal commuting Hermitian completion of (A1,A2) .

Since (B1,B2) is a commuting Hermitian completion of a pair (A1,A2) of Her-
mitian matrices if and only if B = B1 + iB2 is a normal completion of A = A1 + iA2 ,
and therefore chd(A1,A2) = nd(A1 + iA2) , the results from Section 2.2 allow one to
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check whether chd(A1,A2) = 1, and when this is the case — to construct all minimal
commuting Hermitian completions of (A1,A2) . For example, Theorem 2.3 yields the
following.

THEOREM 4.1. Let A1,A2 ∈ Cn×n be Hermitian.

(i) chd(A1,A2) = 1 if and only if rank(A1A2−A2A1) = 2 and the equation

PA1(t1u1− t1u2) = iPA2(t2u1 + t2u2) (4.1)

has a solution pair t1,t2 ∈ C satisfying

Re(t1t2) = d. (4.2)

Here u1,u2 ∈ Cn are the unit eigenvectors of the matrix 2i(A1A2−A2A1) correspond-
ing to its nonzero eigenvalues λ1 = d(> 0) and λ2 = −d , and P = In−u1u∗1−u2u∗2 is
the orthogonal projection of Cn onto null(A1A2 −A2A1) .

(ii) If chd(A1,A2) = 1 , t1 and t2 satisfy (4.1) and (4.2), and μ ∈ T is arbitrary then
the pair (B1,B2) of matrices

B1 =
[

A1
μ
2 (t2u1 + t2u2)

μ
2 (t2u∗1 + t2u∗2) z1

]
, (4.3)

B2 =
[

A2
μ
2i (t1u1− t1u2)

− μ
2i(t1u

∗
1− t1u∗2) z2

]
(4.4)

is a minimal commuting Hermitian completion of (A1,A2) . Here

z1 = u∗1A1u1− 1
d

(
Im(t22u∗2A2u1)+Re(t1t2u∗2A1u1)

)
(4.5)

and

z2 = u∗1A2u1− 1
d

(
Im(t21u∗2A1u1)−Re(t1t2u∗2A2u1)

)
. (4.6)

All minimal commuting Hermitian completions of (A1,A2) arise in this way.

Proof. Letting A = A1 + iA2 , we observe that A∗A−AA∗ = 2i(A1A2−A2A1) . It is
straightforward to verify that, under the change of variables t1 = x1− x2 , t2 = x1 + x2 ,
condition (2.11) in Theorem 2.3 is equivalent to condition (4.1), (2.12) is equivalent to
(4.2), B1 and B2 defined by (4.3) and (4.4) are Hermitian and such that B = B1 + iB2

is as in (2.13), z1 and z2 defined by (4.5) and (4.6) are real and such that z = z1 + iz2

is as in (2.14). Thus, this theorem is equivalent to Theorem 2.3. �
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4.2. The commuting completion problem in the class of pairs of symmetric and
antisymmetric matrices.

Let A1 = AT
1 ∈ Rn×n and A2 = −AT

2 ∈ Rn×n . It is natural to ask what is the

smallest p such that there exist commuting matrices B1 = BT
1 =

[
A1 ∗
∗ ∗
]
∈R

(n+p)×(n+p)

and B2 =−BT
2 =

[
A2 ∗
∗ ∗
]
∈R(n+p)×(n+p) . Such a pair (B1,B2) is a minimal commuting

completion of (A1,A2) in the class of pairs of symmetric and antisymmetric matrices.
Since (B1,B2) is a commuting completion of (A1,A2) in this class if and only if

B = B1 + B2 is a real normal completion of A = A1 + A2 , our results from Section 3
can be restated in terms of pairs of matrices in this class. We omit the details, since the
reasoning is similar to the one in Section 4.1.

4.3. The commuting symmetric completion problem.

In this section, we consider the commuting completion problem in the class of
pairs of symmetric matrices. This is a special case of the problem raised in Degani et
al. [3] (see the first paragraph of Section 4) for N = 2. The authors of [3] presented an
approach to n -dimensional cubature formulae where the cubature nodes are obtained
by means of commuting completions of certain matrix tuples. While their commuting
completion problem is stated in a certain subclass of tuples of symmetric matrices,
some observations were also made for the problem in the whole class. In particular,
the question on the minimal possible size of completed matrices was accentuated as
important.

Let A1 = AT
1 ∈ Rn×n and A2 = AT

2 ∈ Rn×n . We define the commuting symmetric
defect of A1 and A2 , denoted csd(A1,A2) , as the smallest p such that there exist com-

muting symmetric matrices B1 =
[
A1 ∗
∗ ∗
]
,B2 =

[
A2 ∗
∗ ∗
]
∈ R(n+p)×(n+p) . Such a pair

(B1,B2) of size (n+csd(A1,A2))× (n+csd(A1,A2)) is a minimal commuting symmet-
ric completion of the pair (A1,A2) .

We note that (B1,B2) is a commuting symmetric completion of a pair (A1,A2) of
real symmetric matrices if and only if B = B1 + iB2 is a normal, and simultaneously
complex symmetric, completion of A = A1 + iA2 . We also observe that a priori

csd(A1,A2) � chd(A1,A2). (4.7)

Open problem. Is it true that for any pair (A1,A2) of real symmetric matrices one
has csd(A1,A2) = chd(A1,A2)?

This problem is equivalent to the question whether a minimal normal completion
of a complex symmetric matrix can be chosen to be complex symmetric. It is some-
what similar to the open problem stated in Section 3.2, which actually asks whether a
minimal normal completion of a real matrix can be chosen to be real. The following
theorem shows that, for a pair (A1,A2) of real symmetric matrices,

csd(A1,A2) = 1 ⇐⇒ chd(A1,A2) = 1,
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which motivates the open problem stated above. Moreover, this theorem shows that if
csd(A1,A2) = 1 then the set of all minimal commuting symmetric completions (B1,B2)
of (A1,A2) can be obtained by putting in Theorem 4.1 u2 = u1 and μ = 1.

THEOREM 4.2. Let A1,A2 ∈ Rn×n be symmetric.

(i) csd(A1,A2) = 1 if and only if rank(A1A2−A2A1) = 2 and the equation

PA1 Im(t1u1) = PA2 Re(t2u1) (4.8)

has a solution pair t1,t2 ∈ C satisfying

Re(t1t2) = d. (4.9)

Here u1 ∈ Cn is the unit eigenvector of the matrix 2i(A1A2−A2A1) correspond-
ing to its eigenvalue λ1 = d(> 0) , and P = In−u1u∗1−u1uT

1 .

(ii) If csd(A1,A2) = 1 , t1 and t2 satisfy (4.8) and (4.9) then the pair (B1,B2) of
matrices

B1 =
[

A1 Re(t2u1)
Re(t2u1)T z1

]
, (4.10)

B2 =
[

A2 Im(t1u1)
Im(t1u1)T z2

]
(4.11)

is a minimal commuting symmetric completion of (A1,A2) . Here

z1 = u∗1A1u1− 1
d

(
Im(t22uT

1 A2u1)+Re(t1t2uT
1 A1u1)

)
(4.12)

and

z2 = u∗1A2u1− 1
d

(
Im(t21uT

1 A1u1)−Re(t1t2uT
1 A2u1)

)
. (4.13)

All minimal commuting symmetric completions of (A1,A2) arise in this way.

Proof. (i) By (4.7), if csd(A1,A2) = 1 then chd(A1,A2) = 1. Therefore, by The-
orem 4.1, rank(A1A2 − A2A1) = 2 and equation (4.1) has a solution pair t1,t2 ∈ C

satisfying (4.2). If u1 is the unit eigenvector of the Hermitian matrix 2i(A1A2−A2A1)
corresponding to its eigenvalue λ1 = d(> 0) then u1 is the unit eigenvector correspond-
ing to the eigenvalue λ2 = −d . Thus, we can choose in Theorem 4.1 u2 = u1 . Then
P = In−u1u∗1−u1uT

1 is a real n×n matrix, and equation (4.1) becomes (4.8).
Conversely, if rank(A1A2 −A2A1) = 2 and equation (4.8) (which is equivalent to

(4.1) in our case) has a solution pair t1,t2 ∈ C satisfying (4.9) (= (4.2)) then by The-
orem 4.1, chd(A1,A2) = 1. For any such t1,t2 the corresponding minimal commuting
Hermitian completions (B1,B2) of (A1,A2) have the form (4.3)–(4.4). We observe that
since u2 = u1 , the matrices B1 and B2 are real symmetric if and only if μ = 1 or
μ = −1. Consequently, csd(A1,A2) = 1.



MATRICES WITH NORMAL DEFECT ONE 435

(ii) If t1, t2 ∈ C satisfy (4.8)–(4.9) then so do t ′1 = −t1 and t ′2 = −t2 . Therefore,
we do not miss any minimal commuting symmetric completions of (A1,A2) if in (4.3)–
(4.4) we choose t1, t2 as above and fix μ = 1. Finally, since (B1,B2) constructed in
Theorem 4.1 with μ = 1 has in our case the form (4.10)–(4.11), and (4.5)–(4.6) become
(4.12)–(4.13), this completes the proof. �

REMARK 4.3. The procedure for checking whether csd(A1,A2) = 1, and if this
is the case — for finding all minimal commuting symmetric completions of a pair of
symmetric matrices (A1,A2) , can be obtained as the specialization of the procedure
mentioned in Section 4.1 (which, in turn, is based on the procedure from Section 2.2)
by setting u2 = u1 and μ = 1, see Theorem 4.2 and its preceding paragraph.

5. The separability problem

In the 1980s the use of quantum systems as computing devices started to being
explored. The idea gained momentum when Peter Shor [11] presented a quantum algo-
rithm for factoring a large composite integer N that was polynomial in the number of
digits in N . An excellent overview article on the subject of quantum computing is [1].

The separability problem occurs when a quantum system is divided into parts.
For convenience we consider a bipartite system. The state of the system is described
by a density matrix M , a positive semidefinite matrix with trace 1. A state is called
separable when it can be written as a convex combination of so-called pure separable
states, i.e., ρ = ∑k

i=1 pi ψiψ∗
i ⊗ φiφ∗

i where ψi and φi are (nonzero) state vectors in
the spaces corresponding to two parts of the system, and pi > 0. When ψi ∈ Cm and
φi ∈ Cn , the matrix ρ is called m× n separable. The number k is referred to as the
number of states in the representation.

The problem whether a given state is separable or entangled (= not separable) may
be stated as a semi-algebraic one, and is therefore decidable by the Tarski-Seidenberg
decision procedure [2]. As it turns out though, the separability problem scales very
poorly with the number of variables and these techniques are in general not practical.
In fact, the separability problem in its full generality has been shown to be NP-complete
[5].

As a consequence of the results of Section 2 we can state a new result for the 2×n
case. Thus we are concerned with matrices

M =
[
A B∗
B C

]
� 0. (5.1)

Notice that if M = ∑k
i=1 Pi ⊗Qi with Pi ∈ C2×2 and Qi ∈ Cn×n positive semidefinite,

then M̃ = ∑k
i=1 PT

i ⊗Qi is positive semidefinite as well. One easily sees that

M̃ =
[

A B
B∗ C

]
� 0. (5.2)

Thus for (5.1) to have a chance to be 2× n separable we need (5.2) to hold. This
is referred to as the “Peres test”; see [10]. As was observed by several authors, the
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2×n separability problem for (5.1) can easily be reduced to the case when A = I ; see,
for instance, Proposition 3.1 in [13]. Using Theorem 3.2 in [13], which connects the
separability problem to the normal completion problem, we can now state a method for
checking separability of (5.1) in the case when rank(M) = rank(M̃) = rank(A)+1.

THEOREM 5.1. Let B, C ∈ C
n×n be such that

M =
[
In B∗
B C

]
� 0, M̃ =

[
In B
B∗ C

]
� 0,

and suppose that rank(M) = rank(M̃) = n+1. Write

C−BB∗ = xx∗, C−B∗B = yy∗

for some vectors x,y ∈ Cn . Then M is 2× n separable if and only if x,y,B∗x,By are
linearly dependent. In this case, the minimal number of states in a separable represen-
tation of M is n+1 .

Proof. First notice that B∗B−BB∗ = xx∗ − yy∗ .
Suppose that x,y,B∗x,By are linearly dependent. Then by Theorem 2.4 there exists

a normal matrix

N =
[
B νx
y∗ z

]
,

where |ν|= 1. But as (νx)(νx)∗ =C−BB∗ it follows from Theorem 3.2 in [13] that M
is 2×n separable, and that the minimal number of states in a separable representation
of M is n+1.

Conversely, suppose that M is 2× n separable. By Theorem 3.2 in [13] there
exists a normal matrix

N =
[
B S
T P

]
so that BB∗+SS∗ �C . But then SS∗ � xx∗ and thus S = xv∗ with ‖v‖� 1. Also B∗B+
T ∗T = BB∗ +SS∗ � C , and thus T ∗T � yy∗ yielding T = yw∗ with ‖w‖ � 1. In addi-
tion, BT ∗ +SP∗ = B∗S+T ∗P . In particular, range(BT ∗ +SP∗) = range(B∗S+T ∗P) .
Note that range(BT ∗ +SP∗) ⊆ span(By,x) and range(B∗S+T ∗P) ⊆ span(B∗x,y) . But
then it follows easily that x,y,B∗x,By are linearly dependent. Indeed, if BT ∗ +SP∗ =
B∗S+T ∗P �= 0, then span(By,x) and span(B∗x,y) must have a nontrivial intersection,
and if BT ∗+SP∗ = B∗S+T ∗P = 0, then span(By,x) and span(B∗x,y) are both at most
one dimensional. �

We can now provide a new proof of the following result by Woronowicz [14].

THEOREM 5.2. Let A,B,C be n×n matrices with n � 3 , so that M and M̃ are
as in (5.1)–(5.2). Then M is 2×n separable.

We will use a result by Hildebrand which we quote without proof.
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LEMMA 5.3. [6, Lemma 2.6] Let K be a convex cone in a real vector space H
of finite dimension N , and let L ⊆H be a subspace of dimension n. Let K′ = K∩L
and x the generator of an extreme ray in K′ . Then the minimal face in K containing x
has dimension at most N−n+1 .

Notice that if we consider the cone PSDn of n× n complex positive semidefi-
nite matrices, then the minimal face containing M � 0, is the cone F = {GCG∗ : C ∈
PSDk} , where M = GG∗ with null(G) = {0} , and k = rank(M) . In particular, the real
dimension of this minimal face is (rank(M))2 .

Proof of Theorem 5.2. Since the case n < 3 can be embedded into the case n = 3,
we will focus on the latter. As the 2× n separable matrices form a convex cone, it
suffices to prove the result for pairs (M,M̃) that generate extreme rays in the cone
of pairs of matrices as in (5.1)–(5.2). If we apply Lemma 5.3 with the choices of
K = PSD6×PSD6 and L the subspace{([

A B∗
B C

]
,

[
A B
B∗ C

])}
in the (real) vector space of pairs of Hermitian matrices of size 6×6, then K′ is the cone
of pairs of matrices as in (5.1)–(5.2). By Lemma 5.3 the minimal faces in K containing
extreme rays of K′ cannot have dimension greater than 72− 36 + 1 = 37. However,
the minimal face in K containing (M,M̃) (which generates an extreme ray in K′ ) has
dimension (rank(M))2 +(rank(M̃))2 , and hence the vector (rank(M), rank(M̃)) ∈ R2

lies in the closed disk of radius
√

37 centered at the origin. This now gives that either
min{rank(M), rank(M̃)} � 3 or max{rank(M), rank(M̃)} = 4. Next, as in Proposition
3.1 in [13] we can assume that A = I . If now min{rank(M), rank(M̃)}� 3 we have that
C = BB∗ = B∗B , and thus B is normal, which yields by Theorem 3.2 in [13] that M is
2× n separable. On the other hand, if max{rank(M), rank(M̃)} = 4 we can conclude
by Theorem 5.1 that M is 2× n separable (as 4 vectors in Cn are always linearly
dependent when n � 3). �

It should be noted that the original statement of Woronowicz is formulated in
the dual form: if Φ : C2×2 → Cn×n is a positive linear map (thus Φ(PSD2) ⊆ PSDn )
and n � 3, then Φ must be decomposable. That is, Φ must be of the form Φ(M) =
∑k

i=1 RiMR∗
i +∑l

i=1 SiMT S∗i .

Acknowledgement. The authors wish to thank Dr. Roland Hildebrand for pointing
out how Theorem 5.1 in conjunction with his results, leads to a proof of the result by
Woronowicz.
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