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SUMS OF NEVANLINNA FUNCTIONS AND
DIFFERENTIAL EQUATIONS ON STAR-SHAPED GRAPHS

VYACHESLAV PIVOVARCHIK AND HARALD WORACEK

(Communicated by L. Rodman)

Abstract. Additive decompositions of a meromorphic function give rise to quotient represen-
tations of a particular form. We raise the question which quotient representations of a given
function arise in this way. This question is answered by means of two characterizations via
different terms. We pay particular attention to functions belonging to various subclasses of the
Nevanlinna class of functions with nonnegative imaginary part throughout the upper half-plane.
Our results lead to some direct and inverse spectral theorems for systems of strings or systems
of Sturm-Liouville equations supported on a star-shaped graph.

1. Introduction

Every function f which is meromorphic in the whole complex plane can, by the
Weierstraf3 Factorization Theorem, be represented as a quotient of two entire functions,
f=P~'Q. Among all quotient representations, clearly, those where P and Q have no
common zeros are of particular importance. Thinking of the theory of divisibility in the
integral domain H(C) of all entire functions, these are just the representations of an
element f of its quotient field as a quotient P~ Q of two relatively prime elements of
the ring. Such representations always exist and are unique up to units of the ring, i.e.
up to zerofree entire functions.

Particular quotient representations of a meromorphic function f by not necessarily
relatively prime entire functions can be obtained from additive decompositions of f:
If fi,...,fx are meromorphic functions with Y, fi = f, and if each f; is written as
fi= Pi_lQi with some entire functions P;, Q;, then

f:i%:g where P;:ﬁPj, Q::i(QiﬁPJ) (D
“p P i1 i=1 J;l.
J7

Here the functions P and Q need not be relatively prime, even if we assume that for
each i € {1,...,n} the two functions P; and Q; are.

Mathematics subject classification (2000): Primary 34B45. Secondary 34B07, 30D35, 34B24.
Keywords and phrases: Nevanlinna function, star-graph, string equation, Kirchhoff condition.

V. Pivovarchik expresses his gratitude to Vienna University of Technology for support and hospitality. He was also
supported by grant UK-2811-OD-06 of Civil Research and Development Foundation (USA).

© &1€P€N’ Zagreb 451
Paper OaM-03-26



452 VYACHESLAV PIVOVARCHIK AND HARALD WORACEK

We raise the question how to recognize from a pair (Q,P) of entire functions
whether it arises in the way (1.1) from an additive decomposition of its quotient f :=
P~'Q into n summands. It turns out to be necessary to answer this question not for the
full field .#(C) of all functions meromorphic in the plane, but for certain subclasses
of & C . (C) in the sense that the function f and the summands f; in the addi-
tive decomposition f = Y | f; are required to belong to #". To be precise, we will
have to deal with meromorphic functions which additionally belong to several specific
subclasses of Nevanlinna functions. Among them the class .#~! of all Nevanlinna
functions which are analytic in C\ [0,°) and take nonpositive values on (—oe,0), and
the class .4#"P of all Nevanlinna functions which are meromorphic in C\ [0,e) and
have only finitely many poles in (—e,0).

1.1. DEFINITION. Let .2 C .#(C) andlet P,Q € H(C).

(i) The pair (Q,P) is called a 1-.# -pair, if P"'Q € # and P and Q have no
common zeros.

(ii) Let n € N, n > 2. The pair (Q,P) is called an n-¢ -pair, if P10 e %, there
exist 1-.¢ -pairs (Q1,P),...,(On,P,) such that

n n n
P=IIr. 0=Y (a]17). (1.2)
i=1 =1 j=1
J#
and no representation of this kind is possible with less than n many 1-.% -pairs.

Under certain assumptions on the class %, which will be made precise later, we
will establish necessary and sufficient conditions for a pair (Q,P) to form an n-¢ -
pair. These conditions are given either in terms of the distribution and interrelation of
the zeros of P and Q, cf. Theorem 4.2, or in terms of the distribution of zeros plus
a reality condition on derivatives of the function ¢(z) := P(z?) — izQ(z%) or y(z) :=
Q(z%) +izP(z?), respectively, cf. Theorem 4.7.

The notion of n-J¢ -pairs is of some intrinsic interest, since it relates the addi-
tive and multiplicative structures of the ring H(C). However, our motivation to intro-
duce and investigate this notion arose from various concrete problems of mathematical
physics. For example, consider a plane star-shaped graph composed of n strings, with
(finite or infinite) respective lengths L; and mass distributions m;(x), which are joined
at one internal vertex:

(1.3)
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The strings are stretched and the system is able to vibrate in the direction orthogonal to
the equillibrium positions of the strings. The central vertex is assumed to be subject to
viscouse friction with coefficient of damping p > 0.

Let us explain the phenomena which arise in this situation for the particular case
of strings with finite length and total mass, where at the external vertices Dirichlet
boundary conditions are imposed.

Denote by si(z,s), i = 1,---,n, the solution of the i-th string equation

V' (s)+ 0 ]zy(u)dm,-(u) =0, s € (—o,L;)

with boundary values s;(z,L;) =0, %si(z,s) ls=z; = 1, at the outer vertex. If the system
were undamped, the associated operator model could be viewed as a quasilinear opera-
tor pencil z°I — A with some selfadjoint operator A. The set of eigenfrequencies would
equal the set of zeros of the function

28_ 2,8) o= ()HSJ ,0
,7&1

In our situation, due to the presence of damping, the associated operator model will
consist of a quadratic operator pencil of the form z>R — izuK +A with some selfad-
joint operator A, a one-dimensional projection K, and a nonnegative operator R. The
eigenfrequences of the system are equal to the zeros of the function

(28 {(22,5) 5= OHS >+iZHH5i(2270)
i1
,7&1

where 1 > 0 denotes the coefficient of damping at the central vertex
It is well-known, cf. [KK2], that the functions s;(z,s) and 2 5:5i(z,s) are, for each
fixed s, entire functions of z and do not have common zeros. Moreover we have

25:(2,5)]s—0
Si (Z7 0)

Defining entire functions P; and Q; as

e L.

d
B(Z) = ,LLS,‘(Z,O), Qi(z) = _gsi(z7s)|5=07

and letting P and Q be defined by (1.2), we see that the function ®(z) is nothing else

but ]
T [0(2?) +izP(2%)] .

Thus the eigenfrequencies of the considered problem are described by the zeros of
the function Q(z?) + izP(z?) with an n-.# -pair (Q,P) where % = .#(C)n./~!.
Our investigations on n-.% -pairs will hence give rise to direct and inverse spectral
theorems.

D(z) =
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Let us point out one noteworthy consequence of the present description of the set
of eigenfrequencies: Apparently, the eigenfrequencies of the above problem which are
located in the open lower half-plane play a significantly different role than those lying
on the real line, namely representing decaying states and not just stable states. From
some general results we will obtain that, under some conditions, the number of real
eigenfrequencies of the problem is bounded by the number of nonreal eigenfrequencies,
where the term ‘bounded’ has to be interpreted by means of asymptotic density.

The content of the paper is arranged in six sections. After this introduction, in
Section 2, we set up notation which will be used throughout the paper. Moreover, we
recall some facts from the theory of strings. In Section 3, we introduce and investigate
one property of a class %~ which is responsible for the validity of our characterizations
of n-.# -pairs, cf. Definition 3.1. We show that this property is satisfied for subclasses
of Nevanlinna functions which are defined by means of conditions on the data in the
Herglotz-integral representation of a Nevanlinna function.

Section 4 is the core of this paper. We formulate and prove our main results The-
orem 4.2, Theorem 4.7, and Theorem 4.15, where we give characterizations of n-.% -
pairs (Q,P) in terms of the distribution of zeros of P,Q or of ¢,y . These conditions
can be significantly simplified for the particular case of the class . (C)N.#~!, which
is of importance in applications, cf. Corollary 4.6, Corollary 4.14, and Corollary 4.18.
In Section 5, we discuss the relation between real and nonreal zeros of the function
. Boundedness of real zeros by nonreal zeros is expressed in terms of densites with
respect to growth functions, cf. Theorem 5.4, Proposition 5.6. In the particular case of
polynomials, a bound on the actual number of real zeros in terms of the number of non-
real zeros can be given, cf. Proposition 5.7. The relevant notation on zero-distribution
and growth of entire functions will be recalled in the beginning of Section 5.

Finally, in Section 6, we turn to applications and discuss damped systems of dif-
ferential equations on a star-shaped graph. The results of the previous sections give rise
to some direct and inverse spectral results for the considered problems. First we deal
with a system of string equations, and deduce a direct spectral theorem; we will employ
Theorem 4.15. From the viewpoint of physical interpretation, unstable damped systems
are not too meaningful. Hence, major interest lies in stable systems. For this case we
will also obtain an inverse spectral theorem, i.e. make available a complete characteri-
zation of those point-sets which occur as spectra. The basic ingredients are Corollary
4.18 and classical inverse results on strings. For this reason, also the result we obtain
is a pure existence result and not constructive. Secondly, we investigate a system of
Sturm-Liouville equations given on a star-shaped graph, and deduce a direct spectral
theorem; we will again employ Theorem 4.15. In order to deal with inverse spectral
problems for Sturm-Liouville equations, it is necessary to invoke considerations on the
asymptotics of the spectrum in addition to Proposition 4.9. We will not touch upon
these topics in the present paper; this will be subject of future work.

Let us note that the above mentioned direct spectral theorems include several state-
ments made in earlier papers about the eigenfrequencies of a damped system of strings
or Sturm-Liouville equations on a star-shaped graph as particular cases, for details see
Remark 6.11, Remark 6.13.
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2. Notation and preliminaries

In this section we collect some necessary notation and recall some results which
will be needed throughout the paper.

A. Entire and meromorphic functions.
If D C C is an open set, we denote by H(D) the set of all functions which are

analytic on D, and by .# (D) the set of all functions meromorphic in D.
2.1. Notation: Let f € # (D).

(i) A function 97 : D — Z is defined as follows: If

oo

f@) =Y alz—w), a,#0,

k=kq
is the Laurent expansion of the function f at the point w, then d/(w) :=ko.

(if) Denote by Z(f) and o(f) the set of all zeros of f and poles of f, respectively.
In other words, Z(f) = {weD:0s(w) >0} and o(f) ={we D:ds(w) <0}.

(iii) A function f* € .#(D') with D' := {w € C: W € D} is defined as f*(z) := f(3).
B. Classes of Nevanlinna functions.

The Nevanlinna class ./ is defined as the set of all functions ¢ € H(C\ R) with
g = q" which satisfy Img(z) > 0 for all points z in the open upper half plane C*. In
the present paper also some subclasses of .4~ will appear, namely:

(i) the class AP of essentially positive Nevanlinna functions, which is defined as
the set of all functions f € .4 which are analytic in C\ [0,0) with possible
exception of finitely many poles.

(ii) the class .4/, which is defined as the set of all functions f € .4 such that for
some ¥ € R we have f € H(C\ [y,)) and f(z) > 0 for z € (—e0,y).

(iii) the class 4P, which is defined as the set of all functions f € .4 such that for
some ¥ € R we have f € H(C\ [y,>)) and f(z) <0 for z € (—e0,y).

(iv) the Stieltjes class ., defined as the set of all functions f € A4 NH(C\ [0,))
such that f(z) > 0 for z € (—°,0);

(v) the class .1, defined as the set of all functions f € A4 NH(C\ [0,%)) such
that f(z) <0 for z € (—°,0);

Since in the present paper we mainly deal with function meromorphic in the whole
complex plane, let us introduce the following notational convention: If .Z is any class
of functions, then

L=HMC)NYL,
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eg. SV =#(C)Nny".
Next we very briefly recall some properties of the above classes of Nevanlinna
functions. More details can be found e.g. in [KK1] or [AD1], [AD2].

2.2. Integral representation for N : If ¢ € A, then there exist unique numbers
a,b € R with b > 0, and a unique positive Borel measure on R with

du(t)
oo 2.1
R1—|—t2< ’ @1
such that
t
()—a+bz+/ P m)du(t). 2.2)

Conversely, given a,b € R, b > 0, and a positive Borel measure p with (2.1), then the
right hand side of (2.2) defines a function which belongs to 4.

A function g € .4 is meromorphic in the whole complex plane, i.e. belongs to N,
if and only if the corresponding measure u is discrete. In this case o(g) = supp i, and
the integral representation (2.2) writes as

q(z) =a+bz+ Y ( L % )rk (2.3)

2
wéolg) M2 1
where r; := —Res(g,x;). This series converges locally uniformly on C\ o(q).
2.3. Integral representations for . and /' :

(i) A function g belongs to the Stieltjes class if and only if it can be represented in
the form (2.2) where the data (a,b, i) has the following additional properties:

du(r)
b=0, suppu C[0,), T /1+t2 uit

[0,%2)

This means that we can write ¢(z) = d’ + [jo .., d,“T(?

number a’ .

with some nonnegative real

(ii) A function g belongs to the class ./~ ! if and only if it can be represented in the
form (2.2) where the data (a,b, 1) has the following additional properties:

du
supp C [0,0), /I(H(,)z <eo, +/

1+t2

[0,%2)

This means that we can write g(z) = @' + bz + Jioes ( )du( ) with some
nonpositive real number a’.

2.4. Relations between the introduced subclasses of N :
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(i) We have
qz) €N = —qz) ' e N q(z) € NP = —q(z) L € NP
q(z) € NP = —q(z) L e NP q(z) € S = —q(z) e 7!

(if) We have
q(z) € S = (q(z) € N and zq(z) € N) <= z2q(Z*) € N

(iii) We have
jepzﬁpuﬁp, yg%p, y*lg,/;/_ep

C. The Hermite-Biehler class.

The Hermite-Biehler class J#B is defined as the set of all entire functions E which
have no zeros in the open upper half plane C*, and satisfy

|E(Z)| < |E(z)], ze CT.

For an entire function E we set A := 1(E+E") and B := L(E — E*), so that E =
A —iB. Then E € J¢B if and only if A and B have no common nonreal zeros and the
function A~!'B belongs to the Nevanlinna class.

With a pair (4,B) of entire functions another entire function ¢4 g can be associ-
ated. This definition is motivated from the form of the characteristic functions appear-
ing in applications, cf. §6, as well as from some results on symmetric and semibounded
Hermite-Biehler functions, cf. [KWW2], [PW].

2.5. DEFINITION. For A,B € H(C) define
0a8(z) == A(z*) —izB(z%).

Note that the function ¢, 5 satisfies the functional equation ¢f »(z) = ¢a p(—2).

2.6. ¢ap as Hermite-Biehler function: Let A,B € H(C), A =A*, B=B*, be
given. Then ¢4 g € B if and only if A and B have no common zeros in C\ [0,°)
and A~!'B belongs to the Stieltjes class.

D. Strings.

In this, more elaborate, subsection we recall some facts about strings which will
be used in this paper. We do not intend to go into the greatest possible generality, we
content ourselves with what will be needed later on. Our standard reference concerning
the theory of strings is [KK2], and most of the things we state below are extracted from
this paper. Other references for the fundamental results on strings are [DK] or [Ka]; for
the relationship with canonical systems see [KWW3].

A string S[L,m] is a pair consisting of a number L € [0,], and a non-negative
(possibly infinite) Borel measure m on RU {+eo} with suppm C [0,L], m([0,x]) < oo
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for x € [0,L), and m({L}) = 0. Denote by M the distribution function of m which is
normalized such that it is left-continuous and satisfies M(0) =0, i.e. put

M(s) :=m((—o0,s)), s € (—oo,L].

The equation of the string is the integral equation

Y (s) + o ]zy(u)dm(u) =0, s € (—oo,L). (2.4)

Thereby z is a complex parameter. Often this equation is also written in the form

i1 (G 0) ot =0.

understanding by ﬁ the Radon-Nikodym derivative. This equation arises when Fourier’s
method is applied to the partial differential equation

d av(s,t) 02
m( s )‘WW):O’

which describes the vibrations of a string with nonhomogeneous mass distribution.
To a string S[L,m] an operator model is associated, namely one can consider the
operator Tyax which acts in the Hilbert space L?(m) as

Tonaxy = _dAj(s) (%) ’

and whose domain is the set of all elements of L?(m) such that this expression is well-
defined and belongs to L?(m). The adjoint of Tj.x will be denoted by Tpi. It is a
symmetric operator in L?(m), and has either defect index (2,2) or (1,1). If it has
defect (2,2) we speak of limit circle case, otherwise of limit point case.

2.7. Limit circle/point case: It has been shown in [KK2, (10.4)] that for a string
S[L,m] limit circle case prevails if and only if

/ u? dm(u) < oo.
[0.L]

We know from [KK2, §2] that for each value of parameter z € C and each given
initial value (a,b) € C?, there exists a unique solution y(z,s) of (2.4) with y(z,0) = a
and y'(z,0—) = b. Here, and throughout this paper, a prime will denote differentiation
with respect to s. Moreover, note that for each solution y of (2.4) the function y' is con-
tinuous from the right but not necessarily from the left. Let us denote by ¢(z,s), ¥(z,s)
the unique solutions of (2.4) with

(p(Z,O) = 17 (P/(Z,O—) = Oa W(Z,O) = Oa W/(Z7O_) =1. (25)

The following facts have been shown in [KK2, §2].
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2.8. Properties of @,y as functions of z: Let s € [0,L) be fixed.

(i) The functions @(z,s),@’(z,s),w(z,s), ¥ (z,s) are entire functions of z. They

satisfy
W/(Z,S)(P(Z,S)—(P/(Z,S)W(Z,S) =1. (26)
(ii) We have
an :17}’[:0 an :O,n:O
azn(p(07s) <0, nodd 5 ¢'(0,5) < <0, nodd
' >0, neven,n > 2 >0, neven,n >2
o =s,n=0 . =1,n=0
a—zn (O,S) < O, n odd a—znwl(o,s) < O7 n odd
>0, neven,n > 2 >0, neven,n > 2

(iii) Each of the functions @(z,s),¢’(z,s), w(z,s), ¥ (z,5) takes real and positive val-
ues for z € (—ee,0).

(iv) The functions g,(é’;)) and q'f,(é;)) belong to the Stieltjes class, and satisfy
lim L&)y V@S
o (P/(Z,S) T W/( 75)
im ¢(z.5) = +oo, lim v(z,9) =
209/ (z,9) < 0y (2,9)

The functions ¢,y are related to the operator theory Tp,, since they are can-
didates for defect elements. Actually, the following statement holds true: The string
S[L,m] is in the limit circle case if and only if both ¢(z,s) and y(z,s) belong to
L?(m). If S[L,m] is in the limit point case, then for each z € C\ R there exists a unique
number Q(z) such that

0(2)9(z.5) — w(zs) € L*(m). 2.7)

Another classification of strings is the following: Put [ := sup(suppm), then the string
S[L,m] is called regular if [ < oo and M(l) < eo. Otherwise, if [ +m(l) = oo, it is called
singular. Clearly, a regular string is in the limit circle case; for a singular string both,
limit circle or limit point case, may occur.

We say that a string has discrete spectrum, if one (and hence all) selfadjoint exten-
sions of Tyin have discrete spectrum. Equivalently, one (and hence all) closed operators
T with Tiyin € T C Thax and p(T) # 0 have compact resolvents. This property of a
string has been characterized explicitly, cf. [KK2, 11.9°].

2.9. Strings with discrete spectrum: The string S[L,m] has discrete spectrum if
and only if it is of one of the following forms (again [ := sup(suppm)):
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1. S[L,m] is regular;
2. I =o0, M(o0) < oo, and limy_e s(M(o0) — M(s)) = 0;
3. 1 <oo, M(I) = oo, and lims_,; M(s)(I —s) =0.

Note that S[L,m] always has discrete spectrum if limit circle case prevails.

Let S[L,m] be a string, and let ¢(z,s),y(z,s) be the fundamental system of solu-
tions defined by (2.5). Moreover, let ¥ € (—eo,o0]. Then we consider the limit

y (2) := lim ‘I//(Z7S)Y+W(Z7S)

_ , 2.8
.\'I/L (P/(Z,S)Y+ (P(Z,S) ( )

For y = o the quotient on the right hand side is understood as Z:Eif)) . Of course, first

of all, we have to investigate when this limit exists. Thereby we meet significantly
different situations depending whether S[L,m] is regular or singular and in the limit
circle or limit point case.

2.10. qu when regular: For each y € (—oo,o0| the limit (2.8) exists locally

uniformly for z € C\R. The function gj ., belongs to 4T N.#(C) and has at most
one pole in (—eo,0). It belongs to the Stieltjes class if and only if ¥ € [0,e0]. Each
function @(z,s5),¢'(z,5),¥(z,s), ¥ (z,s) has a continuous extensions to s = L. The
respective limits when s tends to L exist locally uniformly for z € C\ R. We can thus
write

II//(Z7L)Y+ v(z,L)

@' L)Y+ (L)

The properties of q{m stated in 2.10 are only implicitly contained in [KK2]; we
will provide a direct proof below, after Lemma 2.14.

q{,m (2) =

2.11. q{m when singular/limit circle case: Assume that sup(suppm) = L. For
each y € [0,00] the limit (2.8) exists locally uniformly for z € C\ [0,°) and does not
depend on y. The function obtained in this way, let us denote it by gz, belongs to
#N.#(C). Each function ¢’(z,s),¥’(z,s) has a continuous extensions to s = L. We

can thus write (L)
. v(z,L

7) = —.
amle) = o)

2.12. qlm when singular/limit point case: Assume that sup(suppm) = L. For
each y € (—oo, 00| the limit (2.8) exists locally uniformly for z € C\ [0,o0) and does
not depend on y. The function obtained in this way, let us denote it by g;  , is called
the Titchmarsh-Weyl coefficient of the string S[L,m]. It belongs to the Stieltjes class
.. Moreover, it is meromorphic on C if and only if the string S[L,m] has discrete
spectrum. For each z € C\ R we have qm(2)9(z,5) — w(z,s) € L*(m).

It is a fundamental fact that an inverse theorem holds, cf. [KK2, Theorem 11.2].

2.13. Inverse Theorem for . : Let g € . be given. Then there exists a string
S[L,m] and a number y € [0,0] such that g = qzm_
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Note here that if S[L,m] is regular then y is uniquely determined and belongs to
[0,00]. If S[L,m] is singular and in the limit circle (limit point) case, the choice of
¥ € [0,00] (or ¥ € (—o0,00], respectively) is arbitrary.

An even more fundamental result states that the string S[L,m] (together with the
number v if it is regular) will be uniquely determined by the given function g € .7 if
we require some additional normalization of L,m. We will not go into more details in
this respect, since in our present work uniqueness aspects will not play a role; actually,
in the situations considered later on, uniqueness will never hold, cf. Remark 6.7.

We will often work with a representation of the function qu by means of a
solution s(z,s) satisfying a boundary condition at the right endpoint, rather than with its
definition via the solutions ¢, y. If S[L,m] is given together with a number y € (—eo, 0]
in case S[L,m] is regular, then for each z € C\R there exists a (up to scalar multiples
unique) nontrivial solution s(z,s) of (2.4) which satisfies the boundary conditions

ys'(z,L) +s(z,L) =0 (regular) (2.9)

Ii/ni s'(z,5) =0 (singular/limit circle case) (2.10)

s(z,s) € L*(m) (singular/limit point case)

If the spectrum of the string is discrete, such a function exists actually for all z € C.
Note here that, if S[L,m] is singular but in the limit circle case, due to (2.10) we con-
sider only one specific selfadjoint extension of Tp,, although there exists a whole
1 -parameter family of selfadjoint extensions. The only reason for this is that the ex-
act formulation of the corresponding boundary conditions would require introduction
of more notation. Related with this fact is also the, on first sight maybe surprising,
behaviour of the limit gj . in 2.11.

~ 5(z0)
s'(z,0

2.14. LEMMA. We have qzm(z) =

=

Proof. Write s(z,s) = A(2)@(z,5) + B(z)¥(z,s). Then it follows that §'(z,s) =
A(2)@'(z,5) + B(z)¥'(z,5). For s = 0 we obtain A(z) = s(z,0), B(z) = s'(z,0).

Consider first the case that S[L, m] is regular. Setting s = L and substituting in the
boundary condition gives

0=7[A(2)¢'(z,L) +B(2)¥'(z,.L)] + [A(x)@(z, L) + B(x)w(z,L)] =

=AQR) ¢ (z L)Y+ 0z, L)) +BR) W' (z, L)y + w(z,L)],

and we obtain that
(=20 _ 50
’ B(z) s'(z,0)

Next, let S[L,m] be singular but in the limit circle case. Then the desired equality is
obtained by letting s tend to L in the relation s'(z,s) = s(z,0)@’(z,s) +5'(2,0) ¥ (z,5) .

Finally, assume that S[L,m]| is in the limit point case. Then s(z,s) is linearly
dependent with the function gz m (2)@(z,5) — W(z,s), cf. 2.11, (2.7). Again the assertion
follows. U




462 VYACHESLAV PIVOVARCHIK AND HARALD WORACEK

Let us now come to the above promised proof of the portion of 2.10 which deals
with the properties of g . The function qj ,, belongs to N, N.#(C) and has at
most one pole in (—=,0). It belongs to the Stieltjes class if and only if v € [0,9].

Proof. Using the Lagrange identity [KK2, (1.20)] and the boundary condition
(2.9), we obtain

L

(-9 [ s(eus(Es)amu) = [ (s(elss) —s(e)B5(2.5)]) dmie) =

Thus —‘f,(é’%)) eN.

By (2.6) the functions y'(z,L)y + w(z,L) and ¢'(z,L)y + ¢(z,L) have no com-
mon zeros. Thus the poles and zeros of qzm coincide with the solutions of the respec-
tive equation

¢(z,L) v(z,L)

oL " VR
We are interested in possible solutions lying in (—eo0,0). By 2.8, (iv), we see that
the first equation possesses either no such solution or exactly one, depending whether
¥ € [0,09] or ¥ € (—o0,0). Similarly, the second equation has no or exactly one solution
in the interval (—oo,0), depending whether y € (—oo, —L]U[0,] or y € (—L,0). U

In the present work we will be particularly interested in strings which have a non-
negative spectrum.

2.15. Strings with nonnegative spectrum: Let a string S[L, m] be given. Then we
can consider the restriction V of Ty« defined by the boundary condition

¥y (0—)=0.

The symmetric operator V* has defect index (1,1) or is selfadjoint, depending whether
S[L,m] is in the limit circle or limit point case.

(i) Assume that S[L,m] is in the limit point case. Then the spectrum of V* coin-
cides with the set of poles of the Titchmarsh-Weyl coefficient g;  and, hence,
is contained in [0, o).

If V* has defect index (1,1), we have to prescribe a second boundary condition in
order to fix a selfadjoint extension of V*, and by means of this may talk about the
spectrum of the string.

(if) Assume that S[L,m] is regular. Then the set of all selfadjoint extensions of V*
is parameterized as {A, : y € (—oo,o0]}, where Ay is the selfadjoint extension
of V* defined by the boundary condition yy' (L) +y(L) = 0. For y = oo, this
condition is understood as y'(L) = 0. The spectrum of A, coincides with the set
of poles of the function ¢! . Hence, it is nonnegative if and only if y € [0,c].
Let us remark that the extension A.. is the Friedrichs extension of V*.
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(tif) Assume that S[L,m] is singular but in the limit circle case. Then exactly one
selfadjoint extension of V*, namely its Friedrichs extension, is nonegative. It
is given by the boundary condition lim,_ y'(s) = 0, and its spectrum coincides
with the set of poles of §g , .

E. n-J¢ -pairs.

Item (ii) in Definition 1.1 of an n-.% -pair with n > 2 can be reformulated as
follows: Let # C .#(C) and P,Q € H(C). Then (Q,P) is an n-.% -pair if and only
if there exist 1-.# -pairs (Q;,P;), j=1,...,n, such that

Q

a k)
~

n
=2
j=1

L p=]P. 2.11)
J j=1

and no such representation is possible with less than n many 1-.¢" -pairs.

Thus (Q,P) being an n-.# -pair implies that the function P~'Q can be decom-
posed into a sum of n functions, all of them belonging to .%#". Conversely, however,
not every additive decomposition of P~'Q will be suitable:

2.16. LEMMA. Let # C .#(C), P,Q € H(C), and n € N. Then (Q,P) is an
n-J¢ -pair if and only if there exist fi,...,fn € & such that

~ IO
T

n
fiv op =Y max{—0,0}, (2.12)
j=1

and no such decomposition is possible with less than n many elements of .

Proof. Assume first that (Q,P) is an n- ¢ -pair, and let (Q;,P;) be 1-¢ -pairs
which satisfy (2.11). Then f; := PJ.’IQJ- € A and 0y, =g, —p;. Since suppdg; N
suppdp; =0, we have

max{—0s;,,0} =0p,, (2.13)

and conclude that 9p = ¥;_; max{—0,,0}.

Conversely, let fi,...,f, € % be given according to (2.12). Choose Q;,P; €
H(C) such that suppdg, Nsuppdp, =0 and f; = PJ-_IQ,' . Then (2.13) holds, and hence
0p =0y, p; - Thus there exists a zerofree function D € H(C) with P = DITj_, P;. The
pairs

(DQ1,DPy), (Q2,P5),...,(On, B)

are 1-.7 -pairs and satisfy (2.11). We conclude that (Q, P) is an m-.# -pair with some
m < n. If m were strictly less than n, we would obtain from the first paragraph of this
proof a contradiction to the minimality requirement in the condition of the lemma. U
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3. The pole-subset-property

In the study of n-_¢ -pairs the following property of a subclass .2~ of .#(C)
plays a crucial role.

3.1. DERINITION. Let ¢ C .#(C). We say that the class J# has the pole-
subset-property, if it satisfies:

(PSP)  Whenever f € J¢ and a nonempty subset T C o(f) is given, then there
exist g,gr € % such that

o(g)=o0(f), o(gr)=T and f=g+gr.

3.2. EXAMPLE. A first example for a class with the pole-subset-property is the set
A (C) itself. To see this, let f € .#(C) and T C o(f) be given. By the Mittag-Leffler
Theorem there exists a function g7 € .Z(C), all of whose poles are simple, such that
o(gr)=T and
Res(gr,w) #Res(f,w), weT.

Put g:= f—gr. Then g€ M(C), o(g) =0o(f) and f=g+gr.

Next we give two construction methods for classes with (PSP). The proof of these
statements is immediate from the definition.

3.3. REMARK.

(i) Let %, i €1, be a family of subsets of .# (C). If, for each i € I, the class J#;
satisfies (PSP), then also |J;c; %; does.

(if) Assume that % C .#(C) has the property (PSP), and let wy,ws € C, uj,up €
C\ {0}. Then also

A= {urf(uiz+wi)+war: f€ X}
satisfies (PSP).

In the context of subclasses of .4” a source for the pole-subset-property is found
in integral representations.

3.4. EXAMPLE.

(i) Let D C R, and define
Np:={f €N : fanalyticon C\D}.
Then .4} has the pole-subset-property.

(ii) The set 7 of all meromorphic Stieltjes class functions has the pole-subset-
property.
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(iii) For xo,a0 € R and A C R, xp € A, denote by A4, o the set of all Nevan-
linna functions f which are analytic in an open neighbourhood of A and satisfy
f(x0) < 0. Then Ay, o has the pole-subset-property if and only if ¢ > 0.

Proof. Let f € N and T C o(f) be given. Let a, b, and r, be the data in the
integral representation (2.3) of f, and define

gr(z) = 2( ! n )r—”. 3.1)

)
ger =z 14x/ 2

Then gr and g := f — gr are both Nevanlinna functions and, clearly, o(gr) =T,
o(f—gr)=o0(f) and f=g+gr.

The assertion (i) is immediate: If o(f) C D, clearly, also o(gr),0(g) C D.
Assume next that f € .. Puta:=3, cr ﬁ%’l, then d+gr € ., and

f-aten)@=(-a+ ¥ (——-2 )

Xn—z 1+x32

xn€0(f)
with
v o yxn€o(H\T
" o x €T
‘We have

Xn Xn Iy Xn
a— a 2 2 n — 2 — = 2 r/
2 2 2 n
weou) V¥ ger a2 S T

and hence f — (a+gr) € .. This shows (ii).

We come to the proof of (iii). A function f belongs to the class .4}y, o if and
only if the data (a,b, i) in the integral representation (2.2) has the following additional
properties:

1 t
t—xy 1412

Aﬂsuppu:(b,a—i—bxo—i—/( )du(t)goc.
R

Assume that o« >0, and let f € ,/1{04;)50706 be given. Moreover, let gr be as in (3.1) and
put

~ 1 Xn )rn
a:=— — —.
x,%T (xn —x0 1+x2/2

Since o > 0, we have @+ g7 € M., - If We set g := f— (@d—gr), we obtain

o 1 X ,
s =la a)+xnezc:(f)<xn—z 1+x%>rn
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and

@-a+ Y ()=

Xn—xo 1+x2

xn€o(f)

1 Xn 5 1 X Tn
o 3 (el B - )3 e
meo(f) X0 14+ x4 wer Vn—xo  1+x;/ 2

=0

Hence also g € %;Xma.

Consider the case that a < 0. Then, for each two functions f1, > € A4.a We
have fi(xo) + f2(x0) < 200 < a. Hence each function f € A} o With f(x) =«
cannot be decomposed in the desired way.

3.5. EXAMPLE. Each of the classes .4 P, J%fp, N and .~ has the pole-
subset property.

Proof. These assertions follow, since we can write

AP= | e, AT=U{fet+r):feS}, (3.2)
MC(—,0) yeR
M finite

</V—ep = U </V(7°°,x0};x0,07 y71 = ‘/1/(700,0] 0,0 -

Uy
xp€R

a

3.6. REMARK.

(i) Sometimes it is practical to have available the following consequence of (PSP):
Let f € % and Ty,...,T, C o(f) be nonempty. Then there exist g1,£2,-..,8n €
2 such that

o(g1)=0(f), 0(g;) =T}, j=2,....n, and f=73g;.
j=1

This is seen by an obvious induction on 7.

(ii) All the concrete classes of meromorphic functions we have considered so far
actually possess the following property, stronger than (PSP):

(s-PSP)  Whenever f € # and nonempty subsets 71,7> C o(f) with T; U
T, = o(f) are given, then there exist g;,g» € J# such that

o(g;))=Tj, j=12,and f=g +g.
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This follows by inspecting the proofs of the above examples. Actually, the defi-
nition (3.1) should be replaced by

o 1 Xn 1 Xn I'n
a@= Y (=)t 3 ()2,
X71€%\T2 Xn—2 1 +X% xn€;1mT2 Xn—2 1 +X% 2

20 3 (to-mm)et 3 (o)

_ — . 2
x,1€T2\T1 n z anTlﬁTz Xn 2 1+xn

and in some places the obvious adjustments should be made. We will not use
this fact in the present paper, and therefore will not go into more detail. Let us
only note that, similar as in item (i) of the present remark, we can inductively
deduce the following property from (s-PSP): Let f € J# , and nonempty subsets
Ti,...,T, C o(f) with Uj_; T; = o(f) be given. Then there exist g1,...,8x €
2 such that

o(gj)=Tj, j=1,...,n, and szgj.
j=1

4. Characterizations of n-.% -pairs

In this section we state and prove our main results on n-.¢ -pairs, which give
characterizations in different terms. Besides the pole-subset-property, they also depend
on the following properties of the class .2~ under consideration:

(P;) Each function f € # has only simple poles.
®P,) If fi,....fn €, then

4.1. REMARK.

(i) The condition (P;) can equivalently be stated as follows: If f € # and f =
P~'Q with some functions P,Q € H(C), then dp(w) < dg(w)+1, we C.

(ii) The class ¥, and hence also each of its subclasses, satisfies (P1) and (Py).

4.1. Characterization in terms of zeros of P and Q

Let us first investigate how to recognize n- ¢ -pairs (Q,P) among all the possible
quotient-representations of a function f € % in terms of the zero sets of the functions
P and Q.

4.2. THEOREM. Assume that ¥ C .# (C) satisfies (PSP), (P1), and (P;). Let
P,Q € H(C) be such that P~'Q € ¢, and let n € N. Then (Q,P) is an n- ¥ -pair if
and only if the following condition (B) holds:
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(B) The functions P and Q satisfy
(By) If we C and P(w) =0, then dp(w) =0p(w) +1,

(B2) max,ccdp(w) = n.

Proof. To start with let us note that (B | ) is equivalent to the condition o(P~!Q) =
Z(P): The inclusion o(P~'Q) C Z(P) always holds, and equality prevails if and only
if for each zero w of P we have dp(w) > 99 (w). However, by Remark 4.1, (i), this is
equivalent to (B ).

Step 1: Assume that (Q,P) is an n-¢ -pair, and let Q;,P;, i =1,...,n, be as in
Definition 1.1. Clearly, we have

Let w € Z(P;) for some i € {1,...,n}. Since P; and Q; have no common zeros, it
follows that w € o (P, 'Q;). By (P,) it follows that w € 6(P~'Q). Thus o(P~!Q) =
Z(P),i.e. (B1) holds.

Since, for each i € {I,...,n}, the functions P, and Q; have no common ze-
ros and Ple,- € &, by (P) each function P, can have only simple zeros. Thus
max,ec 0p(w) <n.

Step 2: Assume that (Q, P) satisfies the conditions (B ) and (B;). We show that
(Q,P) is an m-. % -pair with some m < n. Put

Tj:={weC:0p(w) >j}, j=1,...,n.

Note that Ty = Z(P) = o(P~'Q), and that none of T; is empty. Remark 3.6, (i),
furnishes us with functions gi,...,g, € ¢ such that o(g;) =Tj, j=1,...,n, and
PlQ=3"_,¢g;. Wehave

I ,weT;

max{—ng(w),O}: {O weT,
) j

It follows that ¥} max{—0,,(w),0} = 0p, and Lemma 2.16 yields that (Q,P) is an
m-J¢ -pair with some m < n.

Step 3: The proof of the theorem is now easily completed. If (Q,P) is an n-¢ -
pair, then by Step 1 it satisfies (B1) and (B, ) with some number m < n. However,
if we had m < n, then Step 2 would yield a representation of (Q,P) with less than n
many 1-.% -pairs, namely with at most m many. A contradiction to the minimality
requirement in Definition 1.1. Conversely, if (Q,P) satisfies (B1) and (B,) with n,
then by Step 2 it is an m-.# -pair with some m < n. However, by Step 1, this implies
that max,,cc 0p(w) < m, and we see that m must be equal to n. U

We will in §6 apply Theorem 4.2 with the classes .#"? and .~ !. In these cases,
the conditions (B) can be stated in a more comprehensive way. The fact which makes
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this reformulation possible is that for each function g € NP the poles and zeros of g
are contained in some semiaxis [m,o) and interlace. We will first provide the necessary
argument for the class .4 P, and then reduce to subclasses.

4.3. PROPOSITION. Let P,Q € H(C) be such that P~'Q € AP and let n € N.
Then (Q,P) is an n- A -pair if and only if the following conditions (i)—(v) hold:

(i) Z(P)UZ(Q) CR and
m :=inf (Z(P)UZ(Q)) > —eo. (4.1)

Denote by (W) and (Vi) the (finite or infinite) sequences of zeros of P and Q, respec-
tively, listed according to their multiplicities and arranged such that

m< U <<, and m<vi<w<....

(i) If vi<puy, then vi < S V< < V3<... and
VkeN: (.uk:Vk+1 = Vil =Hk+1)~
(i) If vi = Wi, then Wy = vi =ty < Va < Uz... and
Vk>2: (.uk:Vk — Vk:.uk+l>~
(iv) If vi > Uy, then iy < vy <tp < Vo < U3 ... and

Vk>2: (.uk:Vk = Vk:.uk+1>-

(v) max,crop(x) =n.

Proof. Assume that (Q,P) is an n-.4 P -pair, so that the conditions (B;) and
(B2) hold. By (B1) we have

0(9) =Z(P), z(%) =Z(Q)\Z(P).
Since P~'Q € 4P this implies that Z(P)UZ(Q) C R and that (4.1) holds. Moreover,
we see that (v) coincides with (B;). Since the poles and zeros of P~ interlace, the
conditions (ii)—(iv) are just another way to state (B1), i.e. that, if a point xy belongs
to Z(P)NZ(Q), then there must be one more zero of P at x( than zeros of Q (thinking
in terms of multiplicities).

Conversely, assume that (i/)—(v) hold. Then, by (i), the condition (B, ) coincides
with (v). Moreover, (ii)—(iv) yield (B} ). Thus (Q,P) is an n- 4P -pair. 1

We will pass to subclasses with help of two lemmata. The current aim, namely the
below Corollary 4.6, could also be deduced directly from Theorem 4.2. However, in
view of some later argumentations we prefer the approach via Lemma 4.4 and Lemma
4.5.
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4.4. LEMMA. Let P,Q € H(C), P =P*, Q = Q" and let n € N. Moreover, let
K be one of classes

Ji}(*w,xo];x07a7 ‘/1}—ep7 j717 j, e/‘%fp.
Then the following are equivalent:
(i) (Q,P) isan n- ¢ -pair;
(ii) (Q,P) isan n- A -pairand P~'Q € X .

Proof. First of all note that, since each of the stated classes %  is contained in
N P an n-¢ -pair (Q,P) certainly is an m- NP -pair with some m < n. Moreover,
clearly, P~'1Q e % .

We will in the following show that each n- NP -pair (Q,P) with P~!Q € # isan
m- ¢ -pair with some m < n. This will complete the proof of the asserted equivalence.
Throughout the rest of this proof let an n- N -pair (Q, P) be given.

Case X = J‘}(—w,xo];xo,a : Assume that P~1Q € Moo xg)irgse - L€ f1y0 005 fn € AP be
chosen according to (2.12). By (P»), this implies that o(f;) C (xo,°). Define

g2 =fi@) = filx0), i=1,....n—1, gu(2):=ful2)+ D, fi(x0)-

Then, clearly, 7_, g; = ¥i_, f; = P~'Q. Moreover, o(g;) = o(f;) C (x0,), j =
L,...,n, max{—0,;,0} = max{—0y,,0}, and

IO

gi(x0)=0,j=1,....n—1, gu(x0) = =(x) < .

Thus g; € ,/17(,007)50];)5070,, j=1,...,n,and we conclude that (Q, P) is an m-%,wm]
pair with some m < n.

Case A =771, N Since S ~! = N _g00 the case A = .71 has already
been covered. Next, we have AP = Uyer A~ y):y,0- Hence, if P10 e 4P then
this quotient belongs to «/V(foo,y];y,o for some y € R. By the already settled case, (Q,P)

0,0~

is an m- ,/V (—eoy]:7,0 -pair with some m < n, and hence also an m’ -,/Vf P -pair with some
m <n.

Case # = .7 : Assume that P"'Q € .7, and put a:=lim, . .. P(x)"'Q(x). Let again
fis--., fu € AP be chosen according to (2.12). By (P») it follows that 6 (fj) C [0,e°).
Since each of the functions f;(x) is nondecreasing on (—e<,0), we have

2 lim f;(x) = lim P(x)"'Q(x)=a>0.

x~> o X——o0
Thus a; := lim,_, o fj > —oo. Define functions

;= fi—ai+a ,j=1
- fi—aj , j=2,...,n
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Then g; € . and max{—0,,,0} = max{—0y,,0} = dp, and we conclude that (Q,P)
is an m-j-pair with some m < n.
Case X = JVf P: This case is now deduced similar as the case of .4 above using

32). Q

4.5. LEMMA. Let P,Q € H(C) be such that P~'Q € AP, and assume that
(Q, P) satisfies (B1 ). Then P~'Q belongs to

(i
(ii

(iii

NP if and only if minZ(P) < minZ(Q).
<, ifand only if 0 < minZ(P) < minZ(Q).
N

P if and only if minZ(P) > minZ(Q).

)
)
)
(iv) 71, ifand only if minZ(P) > minZ(Q) > 0.

Proof. We have o(P~'Q) = Z(P) and Z(P~'Q) = Z(Q) \ Z(P). Moreover,
P~'(x)Q(x) is nondecreasing on each interval between two poles. Thus, for exam-
ple, P~1(x)Q(x) < 0 for all x € (—o0,0) if and only if the first of its zeros lies left of

the first of its poles and is nonnegative. This shows (iv); the other cases are treated
similarly. U

4.6. COROLLARY. Let P,Q € H(C) be such that P~'Q € 4P and let n € N.
Then (Q,P) is an

(1) n-,/l}fp -pair if and only if the conditions (i) and (iii)—(v) of Proposition 4.3,
and minZ(P) < minZ(Q) hold.

(ii) n-.-pair if and only if 0 < minZ(P) < minZ(Q), and the conditions (iii)—(v)
of Proposition 4.3 hold.

(iii) n- A" -pair if and only if the conditions (i), (ii), and (v) of Proposition 4.3,
and minZ(P) > minZ(Q) hold.

(iv) n-."'-pair if and only if 0 < minZ(P) < minZ(Q), and the conditions (ii)
and (v) of Proposition 4.3 hold.

Proof. Let us prove the assertion (i); the other items are deduced in the same
manner. Assume first that (Q,P) is an n—e/ﬁep -pair. Then (i)—(v) of Proposition 4.3
hold. Since, by Theorem 4.2, (Q,P) satisfies (B1), Lemma 4.5 shows minZ(P) <
minZ(Q).

Conversely, assume that the conditions stated in the presentitem (i) hold. Then the
condition (i) of Proposition 4.3 is trivially satisfied, and we condlude that (Q, P) is an
n-. A 0 -pair. Thus it satisfies (B | ), and we obtain from Lemma 4.5 that P~'Q € AP,
According to Lemma 4.4, it follows that (Q, P) actually is an n-.# " -pair. 1
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4.2. Characterization in terms of ¢pp or ¢p _p

Our second task is to translate the property of (Q,P) being an n-.%# -pair into
properties of the function ¢pp or ¢g _p, respectively, cf. Definition 2.5. This is, actu-
ally, more involved than dealing with the zero sets of P and Q. We will in the sequel
denote by [x] the integer part of a real number x.

4.7. THEOREM. Assume that ¥ C .# (C) satisfies (PSP), (P1), and (P;). Let
P,Q € H(C) be such that P~'Q € # and let n € N. Assume, moreover, that P = P*,
Q = 0", and that the function P has at least one zero in C. Then (Q,P) isan n- ¥ -
pair if and only if one (and hence both) of the following (equivalent) conditions (C) and
(D) holds:

(C) Put ¢(2) := ¢po(z) = P(*) —izQ(z%) and 8, = min{dy(w),05(W)}, w € C.
Then

(Cy) If weC and 8, >0, then ¢%) (w) + ¢(%) (W) = 0.
(C2) max ({8,: weC\{0}}U{[36]}) =n—1.

(D) Put y(z) = ¢g—pr(z) = Q(%?) +izP(z*) and €, :=min{d, (w),0, (W)}, w € C.
Then

(D11) If we C\{0} and &, >0, then y(&)(w) —yl(&) (w) = 0.
(D12) If & > 1, then & is even and &+ (0) = 0.

(D) max ({&,: we C\{0}}U{[5&]}) =n—1.

4.8. REMARK. Let us make the following facts explicit:

(i) If the function P in the statement of Theorem 4.7 has no zeros, then trivially
(Q,P) isa 1-¢ -pair.

(ii) We have d,, > 0 or &, > 0, respectively, if and only if either w is a real zero of
¢ or v, or (w,w) is a conjugate pair of nonreal zeros of ¢ or y. If w is a real
zero of ¢ or y, then 5, =0y (w) or &, =y (w), respectively.

(iif) If (Cy)or (Dy,1), respectively, hold, then for each pair (w,w) of nonreal zeros of
¢ or y we have 8, =0y (w) =04(W) or &, =0y (W) =0y (W).

(iv) If w € R, then we have ¢ (w) = ¢(" (w) and w(™ (W) = y(" (w), respec-
tively. Thus, for real points w, the requirement in (C;) or (D) says nothing
else but Re ¢ (") (w) = 0 or Imy@v) () = 0, respectively.

(v) The functions ¢ and y satisfies the functional equations ¢*(z) = ¢(—z) and
y*(z) = y(—z). Hence also (¢9*)")(z) = (~=1)"9!")(=2) and (y*)"(z) =
(—=1)"y™ (—z). Thus the requirement in (Cy) or (D), respectively, could
also be written as

00 () (— )90 () =0, ™) (w) — (~1)> &) () =0. (42)
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vi) Using the symmetry of ¢, itis easy to see that the condition (C ) implies d 0)e
g Y ry dpo
{0}U(2N—-1).

Proof (of ‘n-# -pair <= (C)’). Since P =P* and Q = Q*, we have ¢*(z) =
P(z%) +izQ(z%). Thus 2P(z%) = ¢(z) + ¢*(z) and —2izQ(z*) = ¢(z) — ¢*(z). With
account of 8y > 0 this shows that

8,y = min {d4(w),04 (W)} = min {Dpoxz(w),DX,(Qoxz)(w)} )

Since, for every entire function f,

B (W), w#0 _Jow)  ,w#0
04ox2 (w)= {ZDf(O) w=0 ox.r(w)= { 4.3)

it follows that
 [min{op(w?).00(w?)} . w#0 44)
| min{205(0),200(0)+1} , w=0 '

In particular, we see that §,, > 0 implies P(w?) = 0. Moreover, we compute

d"(PoX? m - "

2D () =91 (6) ) = 0"+ o)) @)

Step 1, (B1)=(C;): Let w € C with §, > 0 be given. Then P(w?) =0 and
hence, by (B1), 0p(w?) = 0g(w?) + 1. We obtain from (4.4) and (4.3) that

2)—1 0
5w = {;gf:{o))_ 1: xio} = DPoXZ(W) -1 (4.6)

Hence, by (4.5),

_ 2d5w (PoX?)

W W #
9 (w)+(>))" (w) o

(w)=0.

Step 2, (C1)=(B1): Let w € C with P(w) =0 be given. In order to establish
(B ) itis enough to show that 9p(w) > g (w), since by (P) always dp(w) < 0p(w) +
1.
Assume on the contrary that 9p(w) < 9g(w). In particular, this yields that Q(w) =
0. Let v be a square root of w, then ¢(v) = ¢(¥) =0, i.e. §, > 0. Since 2P(z?) =
0(z) + ¢*(z), the relation
d"(PoX?)
—axm (v)=0
holds for each m < §,. As it is seen from (4.5), the validity of (C) implies that it also
holds for m = J,. This shows that dp,x2(v) > ,. Using (4.3), (4.4), and our indirect
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hypothesis 9p(w) < 0g(w), we derive the following contradiction (note here that v =0
if and only w = 0):

DP(W):{?Pon(V) ; W7’é0} >{5v ; W?'éo}:

F0pox2(0), w=0 18, w=0

| min{op(w),00(w)} s w#O0 | op(w)
~ )| imin{205(0),200(0) + 1}, w=0[
Step 3: We show that (B ) implies
1
max ({8, : we C\{0}}U{[3&]}) = wn

=max {0p(u): ue C} —1

Both sides of (4.7) are nonnegative numbers; recall here that by assumption the function
P has at least one zero. Hence, in order to establish (4.7), it is enough to look at the
nonzero elements on either side of (4.7).

If we C\ {0} and §, > 0, then §,, = d0p(w?) — 1, cf. (4.6). Thus §,, is less or
equal to the maximum on the right side of (4.7). If 8y > 1, then, again by (4.6), we
have [$80] = [0p(0) — 3] = 0p(0) — 1. Together it follows that the inequality ‘< in
(4.7) holds.

For the converse, let first u € C\ {0}, 9p(u) > 1. Then dp(u) =0p(u)—1>0,
and hence 6, > 0 where w denotes a square root of u. Thus dp(u) —1=34,. If
2p(0) > 1, then 29(0) > 0 and it follows that 8 > 1, actually & > 3. Thus [36o] =
0p(0) — 1. Together the inequality ‘> in (4.7) follows.

Step 4, finish of proof: If (Q,P) is an n-J¢ -pair, then by Theorem 4.2 the condi-
tions (B ) and (B;) hold. By Step 1 (C) follows, and by Step 3 (4.7) holds. However,
(4.7) together with (B,) gives (C,).

Conversely, assume that (C) and (C5) hold. Step 2 yields (B ), and Step 3 gives
in turn (4.7). Now (4.7) in conjunction with (C, ) implies (B, ). By Theorem 4.2, (Q, P)
is an n-# -pair. U

The case of the function v is treated in a much similar way.

Proof (of ‘n-# -pair <= (D)’). We have y*(z) = Q(z%) — izP(z*), and thus
20(z%) = w(z) + v*(z) and 2izP(z%) = w(z) — w*(z). This implies that
{min{DQ(w2)7DP(w2)} , w0
&y =

(4.8)
min {200(0),20p(0) +1} , w=0

In particular, we see that, for w € C\ {0}, &, > 0 implies that P(w?) = 0. Similarly,
& > 1 implies P(0) = 0. Moreover, we compute
d"(PoX? d" ' (PoX?
2P0 ) g aim LX) )
axm axm (4.9)
m #
=y @) - ()" @ =" @) - () @)

2 (z) +2im
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Step I, (B1)=(Dy,1),(D12): Let we C\ {0} with &, >0 be given. Then
P(w?) =0, and hence 2p(w?) = 0g(w?) + . It follows from (4.8) that &, = do(w?),
in particular &, < 0p(W?) = dp,x2(w). We conclude from (4.9) that

¥ w) — YT () = 0.

Assume next that & > 1. Again it follows that P(0) = 0 and thus that 9p(0) =0(0) +
1. This implies, by (4.8), that & = 20(0). In particular, & is even. Since the function
QoX? is even, we have (QoX?)")(0) = 0 whenever m is odd. Since & = 20,(0) <
20p(0), we have (PoX?)™(0) = 0 for m < &. Together we obtain that

y D (0) = (0o x2)@FV(0) 4 i(gy 4 1) (Po X2) &) (0) = 0.

Step 2, D1,1),(D12)=(B1): Let w e C with P(w) =0 be given. In order to
establish (B 1) it suffices to show dp(w) > dg(w).

Assume on the contrary that 9p(w) < 9g(w). Then also Q(w) =0 and, if v de-
notes a square root of w, therefore &, > 0. In case w =0, actually & > 1. We will
next show that

d"(PoX?)

axm

If v #£0, this follows by an inductive argument starting from P(w) =0, proceeding step
by step with the help of (4.9) and, in the last step m = ¢,, using (D1 1). Consider the
case that v = 0. Then the right hand side of (4.9), evaluated at z = 0, trivially vanishes
whenever m < &. If m = g, it vanishes since, by (D), & is an even number, Qo X 2
and PoX? are even function and Q o X? takes real values on the real line. Finally, for
m = & + 1, it vanishes by (D> ). Again an inductive argument using (4.9), this time
up to m = €+ 1, will apply and give (4.10).

We see from (4.10) that 0p y2(v) > €,. Together with (4.8) and dp(w) < 0g(w),
we derive a contradiction:

o) = { Qe R EOY 6 o)

$0px2(0), w=0 leg, w=0

(v)=0,m<¢,. (4.10)

min{0g(w),0p(w)} , w#0
1 min{204(0),20p(0) + 1}, w=0

} > op(w)

Step 3: We show that (B ) implies

1
ma & :weC\{0}tUq|=¢ ) =
X({ews we\ (01} {Zal} @.11)
=max {op(u): ueC} —1
Since we assume that P has at least one zero, the right hand side of this relation, let

us denote it by M., is nonnegative. Thus, if &, =0 or & < 1, certainly g, < M, or
[$€0] < M, respectively. Consider a point w € C\ {0} with &, > 0. Then, as we saw
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in Step 1, &, < 9p(w?). Thus &, < 0p(w?) — 1 < M,. Finally, assume that g > 1.
Then & = 204(0) = 20p(0) — 2, and thus [&o] = 0p(0) — 1 < M,. We see that the
inequality ‘<’ in (4.11) holds.

For the converse note first that the maximum on the left side of (4.11) is trivially
nonnegative. Let u € C be given such that 9p(u) > 1, and denote by w a square root
of u. Then Q(0) =0, and hence &, > 0 in case u # 0, and & > 1 in case u =0,
respectively. It follows from (4.8) and (B ) that &, = 0p(u) — 1 or & = 20p(0) —2,
respectively, and hence that 9p(u) — 1 is less or equal to the maximum on the left side
of (4.11). Thus, in (4.11), also ‘> holds.

Step 4: The proof is now finished in exactly the same way as in the last step of the
proof of equivalence with (C).

Next we will deduce characterizations for (Q,P) being an n-.%# -pair for some
concrete classes % . These results are not just reformulations of the conditions (D) of
Theorem 4.7; in contrast to Theorem 4.2 and Theorem 4.7, in the below Proposition
4.9, Corollary 4.13, and Corollary 4.14, we do not require the a priori knowledge that
P loeur.

In view of our later needs, we confine our attention to the function y, and the
classes A P, ,/V_e P and 7S However, a similar investigation could be undertaken
for the function ¢ instead of y and/or for the classes Ji%rep, .7 instead of A P
=1, or /. The key result is the following characterization for .# = .4 P; the
other characterizations will be deduced with the help of Lemma 4.4 and Lemma 4.5.

4.9. PROPOSITION. Let P,Q € H(C), P=P*, Q=0 let n€ N, and put v :=
¢o.—p. Then (Q,P) is an n- NP -pair if and only if the following conditions (i)— (viii)
are satisfied:

(i) The function y has only finitely many conjugate pairs of nonreal zeros. Each
such pair (w,w) is located on the imaginary axis, and w and W have the same
multiplicity.

Let (id1,—iA1),...,(iAp,—iAp), 0 < A1 < ... <A, be all the conjugate pairs of non-
real zeros of Y, put € =0y (iA;) = 0y (—IiA;), and

i

Az) = ﬁ(z— iAj)¥i(z+idj)5 =

J=1 Jj=1

(P +A5)5.

(ii) The function A~y has only finitely many zeros in C* . These are all simple and
located on the imaginary axis.

Let iyy,...,iyg, 0 <y; < ... <y, be all the zeros of A" vy in C*, and put

(iti) The function (Y A)~ 'y belongs to the class FB.
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(iv) We have w'®)(id;) = (—1)&y(&)(—id)), j=1,...,p
(v) If we R\ {0} is a zero of W with multiplicity o, then Imy (@ (w) = 0.
(vi) 0y (0) € {0,1}U2N. If 0,,(0) > 1, then y@v@+(0) = 0.
(vii) Foreach k €{2,...,K}, the number Y., | —iy](Qy (W) —0a(w)) is odd. The

number ¥,uc(0,—iy,)|(0y (W) —0a(w)) is odd if 0y,(0) = 1 and even otherwise.

(viii) max ({g;: j=1,...,p} U{dy(x): x e R\ {0}} U{[304,(0)]}) =n—1.

Proof. Let us first settle the case that P is zerofree. Then the function y := ¢g _p
has no conjugate pairs of nonreal zeros and no real zeros. Hence the conditions (i),
(iv), (v) are void, the condition (vi) is satisfied, and the value of the maximum in
(viii) is 0. By [PW, Theorem 3.1], the conditions (ii), (iii), and (vii) together are
equivalentto P~'Q € 4P (recall here also [KWW?2, Remark 4.2, (iii)]). In turn, this
is equivalent to (Q,P) being a 1- ¢ -pair. We see that the equivalence asserted in the
present proposition holds.

For the rest of this proof we assume that P has at least one zero. Assume that
the conditions (i)—(viii) are satisfied. Our first task is to show that P~1Q € 4P, To
this end we will employ [PW, Theorem 3.1]. Put E := A~!y. Then, clearly, E*(z) =
E(—z). Condition (iii) together with, e.g., [PW, Remark 2.3, (ii)] implies that the
overall hypothesis of this theorem is satisfied.

Write E(z) = A(z%) — izB(z?) with A,B € H(C), A = A*, B=B*. In view of
(vi), the conditions (ii) and (vii) are exactly what is needed to apply [PW, Theorem
3.1]. We obtain A(z) —iB(z) € #B and that infZ(A) > —eo. This, however, shows
that A"'B € /P,

Next we compute

0(?) +izP(%) = w(z) = A(2)E(z) = A(2)A(?) — izA(2)B(Z*) =

(f[z+/1 AR - (ﬁz+/1 B()).

=1 j=1

~.

Hence » »
=[TG+A)% Az —[1Ge+2)%B(2), (4.12)

j=1 Jj=1

and it follows that —Q~'P € 4P . However, a function f belongs to .4 P if and only
if —f~! does, and this gives P~'Q € 4P

In the next step we show that (i)—(viii) imply that (D) holds, and thus that (Q, P)
is an n-.4"*P-pair: The conditions (iv) and (v) are exactly (D), and (vi) gives
(Dj2). Since g, > 0 if and only if either (w,w) is a conjugate pair of nonreal zeros of
v orif w is a real zero of y, the condition (viii) is the same as (D> ).

Conversely, assume that (Q,P) is an n- NP -pair. Then P~!Q € .#"°P and hence
has no poles off the real axis and only finitely many poles in (—e0,0). By (B) this
implies that P has no zeros in C\ R and only finitely many zeros in (—o0,0). We
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conclude from (4.8) that (i) holds. Let A,B be defined by (4.12), and put E(z) :=
A(z%) —izB(z%) . Then, by [PW, Proposition 2.10] the overall hypothesis of [PW, The-
orem 3.1] is satisfied, and this theorem itself yields (ii) and (vii). From [PW, Remark
2.3, (ii)] we now obtain (iii). The condition (D ;) gives (iv) and (v), from (D)
we obtain (vi), and finally (D) is just (viii). U

4.10. REMARK. Sometimes it is practical to note that in the situation of Proposi-
tion 4.9 the set of zeros of the function y can be split into two disjoint parts: Assume
that P and Q satisfy the overall hypothesis of Proposition 4.9, and that (Q,P) is an
n- NP -pair for some n € N. Put

M :={we Z(w)\{0}: &, =0} U {éo} 7 (g)(t)h:r\lvise
{O} , & >1
M = {we Z(y) \{0}: & >0} U 0 otherwise

and let

dy(w) = {UW(W) , WEM, 7 do(w) = {Dw(w) , WE M,
0 , wé& M, 0 , W& M,
Then, by (iv) and (vi) of Proposition 4.9, see also Remark 4.8, (iii), the sets M| and
M, are disjoint. Moreover, clearly, di +dp = 0y,.

In the set M; there are collected all nonreal zeros of y which are not part of a
conjugate pair of zeros (and O if it is a simple zero). As it is seen by the description of
their distribution in Proposition 4.9, compare with [PW, Theorem 3.1], these are those
zeros responsible for P~ Q belonging to 4P

In the set M, there are collected all conjugate pairs of nonreal zeros, and all real
zeros (with exception of O if it is a simple zero). These are those zeros which are
responsible that (Q, P) is only an n-.4"P -pair and not a 1-.4"°P -pair.

The numbers p, k, €; in Proposition 4.9, and the number of zeros of P in (—o°,0),
are related in several ways. For example it is apparent that

)4
e =N-N,
j=1

where N and N denote the number of zeros of P located in (—e0,0) counted with or
without, respectively, their multiplicities.

The following relation is less obvious. It can be deduced with help of some el-
ementary properties of indefinite Hermite-Biehler functions. For the definition of this
term and a collection of some properties of such functions, the reader is referred to
[PW, §2].
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4.11. COROLLARY. Assume that P,Q € H(C), P = P*, Q = Q*, form an n-
NP -pair, and let the numbers p and K be as in Proposition 4.9. Then p < K.

Proof. Denote E := A=y, and let us reformulate condition (iv) of Proposition
4.9 in terms of E. To this end, note that w = AE, and A has a zero of multiplicity ¢;
at +iA;. Hence

W& (£id;) = A& (Hid)E(£id)), j=1,...,p

However,
P )4
) (idj) =¢;!(2iA)) ff]‘[( A7), AED(—idj)=g;(—2id; )Ef]_[l(/lf—)tf),
=y i

and hence (iv) is equivalentto E(id;) = E(—ilj), j=1,...,p

By [PW, Remark 2.3, (ii)], the function E belongs to the indefinite Hermite-
Biehler class with negative index k. This implies that the total multiplicity of all points
in C* where the function E~'E* attains a value of modulus 1 does not exceed &, cf.
eg [KL]. O

4.12. REMARK. In the situation of Corollary 4.11, also the number K can be
estimated by the number of zeros of P: Let again N denote the number of zeros of P
in (—o0,0) counted without multiplicities. Then k < ¢(N) where ¢ is some function
which grows only linearly. This estimate follows from [KWW1, Corollary 4.4]. The
bound obtained in this way is very rough (and not worth to be given explicitly). It is
more interesting, especially in view of our later applications, that in the situation of
n- NP -pairs an exact formula can be given, cf. the below Corollary 4.13.

From Proposition 4.9 we can also deduce characterizations of n- NP -pairs and
n-.7-! -pairs. In the case of AP not much changes; matters are equally complicated.
The conditions for (Q,P) being an n-.%~! -pair, however, are significantly simpler.

4.13. COROLLARY. Let P,Q € H(C), P=P*, Q= Q" let n€ N, and put y :=
0o.—p. Then (Q,P) is an n- NP -pair if and only if it satisfies the conditions (i)—(viii)
of Proposition 4.9 and

(ix) The function
) { R—R
Pes e (A7) (i) + (A M) (—ir)
has a zero in (yy,o°).
In this case, p. has exactly one zero outside of (yi,o°). Moreover, we have

o — N s limx/() % S (—00,0]
N+1 , otherwise
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Proof. In view of Lemma 4.4, we only need to investigate whether P~1Q € 4P
or, equivalently, whether g := —Q~'P € #P. The points yi,...,y, are exactly the
solutions of the equation g(—t?) = —% . The zeros of p, are exactly the squares roots
of the poles of g in (—e0,0). The present assertion follows from [PW, Lemma 3.2,
3.2)].

In order to obtain the formula for k, note that —Q~'P € 4 allows to apply
[KWW1, Example 4.5] rather than [KWW 1, Corollary 4.4]. d

4.14. COROLLARY. Let P,Q € H(C), P=P*, Q= Q" let n€ N, and put y :=
do.—p. Then (Q,P) is an n-. " -pair if and only if the following conditions (i)—(iv)
are satisfied:

(i) weHB.

)
(i) If we R\ {0} is a zero of w with multiplicity o, then Imy(® (w) = 0.
(iit) 0y(0) € {0,1}.
)

(iv) max{dy(x): xeR\{0}}=n—1.
Proof. Let us first settle the case that P has no zeros. In this case the condition (i7)
is void, (i) is satisfied, and the value of the maximum in (iv) is equal to 0. By 2.6,
the condition (i) is equivalent to P~!Q € .~! which in turn is equivalent to (Q, P)
being a 1 -1 -pair. This proves the required equivalence.

For the rest of this proof assume that P has at least one zero. Assume that (Q, P)
is an n-.% ! -pair. Then —Q~'P € .. Moreover, Z(P) C (0,e0) and Z(Q) C [0,0).
In particular, the functions P and Q cannot have common zeros in (—e,0). It follows
from 2.6 that y € JZB. Since P(0) # 0, we also obtain dy(0) € {0, 1}. The presently
required conditions (ii) and (iv) are just (v) and (viii) of Proposition 4.9, and are
therefore fullfilled. Note here that y € J#B implies that y has no zeros in C*, and
thus that p =k =0 and A=Y =1 in Proposition 4.9.

Conversely, assume that (i)—(iv) are satisfied. Due to (i) we have —Q~'P € .7,
ie. P7'Q €.~ As we already noted, p =k =0 and A =Y = 1 in Proposition 4.9.
Thus also the condition (iii) of Proposition 4.9 is satisfied and (i), (ii), (iv) and (vii)
are void. The conditions (v), (vi) and (viii) of Proposition 4.9 hold by the present (ii),
(iii) and (iv). Combining Proposition 4.9 with Lemma 4.4, we conclude that (Q, P) is
an n-. pair. Q4

4.3. Characterization in terms of zeros of ¢p _p

It is of major interest to formulate the conditions of Proposition 4.9, Corollary
4.13, and Corollary 4.14 as purely as possible in terms of the zero-distribution of .
Again we restrict ourselves to what will be needed in applications, namely to the func-
tion y and the classes N P JV_e P %=1 Similar results can be shown for ¢ and for
the classes Ji}fp, 7.
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4.15. THEOREM. Let d : C — Ny have discrete support. Then there exists an
n- AP -pair (Q,P) such that d = 09,_p» if and only if d satisfies the following condi-
tions:

(i) There exist only finitely many nonreal conjugate pairs (w,w) such that
min{d(w),d(w)} > 0.
Each such pair (w,w) is located on the imaginary axis, and satifies d(w) = d(w).

Let (iAy,—ik1),. .., (iAp,—iAp), 0 <Ay < ... < Ap, be all the nonreal conjugate pairs
as in (i), and denote by dx the function

dn(w) dw) ,w=d=iA;, j=1,...,p
w) =
A 0 , otherwise

(ii) There exist only finitely many points w in the open upper half plane, such that
d(w) —dx(w) > 0. Each such point w lies on the imaginary axis and satisfies
dlw)=1.

Denote the points in (ii) as iy1,...,iyx, 0<y; <...<yg, andlet Y be the function

Y(2) = ,Ul <1_E>
(iii) We have d(—w) =d(w), w e C, and d(0) € {0,1} U2N.

(iv) Foreach k € {2,...,K}, the number Y, (_iy, | —iy,)(d(W)—dr(w)) is odd. The
number ¥,.c(0,—iy,) (d(w) —da(w)) is odd if d(0) = 1 and even otherwise.

() max ({d(iA)) : j= 1,0, p} U{d(x) : x € R\ O U{[Ld(O)]}) =n—1.
(vi) We have Sy ,<od(w)Imi < oo,

Choose a function ¢ : C — Ny such that ¢(w) = ¢(— ) w e C, suppc = (suppd)N

{we C: Imw <0,Rew # 0}, and ¥\ [0y d(W WA e r > 0. By (vi) an
entire function E is well-defined by

el

EG) =[] (1—%)0[( exp( é}% ik> (4.13)

Imw<0
(vii) There exists a number a > 0 such that

(a) argY(w)+argE(w)=aw modm, w € (suppd)ﬂR

(b) If d(0) > 1, then a=Y¥_ 1y — Simweolmy;

(C) e—2a/l_,- E[g(’%]’) _ ( 1)5 Y(M ) ]_ 1

Y] yeees D
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Proof. We need to reformulate the the conditions of Proposition 4.9.

Step 1: Assume that P,Q € H(C), P =P*¥, Q = 0%, and put y(z) := ¢o p,
d := 0y, . The following correspondences are obvious:

condition of present
Proposition 4.9 condition
O = 10
0A = dp
(i) | = | (i)
Y = Y
(vi), first part | <= | (iii), second part
it) | <= | (iv)
iil) | <= | (v)
iy | 2| (i)
v¥(z) =w(—z) | = | (iii), first part

Step 2: The relation between (iv)—(vi) of Proposition 4.9 and the present condi-
tion (vii) is not so straightforward. Assume that y is as in Step 1, and satisfies (i)—
(iii) of Proposition 4.9. By Krein’s Factorization Theorem and symmetry of v, cf. [L,
Lehrsatz VIL.6], [PW, §2], there exists a function ¢ with the stated properties, a number
a >0, and an entire function D with D(z) = D*(z) = D(—z), suppdp C R\ {0}, such
that (8 :=d(0))
w(zx) = AQ)Y () D(x)e ™ E(z),

where E is defined by (4.13).
Let w e R\ {0} be a zero of y with multiplicity o. Then

v (w) = Aw)Y (w)w D' (w)e " E(w),

and hence
argy!® (w) = argY (w) —aw+argE(w) mod 7. (4.14)

Next, we compute

+A(0)Y’(0)D(0) + A(0) a’@ +A(0)D(0)(—ia) + A(0)D(0)E’(0).

We have Y'(0) = — 2};1 % and E'(0) = — Simw<o % . By symmetry, actually, ¥ .<0 % =
i Y Imw<o Im % . It follows that
(6+1) . o 1 1
w1 (0) :zA(O)D(O)<2 ——a- Y Im;). (4.15)

j=1Yj Imw<0
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Finally, note that
A(gf)(i)tj) — (_1)8./'/\(8_/)(_,7”),
and hence
W) (i) = (= 1)y (—idy) = A (i, (iA)) () DA, e E i)~
—(=D)FAE (—idj)Y (—idj)(—id;)° D(—idj)e M E(~idj) =
= (= )TN (=iA})(i2;)° D)
[V (A))e P E(idg) — Y (—id)(—1)Pe M E(~idy)]

We see that the following correspondences hold:

(4.16)

condition of present
Proposition 4.9 condition
(iv) | &2 | i)/ (e)
4.14) .
v) | <= | (vii)/(a)
(vi), second part @G (vii)/(b)

Step 3, completion of proof: Assume that there exists an n-.4P -pair (Q,P) such
that d =0y, with y := ¢p _p. The function y satisfies all the conditions in Proposition
4.9, and thus, by the above correspondences, all conditions of the present theorem.

Conversely, assume that d satisfies the present conditions. Choose a function D
with D(z) = D*(z) = D(—z) and

op(w) = {d(w) ., weR\ {0}

0 , otherwise

and define
v(z) = AR)Y (2)OD(z)e ™ E(z).

By the symmetry of d, we have y*(z) = w(—z). Thus we can write ¥ = ¢p _p with
some functions P,Q € H(C), P = P*, Q = Q. Moreover, y satisfies the conditions
(i)—(iii) of Proposition 4.9. By the above correspondences, y satisfies all the condi-

tions of Proposition 4.9. We conclude that (Q,P) is an n- N -pair. Clearly, d = 0.
3

4.16. REMARK.
(i) The conditions in Theorem 4.15 do not depend on the choice of the function c.

(ii) The condition (vii) in Theorem 4.15 is of course very implicit and hard to verify.
The appearence of a condition of this type can already be observed in the partic-
ular case of finite spectra, i.e. polynomial functions ®, where all computations
can be carried out explicitly, for some cases see [BP]. It seems that this is an
intrinsic complication and cannot be removed.
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(iif) Assume that d satisfies the conditions of Theorem 4.15. Then k > p. If d(0) >
1, then Kk > 0.If p>0 or d(0) > 1, then the number « is unique.

4.17. COROLLARY. Let notation be as in Theorem 4.15. Then there exists an n-
NP pair (Q,P) suchthat d = 0¢,_p» ifand only if d satisfies the conditions (i)—(vii)
of Theorem 4.15 and, additionally,

(vii)/(d) There exists a number A € (y,) such that e~ EE(&);) = (—1)%+1 %

Proof. Let notation be as in Step 2 of the proof of Theorem 4.15. Then we
compute

(A~ ) (i) + (A M) (—ir) =
= v (it) (it)° D(it)e“ E (it) + Y (—it) (—it)’ D(—it)e~“ E (—it) =
= (it)°D(it) - [Y (it)e™ E it) + Y (—it)(—1)%e " E(~it)] .
Thus the condition (ix) of Corollary 4.13 is equivalent to the present condition (vii)/(d).

The proof of the present assertion is completed by the same arguments used in Step 3
of the proof of Theorem 4.15.

o4.18. COROLLARY. Let notation be as in Theorem 4.15. Then there exists an
n-.#~'-pair (Q,P) such that d = 09, _p» if and only if d satisfies the following con-
ditions:

(i) We have suppd C C_UR.

(ii) We have d(—w) =d(w), we€ C, and d(0) € {0,1}.
(ii)) max{d(x): xe R\ {0}} <n—1.
(iv) We have Sy ,cod(w)Im i < oo,

)

There exists a number a > 0 such that argE(w) =aw mod 7, w € (suppd) NR.

Proof. This assertion follows by combining the correspondences established in
Step 1 and Step 2 of the proof of Theorem 4.15 with Corollary 4.14, and using y/(z) =
Z0D()e E(Z). QA

4.19. COROLLARY. Let (Q,P) be an n- NP -pair, and assume that suppd¢, <
C~UR. Then (Q,P) is an n-.%' -pair.

Proof.  The function 9y, , satisfies the conditions of Theorem 4.15. By the
present assumption, we have p = Kk = 0. By Remark 4.16, (iii), thus also D¢Q>7P(0) <
1. Moreover, Y = 1. Altogether, we see that %Qf » satisfies the conditions of Corollary
4.18. Hence, there exists an n-.%~'-pair (0, P) such that 9, , = gy -

Let G be the zerofree entire function which satisfies ¢5 _p = G@p —p, and define
H by the relation H(z*) = $(G(z) + G(—z)). Then 0 = HQ and P = HP, and hence
P~'Q =P~!Q. In particular, P~'Q € .#~!, and it follow from Lemma 4.4 that (Q, P)
isan n-. pair. Q4
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4.20. EXAMPLE. Although each n-.4"¢P-pair (Q,P) with suppdy, , CC UR

is an n-.7"! -pair, not every additive decomposition of P~'Q into summands of N eP
is suitable to show this. Let us consider the following example: Let

0():=—-22+4:—1, P(z):=(1-2)(2—2),

and
01(2):=1,P(z) :=(1—2), O2z):=2z—-3,Py(z):=2—¢
01(z) :=z,P(z) :=(1—-2), 02(z):=z—1,P(z):=2—2

Then a short computation shows that

0(z) _ 0i(z) + 0>(z) _ 01(z) n 0:(2)
P(z) Pi(z) Pz Plz) P2)

Moreover, P '01,B,' 0y € 71  but P10y € 4P\ 771

5. Relation between real and nonreal zeros of ¥

Theorem 4.7 has an interesting consequence on the distribution of the zeros of
the function y := ¢p _p for an n-# -pair (Q,P). As we have already remarked in the
introduction, the physical interpretation in applications suggests to consider the real and
nonreal zeros of y separately. It is a noteworthy fact that, roughly speaking, the number
of real zeros is bounded by the number of nonreal zeros. This fact is explained by
making use of the relation between the growth of an entire function and the distribution
of its zeros. Similar results hold for the function ¢ := ¢pp, however, in view of our
applications we will again restrict ourselves to the consideration of y .

5.1. Some notation concerning growth and distribution of zeros of an entire func-
tion

In this preliminary subsection we recall some notation and results on growth and
zero-distribution of entire functions with respect to a general growth function. Terms
and notions related to the usual order and type of an entire function, like e.g. conver-
gence exponent, genus, etc., will be freely used throughout the text. Standard references
for all these items are e.g. [L], [LG], or [Ru].

First we define how to measure the growth of an entire function. A function A :
R* — R is called a growth function, if it satisfies the following axioms:

logA(r)

(gfl)  The limit p(A) := lim, e fogr

exists and is a finite nonnegative number;

(gf2) For all sufficiently large values of r, the function A is differentiable and

. Alr
lim, . r 5 = p(R);

(ef3) logr=o0(A(r)).
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The conditions (gf1) and (gf2) ensure that we have available Valiron’s theory of proxi-
mate orders, as well as the theory of value distribution of meromorphic functions. The
condition (gf3), that A grows sufficiently rapidly, is imposed to exclude trivial cases
and is no essential restriction.

Classical examples of growth functions are functions of the form

A(r) = r*(logr)P

where a,f €R, o > 0.
If F is an entire function and A is a growth function, the A -type of F is defined

as the number F )
log™ |F
2 . 4 4
of :=limsup ————— € [0,9].

T e AGRD
Next we define how to measure the density of a sequence of complex numbers with
respect to a growth function A . If (a,)n,en is a sequence of complex numbers, denote
by n,(a;) the number of all terms a,, with modulus at most r. The upper A -density
A*(ay,) of the sequence (a,,) is then defined as

A (ay) = limsup nr((arr;)

€ [0,09].

Also a certain measure for the regularity of the distribution of a sequence plays a role.

Define
I P 1
—— limsup —— ‘

5 ) = —,
)= 5 P T | 2

and put

Y (am) := max {A* (), 8% (am) } -
For an entire function F denote by (a’) the sequence of zeros of F listed according
to their multiplicities. The number of zeros of a function F will always be limited by

its growth; the following result can be found e.g. in [L], cf. Lemma 4 and the proof of
Theorem 15.

5.1. Zero-distribution governed by growth: Let A be a growth function. Then
there exists a positive number c(A) such that

A (aE) < (M), F € H(C),
and, in case p(A) € N, that
8*(af) < c(M)of, Fe H(C).

As for a converse, the matters are more complicated. The first obstacle is the
presence of an exponential factor in the Hadamard factorization of F'. This can be
easily overcome by considering the canonical product only. However, another obstacle
appears when p(A) is an integer, and this is of intrinsic nature. In case p(A) € N, the
growth of a canonical product depends not only on the density of its zeros, but also on
the regularity of their distribution. A proof of the following statements (i) and (ii) can
be found e.g. in [L], cf. the proof of Theorem 17 and Theorem 18.
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5.2. Growth governed by zero-distribution: Let (a,,) be a sequence of nonzero
complex numbers whose convergence exponent is finite, let p denote the genus of this

sequence, and put b
1
Fiz):=]] <l - é) exp(%%a> :
(i) Let A be a growth function with p(A) € N. Then
o <CA)N (ap).
(ii) Let A be a growth function with p(A) € N. Then
of <CA)Y* (an).

Thereby C(A) is a positive number which depends only on A (but not on F ).

5.2. Comparison of real and nonreal zeros

Let v be an entire function of finite order. We will throughout this section keep
the following notation:

5.3. Notational conventions: Put &, := min{dy (w),0, (W)}, w € C. Let (x,)
denote the sequence of real nonzero zeros of y listed according to their multiplicites,
and let (4,,) denote the sequence of all nonreal points w with &, > 0 where each A,,
is listed exactly ¢, times. Let p; denote the genus of the sequence of the points (4,,),
let p, be the genus of (x,,), and define

Then the function (AX) ™!y has no real zeros (with possible exception of a zero at the
origin) and no conjugate pairs of nonreal zeros. Let (a,,) denote the sequence of zeros
of (AX)~'y where each zero is listed repeatedly according to its multiplicity, denote
by p3 the genus of this sequence, and put

z B
Az) =[] <l - —) exp(z ——l>
im0 an =l ay
By the Hadamard Factorization Theorem we can write ¥ in the form
w(z) = "e"OA(2)X (2) - €2 9A(2),

where m :=0/(0), and where d; and d, are polynomials with real coefficients whose
degree does not exceed the order of .
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We will now show in a somewhat more general formulation that in the presence
of (D) the number of real zeros of y is limited by the number of its nonreal zeros.
Actually, we give a rather general formulation of such a type of result.

5.4. THEOREM. Let v be an entire function of finite order p, and let A be a
growth function with p(A) = p. Let notation like €,,, xn, d; etc., be as in 5.3. Assume
that y satisfies (D1 1) and (D) (with some number n ). Then the following hold:

(@) If p €N, then
A () + A (M) < c(A,n)AN (ap) .

(b) If p € N and either degdy < p or r® = 0(A(r)), then
A () + A (M) < (A, 0) Y (am) -

() If peNand r° = O(A(r)), then

Y (am) < oo = A (x) + A (M) < oo.

Proof. First let us introduce one more notation. For a sequence (wy,) of complex
numbers, denote A, (Ay) :=#{ Wy, : |w| < r},i.e. the number of terms of the sequence
(Wm) whose modulus does not exceed r where each point is counted only once (and
not according to the number of its appearances in the sequence). Note that, trivially,

Ar(Wim) < np(Wi).
Step 1: Define an entire function ¥ as

P eidz(Z)A(Z) _ e_idZ(Z)A#(Z),

and denote by (b,,) the sequence of zeros of ¥ listed according to their multiplicities.
Observe that we have

w(2) = v (z) = 2"e"OA ()X (1) - ¥(z).

It follows from (D ;) that Z(A-X) C Z(¥). Since the sequences (x,,) and (A,,) are
disjoint this implies that
() + A () < ().

By (D2) we have sup{op.x(w): w € C} <n—1, and hence n,(xy) < (n— 1)A,(xy)
and n,(Ay) < (n— 1)A(Ay). It follows that

nr(xm) + nr()tm) < (n - 1) (ﬁr(xm) +ﬁr(km)) y
and we obtain the estimate

A () + A (M) < (n—1)A* (by) .
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Step 2: Tt remains to estimate A*(b,,) in terms of the sequence (a,,). To this end
observe that by 5.1 we have A*(b,) < c¢(A)0¢;, that by the definition of ¥ we have

0'\%, < ojdz K and that by 5.2 we have

o [COON @an)  pgN

S lC)rH(am) L peN
In order to fill the gap in our series of estimates, notice that either of the hypothesis in
(a) or (b) implies O'j;dz W= O'/i“ , and that the hypothesis in (c) implies that

o} <o = o

Lidy g <

This completes the proof of the theorem.

For the case p € N it is desireable to obtain some information on 8% (x,,) and
8% (Am) . In general this will not be possible. However, under some additional hypoth-
esis, which are satisfied e.g. in the context of n-.4"P-pairs, at least something can be
said.

5.5. REMARK. Assume that y is an entire function which satisfies the functional
equation y#(z) = y(—z), and let p be any odd integer. Then

i—zl 0.

p a0
|| < X \/l,,,|<r)‘m

This follows since, by the symmetry of y, we always have g, = €_,,.

5.6. PROPOSITION. Let notation and hypotheses by as in Theorem 5.4 and its
proof, and put

L'—limsupi) D L
SIMPTG2 b
bR

Then the following hold:

(b°) Ifeither degdy < p or 1 = o(A(r)), then
8 (xm) < &(A,n) (v (am) +1) .
(©) If P = O(A(r)), then
(Y! (am) < 0 and L < ) = 8*(x)) < oo.

Proof. Denote by (£,,) the sequence which contains the same points as (x,,), but
where each point is listed only once. Since p is even, we have x>0 and b5 >0
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whenever b, € R. Since Z(X) C Z(¥), i.e. each point £, appears among the points
by, this implies

1 1 1

0< ¥ <=1 ¥ H<t-1 ¥ 5

2t |<r 1 [R|<r || <r ©m
bmER

Moreover, we have

2wl 2 gl 2 gl

|b |<r |bm \< | |<r
bR

and we obtain that 8* (x,,) < 8% (b)) +L.
The proof of the present assertions is completed with the same argumentation as
in Step 2 of the proof of Theorem 5.4 U

We close this section with a remark on the case of polynomial functions v . Let y
be a polynomial, and let notation like &, x;, etc., be as in 5.3. Then we denote by Nx
the number of nonzero real zeros of Y, by Ny twice the number of nonreal conjugate
pairs of zeros of y, and by N4 the number of all remaing nonzero zeros of . Thereby
each of these numbers are understood including multiplicities. In other words,

Ny =Y &, =degX, Ny = Y &, =degA, Ny =degA.
weR wgR

5.7. PROPOSITION. Let W be a polynomial, and assume that y satisfies (D 1,1)
and (Dy) (with some number n). Then

Nx +Npy < (n—1)Ny.

Proof. Let us denote, moreover, by Ny and NA the respective numbers of zeros
where each point is counted only once. Then, since Z(A-X) C Z('¥), we have

Ny + N < deg¥ < degA =N,.
However, the multiplicity of a zero of A or X cannot exceed n — 1. Thus N, < (n—
)Ny and Ny < (n—1)N,. QA

Let us show by an example that the assumptions in Theorem 5.4, (b), are actually
needed to obtain an estimate of the asserted form. More precisely, in the situation of
Theorem 5.4, (c), there need not prevail an estimate of the form as in (b).

5.8. EXAMPLE. Denote

Pi(z) = P(z) == sm\/_ 01(z) = 02(z) :=cos/z,
VZ
and let P,Q be as in (1.1). Then P(z) : 4(“”\}‘[) , 0(2) = 4Sir\1[‘zﬁ cos/z, and hence
sinz

¢o,—p(2) = 47€iz~

Since P 'o; ; € 7, the function ¢p _p satisfies the conditions (D 1) and (D5 ). Nev-
ertheless its zeros are exactly the points k7, k € Z\ {0}.
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6. Systems of differential equations supported on a star-shaped graph

In this section we consider various systems of differential equations given on the
plane star-shaped graph (1.3). We assume that at the central vertex damping is present,
and impose interface conditions at the central vertex which ensure continuity of solu-
tions. Moreover, if necessary, at the outer vertices boundary conditions will be fixed.

6.1. Direct problem for a system of strings

Consider a plane star-shaped graph (1.3) composed of n strings S[Lj,m;], j =
1,...,n, which are tied together at the central vertex. We assume that each string satis-
fies the condition of 2.9, so that its spectrum is discrete. The strings are stretched and
the system is able to vibrate in the direction orthogonal to the equilibrium position of
the strings. We suppose that the central vertex is subject to viscous friction. Denote by
vj(s,t) the transversal displacement at the time ¢ of the point lying on the j-th edge
of the graph at a distance s from the central vertex, and let © > 0 be the coefficient of
damping at the central vertex. Then this vibrating system is described by the following
equations:

2 (s P N |
3Mj(S)< Js ) 320 =0, j=L...ns€(0L;). (6.1
v1(0,2) =v2(0,¢) = ... = v,(0,1), (6.2)

n a a
Z,l gw(m)‘s}o—ua—vl(o 1) =0. 6.3)

Here the condition (6.2) is due to our assumption that the strings are tied at their com-
mon boundary point, and the condition (6.3) describes the damping which is present at
the central vertex and is known as the Kirchhoff condition.

Substituting v;(s,t) = e *'u;(A,s), leads to the following problem:
02 2 .
Wuj(/hs)—f—)t uj(A,s)=0, j=1,...,n,s€(0,L)), (6.4)
ul()L,O):uz()L,O):...:u,,()L,O)7 (6.5)
2 (s ‘ s (2,0)=0. 6.6)

The eigenvalues of this problem are just the eigenfrequencies of the damped vibrating
system under consideration. In order to give meaning to the notion of eigenvalues, we
have to impose boundary conditions at the outer vertices: If S[L;, m;] is regular, let
¥ € (—oo,o0] and require that

duj(A,s)
YJ ds s=L

J

+uj(A,Lj)=0 (regularcase). (6.7)
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If S[Lj, m;] is singular but in limit circle case, require that

duji(A
fim 9 o (singulartimit circle). 6.8)
x—Lj N S=x
If S[L;, m;] is in limit point case, there is no additional requirement necessary.

6.1. REMARK. Since the proceedure undertaken in the sequel will repeat itself in
several instances, it is worth to provide a comprehensive outline:

Step 1: Assume that we are given some data. In the present situation this is

~ neN;

§

strings S[Lj, m;], j = 1,...,n, with discrete spectrum;

§

numbers y;j € (—oo, o] for those values of j € {1,...,n} for (6.9)
which S[L;, m,] is regular;

~ u>0.

Then we can state the problem (6.4)—(6.8), and the spectrum of this problem is discrete
and consists of eigenvalues of finite multiplicity.

Step 2: A direct and an inverse spectral problem suggests itself: Characterize the
spectra (including multiplicities) of problems of the form introduced in Step 1.

Step 3: From data given according to Step 1, we construct an entire function which
describes the spectrum of the problem stated in Step 1 as its zeroset (including multi-
plicities).

Step 4: We invoke our results of the previous sections to solve spectral problems
as posed in Step 2.

Let us proceed to the construction of the function ®. This is done in exactly
the same way as in [P3, §3]. Assume that data (n,S[L;,m;],v;,u) is given according
to (6.9). Since we assume that S [Lj,mj} has discrete spectrum, there exists for each
A € C anontrivial solution S;(4,s) € L*(m ;) of (6.4) which satisfies (6.7), (6.8), and
this solution is unique up to scalar multiples. For each fixed s € [0,L;) the function
Sj(A,s) is an entire functions of A. Moreover, S;(4,s) and % are even functions
of A. Note that, with the notation of §2.D, we have S;(4,s) =s5;(A%,s).

The system (6.4)—(6.8) has a nontrivial solution if and only if the linear system of
equation

S1(A,0) ~$(,0) 0 ... 0
S1(A,0) 0 —S3(4,0)... 0 C

: ; SRR =0
S1(A,0) 0 0 ...=5(2,0) [\c,

IS (A,s . 9S> (A,s dS3(A,s 39Sy (A,s
BV | o -ipA Sy (A, 0F2E| PR g Pl
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has a nontrivial solution (Cj,...,C,). The determinant of the matrix of this linear
system, however, computes as
n a n
D) = (2 2-8;(0.9) Hs (2,0) ) +iAu]]S;(2,0). (6.10)
Jj=1 - j=1
t#J

Thus the spectrum of the problem (6.4)-(6.8) equals the set of zeros of @, and this
equality includes multiplicities.
Let us introduce functions

Pi(0) = S, (VE.0) = H2.0), 0)(2) =t -S;(vEus)

and let P(z) and Q(z) be defined as in (1.1), i.e.

P:zl_[le, 0= Z(Q,HH) 6.11)
=

I#J

/
=0 = Sj(Z,O—),

Then {
D(A) = ] do—pP(4),

in particular, 0¢ = V0. p-
A direct spectral theorem is obtained as corollary of the results given in §4 and §5.

6.2. THEOREM. Let data (n,S[L;,m;],vj, 1) be given according to (6.9), and let
d : C — Ny be the function which assigns to each point w € C its multiplicity as an
eigenvalue of the problem (6.4)—(6.8) (understanding d(w) = 0 to mean that w does not
belong to the spectrum). Choose a function ¢ : C — Ny such that ¢(w) = ¢(— _), we
C, suppc C (suppd)N{w € C: Imw < 0,Rew # 0}, and ¥.cc\ (0} d(W AR
oo, ¥ > 0. Let E be the entire function defined as

w5l

cwk

E@x):= ][] <1 - %)d(w exp( Z L}{) :

Imw<0

Then the following hold:
(i) There exist only finitely many nonreal conjugate pairs (w,w) such that
min{d(w),d(w)} > 0.
Each such pair (w,w) is located on the imaginary axis, and satifies d(w) = d(w).

Let (idi,—iA1),...,(iAp, —ikp), 0 <Ay <... <Ay, be all the nonreal conjugate pairs
as in (i), and denote by d the function

dn(w) dw) ,w=d=iA;, j=1,...,p
w) =
A 0 , otherwise
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(ii) There exist only finitely many points w in the upper half plane, such that d(w) —
dpa(w) > 0. Each such point w lies on the imaginary axis and satisfies d(w) = 1.

Denote the points in (ii) as iy1,...,iyx, 0<y; <...<yg, andlet Y be the function

Y(z) = ,1:[1 (1 - E>
(iii) We have d(—w) =d(w), w € C, and d(0) € {0,1} U2N.

(iv) Foreach k € {2,...,K}, the number Y, (_iy, | —iy,)(d(W)—dr(w)) is odd. The
number Ye(0,—iy, (d(w) —da(w)) is odd if d(0) = 1 and even otherwise.

(v) max ({d(iA;): j=1,...,p U{d(x): xe R\ {0}} U{[3d(0)]}) <n—1.
(vi) We have $py,0d(w)Imi < oo,
(vii) There exists a number a > 0 such that

(a) argY(w)+argE(w)=aw modm, w € (suppd) NR;
(b) If d(0) > 1, then a=¥j_ 1y EImW<OIm

Coan E(—id)) 5 Yy .
(c) e a-’T;LjS—( 1)°y eE7nE A L....p.
(d) There exists a number A € (yi,o0) such that e’za’l% =(—1)5+1 Yi(l);l))

(viii) We have p < x and Kk +3"_ & <n.

(ix) Denote by (an) and (xp,) (finite or infinite) sequences such that {ay,} = (suppd) N
{weC: Imw < 0} and {x,} = (suppd) NR, where each point w is listed ex-
actly d(w) times. Let p and p’ be the convergence exponents of (a,,) and (xn,),
respectively, and let A= A" (a,)), N == A" (x), y:= 7" (aw). Then

(a) We have p' < p;
(b) If p' <p or p' =p &2N, then N' < c(p,n)A with some constant c(p,n)
which depends only on p and n;

(c) If p' = p € 2N, then y < o implies that N' < .

Proof. By Lemma 2.14 and 2.10-2.12, we have P; ' Q; € 4" Moreover, 5(z,0)

and s'(z,0—) have no common zeros, i.e. (Q;,P;) formsa 1- NP _pair. Thus (Q,P)
is an m-.#"*P-pair with some m < n. Moreover, as we have noted above, d = 0pp
The assertions (i)—(vii) are just what has been shown in Theorem 4.15 and Corollary
4.17.

The assertion (viii) follows with an easy counting argument: Each function — Q; 1Pj
belongs to .4/, and has at most one pole in (—s,0). Thus each Pj_lQ ;i has at most
one pole in (—oo,0), and we conclude that P~'Q has at most n poles in (—o0,0). It
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follows from Corollary 4.13 that k + 257: 1€ < n+1. If equality holds, then P10
has exactly n poles (including multiplicities) and lim, - P~ (x)Q(x) € (0,+o]. This,
however, would imply that at least one of the functions Pj_lQ 1S AP must in the same
time have a pole in (—oe,0) and satisfy lim, P,’1 (x)Qj(x) € (0,+oo]. We obtain that
Q;le has two poles in (—oo,0), a contradiction.

Finally, the assertion (ix) can be deduced with some standard arguments from
Theorem 5.4, if we keep in mind that ¢p _p has only finitely many zerosin C*. 1

6.3. REMARK. The inverse spectral problem remains unsolved. Thereby the ob-
stacle is not that we deal with a whole graph of strings, but the lack of a description of
the totality of all functions arising as qzm , ¥ € (—oo,00], for strings S[L,m], and an in-
verse theorem analogous to 2.13 for this class of functions. To answer these questions,
however, seems to be a hard task.

6.4. REMARK. This theorem contains some earlier results as particular cases. For
example some parts of [KN, Theorem 3.1] can be obtained.

From the viewpoint of the physical interpretation of (6.1)-(6.3) as a damped sys-
tem of strings, eigenfrequencies whose eigenfunctions have exponentially increasing
amplitudes, or edges with infinite length or infinite total mass, do not make much sense.
Hence, main interest lies in damped systems of regular strings for which the spectrum
of (6.4)—(6.8) lies in the closed lower half-plane. The question which systems of strings
have spectrum contained in C~ UR can be answered in a most satisfactory way, see the
below Corollary 6.8.

The question which spectra correspond to a system of regular strings remains un-
solved; in the below Corollary 6.5 we just give a necessary condition which is certainly
far from being sufficient. However, it already shows that for this question the asymp-
totic behaviour of the spectrum will play a role. To find a complete answer is probably
quite difficult; recall that already the necessary and sufficient conditions given in [KK2,
11.11°] for a single string to be regular are unpleasantly implicit.

6.5. COROLLARY. Assume that a collection (n,S[Lj,m;],y;, 1) of regular strings
is given, and let (am)men be the sequence which contains each point of the spectrum
of the problem (6.4)—(6.8) as often as its multiplicity prescribes. Let A := A (ay,) be
the density of the sequence (ay)men With respect to the growth function A(r) :=r, cf.

§5.1. Then
n
A<e- Y (/2L;M(Lj).
j=1

Proof. If S[L,m] is a regular string, then the functions ¢(z,L),y(z,L) are entire

functions of order % and their 77 -type does not exceed /2LM(L), cf. [KK2, (2.27)],
[BaW, Proposition 2.3]. Hence the function @ defined in (6.10) is of finite exponential
type, and its type does not exceed ¥/ \/2L;M (Lj). The asserted estimate follows

from [L, Hilfssatz1.4]. U
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6.2. Direct and inverse problem for a system of strings with nonnegative spectrum

Let us turn to a closer investigation of strings with a nonnegative spectrum. In this
case, also the inverse problem can be solved. Assume that the following data is given:

~ neN;
~» strings S[Lj, m;|, j = 1,...,n, with discrete spectrum;
~» numbers y; € 0,00 for those values of j € {I,...,n} for (6.12)

which S[L;, m}] is regular;

~ o u>0.

Then we can consider the problem (6.4)—(6.8), and proceed along the lines indicated in
Remark 6.1.

Since the now considered situation (6.12) is a subcase of the previous situation
(6.9), we know that again the function @ defined by (6.10) will describe the spectrum
of the problem. Of course, we also know that the spectrum of (6.4)—(6.8) will satisfy
all conditions stated in Theorem 6.2.

6.6. THEOREM. Let d : C — Ny be a function with discrete support. In order that
there exists data (n,S[Lj,m;j|,yj, 1) as in (6.12), such that d describes the spectrum
of the problem (6.4)—(6.8) buildt with this data, it is necessary and sufficient that the
Sollowing conditions (i)—(v) hold:

(i) suppd CC~UR;
(ii) We have d(—w) =d(w), w € C, and d(0) € {0,1};
(iif) max{d(x): x € R\ {0}} < eo;
(iv) We have EImW<Od(w)Im% < oo
Let functions c(w) and E(z) be as in Theorem 6.2.
(v) There exists a number a > 0 such that arg E(w) =aw mod 7, w € (suppd) NR.

Proof. Assume first that (n,S[L;,m;],v;, ) is given according to (6.12), and let
notation be as in §6.1. Since y; € [0,o0], we know that Pj_le e .~ ! Hence, we can
apply Corollary 4.18, and conclude that the present conditions (i)—(v) hold.

Conversely, assume that (/)—(v) hold. Then, again by Corollary 4.18, there ex-
ists n € N and an n-.%~!-pair (Q,P), such that d =2y, ,. Choose 1-.7~!-pairs
(Qj,Pj), j=1,...,n, such that

n/

n Q
:2#7 P=]]P
=14 =1

j=

oI

holds. By 2.13, there exist strings S[L;, m;] and numbers y; € [0,o0| whenever S[L;,m;]

is regular, such that
_ Pi(z) 5j(z,0)

0j(z)  s(z.0-)
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Choose a number u > 0, set
pj(z) = ,U.Sj(Z70)7 QJ(Z) = slj(zvo_)»

and let P and Q be defined accordingly. Since the two functions P; and Q;, as well as
the two functions P; and Q;, have no common zeros, we can find a zerofree function
D; such that

Pj(z) =D;(z)Pi(z), Qj(z) =D;j(2)Q;(z).
Then

do,—p(z HD 6.—p(2) s

in particular, 9y, , =0y, . We see that the spectrum induced by the data (n,S[Lj,mj],
¥j, 1) is exactly described by d. 4

6.7. REMARK. Assume that d satisfies the conditions of Theorem 6.6. The
data (n,S[Lj,m;],y;,u) representing d as the spectrum of (6.4)—(6.8), is by no means
unique. For example already the choice of the number y > 0 was arbitrary. More
interesting is the following notice, which is seen from proof of Theorem 6.6: Each
representation

%:2% P=T]P; (6.13)

j=1
where n € N and where (Q;,P;) are 1-.7! -pairs, yields a system of strings

(n,S[L;,m;],y;, 1)

whose spectrum realizes d.
However, there exists a large variety of essentially different representations (6.13).

6.8. COROLLARY. Let data (n,S[Lj,m;|,y;, ) be given according to (6.9). Then
the spectrum of the problem (6.4)—(6.8) is contained in C~ UR if and only if there exists
data (n',S[L’;,w], v}, u') asin (6.12), i.e. with all numbers y; nonnegative, which gives
rise to the same spectrum (including multiplicities) as (n,S[Lj, m;],y;, ).

Proof. Assume first that y; € [0,] forall j for which S[L;, m;] is regular. Then,
by Theorem 6.6, the spectrum of the problem (6.4)—(6.8) lies in the closed lower half-
plane.

Conversely, let d be the function which describes the spectrum including its mul-
tiplicites, and assume that suppd C C~ UR. Then, using the notation of Theorem 6.2,
we have Y = 1. Moreover, by Remark 4.16, (iii), we must have d(0) € {0,1}. Now
Theorem 6.6 ensures the existence of the regired data (n’, S[L}, m’], v}, u’). d

6.9. REMARK. Letus note explicitly that it can happen that the spectrum induced
by data (n,S[L;,m;],y;,u) lies in the closed lower half-plane although some of the
numbers y; are negative. An example can be constructed corresponding to Example
4.20.
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Using the characterization of n-1 -pairs in terms of the zeros of P and Q, cf.
Corollary 4.6, we obtain the following statement.

6.10. COROLLARY. Ler (n,S[Lj,m;],y;,u) be given according to (6.12), and
let P and Q be the functions defined in (6.11). Then P and Q have only real and
nonnegative zeros. Denote the (finite or infinite) sequences of zeros of P and Q by
() and (i), respectively, where each zero is listed according to their multiplicities.
Assume that these sequences are arranged such that

wm<w<... and vi<w<....

Then vi <y < va < <wn<...and
VkeN: (.uk:Vk+1 = Vil :.Uk+l>~

Moreover; each fixed point xo € R can occur at most n times in the sequence ().

6.11. REMARK. Corollary 6.10 contains several earlier results as particular cases:
(i
(ii

(iii

) [P1, Theorem 1] for n=2 and y; =0, j=1,2;

) [HM, Theorem 5.1] for y; € R and n =2;

) [P2,Lemma 1.15] for n =3 and y; =, j=1,2,3;
(iv) [P3, Theorem 3.17] for n € N and y; = 0.

6.3. Direct problem for a system of Sturm-Liouville equations

Assume that we are given the data

~ neN;
~» real and square-integrable potentials g;, j = 1,...,n, which

are defined on respective intervals [0,a;], a; € (0,%0); (6.14)
~» numbers y; € (—oo,00|, j=1,...,n;

~ o>0andf €R.

Then we can state the problem:

Y+ A%y —q(x)y; =0, j=1,....n,x€0,a;], (6.15)
y1(A,0) =y,(A,0) = ... = y,(1,0), (6.16)
Y Yi(4,0) + (iad + B)yi(4,0) =0, (6.17)

Jj=1
yjy/j-(/l7aj)+yj()t,aj):07 j=1,...,n. (6.18)

The condition (6.18) is in the case y; = again understood as y(4,a;) = 0. The
spectrum of this problem is discrete, see e.g. [M, §1.3].
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Such equations occurs from various physical problems. In general, nonreal poles
of the resolvent in C\ R are called resonances. Physically, while real eigenvalues
represent real energy levels and states in which the particles are permanently localized,
unless disturbed, resonances correspond to quasi-stationary (metastable) states that only
exist for a finite time, proportional to the inverse of the negative imaginary part of the
resonance, and have energy proportional to the real part of the resonances, cf. [BrW].
In the setting of quantum mechanics it makes sense to allow eigenvalues in the upper
half plane. These correspond to resonances on the so called unphysical sheet.

We employ the same method as in §6.1 to obtain a description of the spectrum of
a problem of the form (6.15)—(6.18).

Again the computation of [P3, §3] works, and shows that the spectrum of the
problem (6.15)—(6.18) (including multiplicities) is equal to the set of zeros of a certain
entire function, namely the function ® defined as follows: Let s;, j=1,...,n, be
nontrivial solutions of (6.15) which satisfy the boundary condition (6.18), and put

o) = (¥ %s./(k,s)
j=1

IT 5(.0) +(B+i/loc)f[1sj()t,0).
-

S:_Oi=1,...,n
i#]j
Introduce functions
PO =t ot (V20), 0,0 =t msi(vas)|  +Ds(vz0)
i(z) =: ozs*’ z,0), i(z) =: assf 7,8 i nsJ z,0),
and set . . .
P=[1pP, 0:=3% <QJ'HPI>'
j=1 =1 =L
I#]j
Then

1
O(2) = ——760r(2).

and we see that 0 =g, .
The function ¢q; :=s j(\/E,O)”%s (v/Z,8)|s=0 belongs to the Nevanlinna class
A, cf. e.g. [L, VIL4]. By the known asymptotics of the functions s; and s}, cf. [M,
Lemma 1.3.2], the function g; actually belongs to .4#"*? and satisfies lim,, . q;(z) =
—oo. Thus also
Qi 1 B

= =—gi+— P

P« U e
We see that (Q,P) is an m- NP -pair with some m < n and, therefore, obtain a direct
spectral theorem similar to Theorem 6.2.

6.12. THEOREM. Let data (n,qj,y;,a,B) be given according to (6.14), and let
d : C — Ny be the function which assigns to each point w € C its multiplicity as an
eigenvalue of the problem (6.15)—(6.18) understanding d(w) = 0 to mean that w does
not belong to the spectrum). Then assertions (i)-(vii), (ix) as written in Theorem 6.2
hold. 0
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6.13. REMARK. Again we obtain several earlier results as corollaries:

Forn=1, B =0, o =1 the problem (6.15)—(6.18) is nothing else but the Regge
problem, cf. [Re]. Theorem 6.12 now implies [S, Theorem 6], see also [Ko].

For n=1, and arbitrary 8 € R,a € (0,1)U(1,0), Theorem 6.12 implies [PvM,
Theorem 3.1].
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