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STUDY OF A DIFFERENTIAL OPERATOR OF
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Abstract. The paper studies the non-selfadjoint linear differential operator

Ly =
d
dt

(
(1−acos t)y+bsin t

dy
dt

)
acting in the Hilbert space L2(−π,π) that originated from a steady state stability problem in
fluid dynamics. The operator L is of Heun type and involves two parameters a,b related to the
hydrostatic pressure and capillary properties of the fluid. The results concern (1) the properties
of functions in the domain of definition of L , (2) conditions on a,b for the linear span of the
Fourier basis {eint} to be core of L , and (3) the matrix representation of the reduced resolvent
of L in the Fourier basis. In particular, it is shown that the reduced resolvent is compact and of
trace class S1 .

1. Introduction

The flow dynamic model of a viscous incompressible capillary fluid on the sur-
face of a horizontal circular cylinder rotating around its axis under gravity for the case
when surface tension effect is neglected due to the small ratio of the thickness of the
fluid film and the radius of the cylinder has been investigated a lot since the pioneer
work of Moffatt [13]. In this paper we study the two parametric non-selfadjoint linear
differential operator

Ly :=
d
dt

(
(1−acost)y+bsint

dy
dt

)
, y = y(t),−π < t < π (1.1)

that originated from the stability analysis of steady flows in this model [1, 2]. We will
assume throughout that the parameters a,b satisfy

a ∈ (−1,1), b > 0. (1.2)

The substitution x = eit shows that L is of Heun type; see [7]. The operator L has
the special feature that t =−π ,0,π are regular singularities of the differential equation
Ly = 0. It is common to encounter differential operators with singularities at the end
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points of the underlying interval. However, operators involving internal singularities
are far less well understood.

We consider L as a linear operator L : D(L)→ L2(−π ,π) , where the domain D(L)
is the linear subspace of the Hilbert space H := L2(−π ,π) with inner product

〈 f ,g〉 =
∫ π

−π
f (t)g(t)dt

defined as follows. The domain D(L) consists of all function y such that

(1) y ∈C[−π ,π ] ;

(2) y(−π) = y(π) ;

(3) y and y′ are locally absolutely continuous on (−π ,0)∪ (0,π) ;

(4) d
dt ((1−acost)y(t)+bsint y′(t)) ∈ H .

In [7] we used a different definition of D(L) with (1) replaced by y∈ AC[−π ,π ] . How-
ever, we prove in Theorem 2.6 that the definitions are equivalent. Under the additional
assumption that a � 0 the authors proved in [7] that all eigenvalues of L are purely
imaginary or 0 and found their asymptotic behavior. It should be mentioned that the
results of [7] are not used in this paper except once in Section 3 where we assume
a � 0.

In Section 2 of this paper we show that L is a closed operator with range

H0 := { f ∈ H :
∫ π

−π
f (t)dt = 0}.

We also show that the restriction L0 of L to the domain D(L0) := D(L)∩H0 is bijective
from D(L0) onto H0 and its inverse L−1

0 : H0 → H0 is compact. The proof is based on
the fact that the embedding of the Sobolev space

H1(−π ,π) = { f ∈ AC[−π ,π ] : f ′ ∈ L2(−π ,π)}
into C[−π ,π ] (equipped with the maximum-norm) is compact.

Note that the functions en(t) = eint , n ∈ Z , lie in D(L) . In Section 3 we answer
the question whether the linear span E of the sequence {en} forms a core of D(L) ,
that is, whether the closure of the restriction of L to E is equal to L . This question
arises naturally when we represent L in the Fourier basis {en} by an infinite tridiagonal
matrix.

In Section 4 we represent the reduced resolvent L−1
0 by an infinite matrix in the

basis {en} . We find quite explicit formulas for the matrix entries. As an application we
determine p > 0 such that L−1

0 belongs to Schatten class Sp . In particular, we show
that the reduced resolvent is nuclear and as a result the set of eigenfunctions of L is
complete in L2(−π ,π) for a = 0 and b > 0.

Some results of this paper are known under additional assumptions on the range
of the parameters a,b . It should be noted that our methods of proof are different from
those used in the papers mentioned below.
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For the case when a = 0, 0 < b < 2, the tridiagonal matrix representation of the
operator L0 with respect to the Fourier basis was analyzed in [8] and it was shown that
it has a compact inverse of the Hilbert-Schmidt type, i.e., L−1

0 is of Schatten class Sp

for p � 2.
Under the same restrictions on the parameters a and b the membership of L−1

0 in
the Schatten class Sp for p > 2/3 was proved in [3]. Although the weaker result that
the operator L−1

0 is of Schatten class Sp for p > 1 could be obtained directly from
the factorization of the operator L0 found in [5], the fact that the operator L−1

0 actually
belongs to the class of nuclear operators S1 was crucial for the proof of completeness
of eigenfunctions of the operator L0 given in [3]. It was also shown numerically [4, 8]
that the angle between the subspace spanned by the N -first eigenfunctions and the
(N + 1)-th eigenfunction of the operator L0 tends to 0 as N tends to infinity. An
analytical proof of this interesting geometrical property of the eigenfunctions is still an
open question.

Under the more restrictive assumptions that a,b > 0 and 2a+b < 2, the compact-
ness of the operator L−1

0 is shown in [6].

2. The reduced resolvent of L

Assuming (1.2) we set

α :=
a−1

b
< 0, β :=

a+1
b

> 0, γ :=
a
b
. (2.1)

We start by introducing an integral operator T :C[−π ,π ]→C[−π ,π ] . Let h∈C[−π ,π ] .
If t ∈ (−π ,0)∪ (0,π) we define

(Th)(t) :=
sgnt
2b

sinα( |t|2 )cosβ ( t
2)

∫ t

0
sin−α−1( |s|2 )cos−β−1( s

2 )h(s)ds. (2.2)

Moreover, we set

(Th)(0) :=
h(0)
1−a

, (Th)(π) :=
h(π)
1+a

, (Th)(−π) :=
h(−π)
1+a

. (2.3)

LEMMA 2.1. If h ∈ C[−π ,π ] then Th ∈ C[−π ,π ] , and Th is continuously dif-
ferentiable on (−π ,0)∪ (0,π) . Moreover, y := Th satisfies

(1−acost)y(t)+bsint y′(t) = h(t), t ∈ (−π ,0)∪ (0,π), (2.4)

and this y is the only solution of (2.4) in C[−π ,π ] . The linear operator T :C[−π ,π ]→
C[−π ,π ] is bounded, where C[−π ,π ] is equipped with the maximum-norm.

Proof. Since α < 0, y = Th is well-defined and continuously differentiable on
(−π ,0)∪(0,π) . A direct calculation shows that y solves the differential equation (2.4)
on (−π ,0)∪ (0,π) . We omit the easy proof that y is continuous on [−π ,π ] .
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The general solution of equation (2.4) on (0,π) is

Y (t) = csinα( t
2 )cosβ ( t

2 )+ y(t),

where c is a constant. Since α < 0, the only solution which admits the limit limt→0+Y (t)
is y(t) . A similar argument applies to the interval (−π ,0) .

Finally, we have

|Th|∞ � |T1|∞|h|∞ =
1

1−|a||h|∞. �

LEMMA 2.2. Let g ∈ H = L2(−π ,π) . Set

h(t) :=
∫ t

0
g(s)ds, (2.5)

and y := Th. Then y ∈C[−π ,π ] , y(0) = 0 , y and y′ are locally absolutely continuous
on (−π ,0)∪ (0,π) and

d
dt

(
(1−acost)y(t)+bsint y′(t)

)
= g(t), t ∈ (−π ,0)∪ (0,π)a.e. (2.6)

This y is uniquely determined by these properties. y satisfies the boundary condition
y(−π) = y(π) if and only if g ∈ H0 .

Proof. Since h(0) = 0 we have y(0) = 0. The other properties of y and the
uniqueness of y follow from Lemma 2.1. y(π) = y(−π) is equivalent to h(−π) = h(π)
and this in turn is equivalent to g ∈ H0 . �

We now return to the operators L and L0 introduced in Section 1.

THEOREM 2.3. L is a closed operator with range H0 , L−1
0 is compact and L has

compact resolvent.

Proof. Lemma 2.2 shows that the range of L is H0 . The kernel of L is spanned by
the positive function T1; see [6]. Therefore, the operator L0 : D(L0) = D(L)∩H0 →H0

is bijective. Its inverse is

L−1
0 g = Th− 〈Th,1〉

〈T1,1〉 T1,

where h is defined by (2.5). The map g 	→ h is bounded linear from H0 to H1(−π ,π) .
The embedding of H1(−π ,π) in C[−π ,π ] is compact, T is bounded linear and the
embedding of C[−π ,π ] in L2(−π ,π) is bounded. Therefore, L−1

0 is a compact opera-
tor in H0 . The compactness of the reduced resolvent L−1

0 implies that L has compact
resolvent (see [6]) so L is closed. �

Our next goal is to show that D(L) ⊂ AC[−π ,π ] .
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LEMMA 2.4. Let c > 0 and f ∈ L2(0,c) . Set

F(x) :=
1
x

∫ x

0
f (t)dt.

Then ∫ c

0
|F(x)|2 dx � 4

∫ c

0
| f (x)|2 dx.

Proof. See [15, page 20]. �

THEOREM 2.5. If y ∈ D(L) then y ∈ H1(− π
2 , π2 ) .

Proof. Let y ∈ D(L) . It will be sufficient to show that y′ ∈ L2(− π
2 , π2 ) . We show

only that y′ ∈ L2(0, π2 ) (the proof of y′ ∈ L2(− π
2 ,0) is similar.) There is h∈H1(−π ,π)

such that y = Th . A calculation involving integration by parts shows that

2by′(t) = −(1+a) tan( t
2)y(t)+ sinα−1( t

2 )cosβ+1( t
2 )

∫ t

0
sin−α( s

2 )H ′(s)ds,

where
H(s) := cos−β−2( s

2)h(s) ∈ H1(0, π2 ).

Therefore, there is a constant C such that, for t ∈ (0, π2 ] ,

|y′(t)| � C

(
|y(t)|+ 1

t

∫ t

0
|H ′(s)|ds

)
.

Lemma 2.4 implies that y′ ∈ L2(0, π2 ) . �

It is not always true that D(L) ⊂ H1(−π ,π) . For example, consider

y(t) := cosβ ( t
2 ).

Then
(1−acost)y(t)+bsint y′(t) = (1−a)cosβ+2( t

2 )

so y ∈ D(L) . But if β � 1
2 then y �∈ H1(−π ,π) .

THEOREM 2.6. D(L) ⊂ AC[−π ,π ] .

Proof. Let y ∈ D(L) . We plan to show that y′ ∈ L1(−π ,π) which implies that
y ∈ AC[−π ,π ] . In view of Theorem 2.5, it is enough to show that y′ is integrable on
(−π ,− π

2 ) and on (π2 ,π) . We prove the latter. We choose h ∈ H1(−π ,π) such that

y = Th . For t ∈ [π2 ,π) , we write the integral in (2.2) as
∫ t
0 =

∫ π
2

0 +
∫ t
π
2

leading to a

decomposition y = y1 + y2 . Clearly, y′1 is integrable on (π2 ,π) so we will show that y′2
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is integrable on (π2 ,π) . Integrating by parts, we find that in order to show that y′2 is
integrable on (π2 ,π) it is enough to prove that the function

f (t) := sinα+1( t
2 )cosβ−1( t

2 )
∫ t

π
2

cos−β ( s
2 )H ′(s)ds,

where
H(s) := sin−α−2( s

2 )h(s) ∈ H1(π2 ,π)

is integrable on (π2 ,π) .
There is a constant C such that, for t ∈ [π2 ,π) ,

| f (t)| � C(π− t)β−1
∫ t

π
2

(π− s)−β |H ′(s)|ds. (2.7)

If β ∈ (0, 1
2 ) then (2.7) shows that f is in L2(π2 ,π) . If β > 1

2 then the Cauchy-Schwarz
inequality applied to the integral in (2.7) gives

| f (t)| � C̃(π− t)−1/2.

A similar estimates holds for β = 1
2 . Therefore, f is integrable on (π2 ,π) . The proof

is complete. �

3. A core of L

Let T be a closed linear operator in a Hilbert space. Let E be a linear subspace of
D(T ) , and let S denote the restriction of T to E . Then E is called a core of T if the
closure of S equals T ; see [12, page 166].

Consider
E := span{en : n ∈ Z} ⊂ D(L),

where en(t) = eint . We want to decide whether E is a core of L .
We introduce the linear space

W := {w ∈ H : 〈Len,w〉 = 0 for all n ∈ Z}.
Note that

Len = inen +
i
2
(n+1)(nb−a)en+1+

i
2
(1−n)(nb+a)en−1. (3.1)

If w ∈ H has Fourier expansion

w = ∑
n∈Z

cnen,

then w ∈W if and only if

ncn +
1
2
(n+1)(nb−a)cn+1+

1
2
(1−n)(nb+a)cn−1 = 0 for all n ∈ Z . (3.2)

Obviously, (3.2) does not involve c0 . Note that if {cn} is a solution of (3.2) then {c−n}
is a solution, too.
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THEOREM 3.1. E is a core of L if and only if dimW = 1 .

Proof. Suppose dimW > 1. Then there is 0 �= w ∈W ∩H0 . By Theorem 2.3, the
range of L is H0 . Therefore, there is y ∈ D(L) such that w = Ly . Let {yk} be any
sequence in E such that yk → y in H . Then 〈Lyk,w〉 = 0 for each k so Lyk cannot
converge to Ly = w . This shows that E is not a core of L .

Suppose dimW = 1. If follows that L(E) is dense in the range of L . Let y∈D(L) .
We write y = ce0+u with u∈H0 . There is a sequence uk ∈E∩H0 such that Luk → Lu .
By Theorem 2.3, the reduced resolvent L−1

0 is a bounded linear operator. Applying L−1
0

we obtain uk → u . Therefore, yk := ce0 +uk → y and Lyk → Ly . �

The further analysis depends on whether γ = a/b is a nonnegative integer or not.
We consider first the case

a ∈ (−1,1), b > 0,
a
b
�∈ N0. (3.3)

Let {cn}n∈Z be a solution of the recursion (3.2). It follows from (3.3) that if c1 = 0
then cn = 0 for all 0 �= n∈Z . Therefore, it is sufficient to consider a solution {cn} with
c1 = 1. All cn with n �= 0 are then uniquely determined while c0 remains arbitrary.
Since c−1 = c1 we obtain that cn = c−n for all n . We consider the formal power series

f (x) =
∞

∑
n=1

cnx
n, c1 = 1, (3.4)

and its derivative

h(x) := f ′(x) =
∞

∑
n=1

cnnxn−1.

It follows from (3.2) that h satisfies the differential equation

b
2
x(1− x2)h′ +

(
−a

2
+ x−bx2− a

2
x2

)
h = −a

2
. (3.5)

Since a
b �∈ N0 , this equation has a unique solution which is holomorphic at x = 0 and

this solution agrees with h . Therefore, h is holomorphic in the unit disk |x| < 1 and
can be extended to a holomorphic function on C\((−∞,−1]∪ [1,∞)) . A fundamental
solution of the homogeneous equation

b
2
x(1− x2)h′ +

(
−a

2
+ x−bx2− a

2
x2

)
h = 0 (3.6)

is
h0(x) := (1− x)−α−1(1+ x)−β−1xγ ,

where α,β ,γ are from (2.1). This gives

h(x) = −γ(1− x)−α−1(1+ x)−β−1xγ
∫

(1− x)α(1+ x)βx−γ−1 dx. (3.7)
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The anti-derivative is taken in such a way that h becomes holomorphic at x = 0, that
is, if

g(t) := (1− t)α(1+ t)β =
∞

∑
n=0

unt
n,

then

xγ
∫

g(x)x−γ−1 dx =
∞

∑
n=0

un

n− γ
xn.

Equation (3.5) has a unique solution h1 which is holomorphic at x = −1. Since β > 0
we can write this solution in the form

h1(x) = γ(1− x)−α−1(1+ x)−β−1(−x)γ
∫ x

−1
g(t)(−t)−γ−1 dt (3.8)

for −1 < x < 0.

LEMMA 3.2. Suppose (3.3). The functions h,h1 are different on (−1,0) , that is,
h−h1 is a nonzero multiple of h0 .

Proof. Suppose first that a < 0. If −1 < x < 0 then h can be written as

h(x) = γ(1− x)−α−1(1+ x)−β−1(−x)γ
∫ x

0
g(t)(−t)−γ−1 dt.

If h = h1 then (3.8) implies ∫ 0

−1
g(t)(−t)−γ−1 dt = 0

which is impossible because the integrand is positive.
Suppose now that 0 < a < b . Integrating by parts in (3.7) and (3.8) gives, for

−1 < x < 0,

h(x) = (1− x)−α−1(1+ x)−β−1
(

g(x)− (−x)γ
∫ x

0
g′(t)(−t)−γ dt

)
and a similar formula for h1 . If h = h1 then∫ 0

−1
g′(t)(−t)−γ dt = 0

which is impossible because g′(t) > 0.
We argue in a similar way when (k−1)b < a < kb with k = 2,3, . . . We integrate

by parts k times and note that the k th derivative of g is positive on (−1,0) . �

THEOREM 3.3. Suppose (3.3). The function f from (3.4) belongs to the Hardy
space H2 , that is, {cn} ∈ �2(N) , if and only if a+1 < b

2 .
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Proof. The function f is holomorphic on C\((−∞,−1]∪ [1,∞)) . By Lemma 3.2,
in a neighborhood of x = −1, f has the form

f (x) = f1(x)+ (1+ x)−β f2(x),

where f1, f2 are holomorphic at x = −1 with f2(−1) �= 0. A similar analysis reveals
that the singularity of f (x) at x = 1 is milder. Using Fatou’s lemma and Lebesgue’s
dominated convergence theorem it can be shown that

∞

∑
n=1

|cn|2 =
1
2π

∫ 2π

0
| f (eit )|2 dt (3.9)

regardless whether the sum or integral are finite or not. The nature of the singularities
of f makes it clear that the right-hand side of (3.9) is finite if and only if a+ 1 < b

2 .
This completes the proof. �

THEOREM 3.4. Suppose (1.2). The linear space E forms a core of L if and only
if a+1 � b

2 .

Proof. First, suppose (3.3). It follows from Theorem 3.3 and the discussion at
the beginning of this section that dimW = 1 is equivalent to a+ 1 � b

2 . The desired
statement follows from Theorem 3.1.

Let us now consider the remaining case

a ∈ [0,1), b > 0, � :=
a
b
∈ N0. (3.10)

Suppose {cn}n∈Z is a solution of the recursion (3.2). If � � 1 then the vector (c1,c2, . . . ,c�)
is in the kernel of the �× � matrix (〈Le j,ei〉)�i, j=1 . We saw in [7, Lemma 8] that this
matrix is invertible so c1 = c2 = . . . = c� = 0. The solution {cn} remains a solution if
set cn = 0 for n � 0. Therefore, it will be sufficient to consider solutions of (3.2) with
cn = 0 for n � � .

For a solution {cn} of (3.2) with cn = 0 for n � � we consider the generating
function

f (x) =
∞

∑
n=�+1

cnx
n.

Then h = f ′ solves the differential equation (3.6). We obtain that

h(x) = (1− x)−�−1+ 1
b (1+ x)−�−1− 1

b x� (3.11)

when we normalize our solution {cn} so that c�+1 = 1
�+1 . From (3.11) we read off the

nature of singularities of h at x = ±1. Note that under assumption (3.10) we do not
need an analogue of Lemma 3.2. We argue now as before to show that f is in the Hardy
space H2 if and only if a+1 < b

2 , and we complete the proof. �
In some special cases we can find solutions {cn} of (3.2) explicitly. For example,

suppose a + 1 = b . In this case a solution of (3.2) is given by cn = (−1)n . The lin-
ear combinations of this solution and the trivial solution cn = 0 for n �= 0 give us all
solutions. Therefore, we have dimW = 1 in agreement with Theorem 3.4.
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4. Matrix representation of (−iL0)−1

Our goal in this section is to find and estimate the matrix elements of the compact
operator (−iL0)−1 with respect to the Fourier basis {en} . We will assume that

a ∈ [0,1), b > 0. (4.1)

This assumption is more restrictive than (1.2). The case a ∈ (−1,0) may also be
discussed, however, modifications will be necessary. For example, the definition of
the constants cn in (4.5) has to be changed because the integral would be infinite if
n+ γ � −1.

We consider the differential equation(
1− a

2

(
x+

1
x

))
w+

b
2
(x2 −1)w′ = p(x), (4.2)

where p(x) is a polynomial. By assumption (4.1), equation (4.2) has a unique solution
w0(x) which is holomorphic in |x| < 1 and satisfies w0(0) = 0. We see this by sub-
stituting w(x) = ∑∞

k=1 ukxk into (4.2) and determining uk recursively. Then we show
that the power series ∑∞

k=1 ukxk has radius at least 1 . There is another unique solution
w1(x) which is holomorphic in |x−1|< 1. For 0 < x < 1 we have

w0(x) = −2
b
x−γ (1− x)α(1+ x)β

∫ x

0
tγ(1− t)−α−1(1+ t)−β−1p(t)dt,

w1(x) = −2
b
x−γ (1− x)α(1+ x)β

∫ x

1
tγ(1− t)−α−1(1+ t)−β−1p(t)dt.

Therefore, w0 = w1 if and only if∫ 1

0
tγ (1− t)−α−1(1+ t)−β−1p(t)dt = 0. (4.3)

Let

h(x) =
∞

∑
k=0

φkx
k, φ0 = 0 (4.4)

be the solution w0(x) = h(x) of (4.2) with p(x) = 1. For n ∈ N let w0(x) = fn(x) be
the solution of (4.2) with p(x) = xn − cn

c0
, where

cn :=
∫ 1

0
tn+γ(1− t)−α−1(1+ t)−β−1dt. (4.5)

Since p(x) satisfies condition (4.3), fn(x) is holomorphic on C\(−∞,−1] .
For n ∈ N we set

δn := φnψn +φn−1ψn
1
2
(−a+b(n−1))−φnψn+1

1
2
(a+b(n+1)), (4.6)

where

f1(x) =
∞

∑
k=0

ψkx
k, ψ0 = 0.
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LEMMA 4.1. For n ∈ N ,

δn = − 2
a+b

n−1

∏
k=1

a− kb
a+(k+1)b

. (4.7)

Proof. For n ∈ N we have

φn − 1
2
(a− (n−1)b)φn−1− 1

2
(a+(n+1)b)φn+1 = 0. (4.8)

Therefore,

δn =
1
2
τn(a+(n+1)b), (4.9)

where
τn := φn+1ψn−φnψn+1.

Also, for n � 2,

ψn− 1
2
(a− (n−1)b)ψn−1− 1

2
(a+(n+1)b)ψn+1 = 0. (4.10)

Therefore, for n � 2,

δn =
1
2
τn−1(a− (n−1)b). (4.11)

Now (4.9) and (4.11) imply

τn = τ1
n

∏
k=2

a− (k−1)b
a+(k+1)b

. (4.12)

Since φ1 − ( a
2 +b)φ2 = 0 and ψ1 − ( a

2 +b)ψ2 = 1 we obtain

τ1 = φ2ψ1−φ1ψ2 = φ2 = − 4
(a+b)(a+2b)

. (4.13)

Now (4.9), (4.12), (4.13) imply (4.7). �
We note that δn �= 0 if a

b �∈ N .

LEMMA 4.2. For n ∈ N we have

δn fn(x) = ψn

n

∑
k=1

φkx
k +φn

∞

∑
k=n+1

ψkx
k. (4.14)

Proof. Let gn(x) denote the right-hand side of (4.14). It follows from (4.8) and
(4.10) that(

1− a
2

(
x+

1
x

))
gn(x)+

b
2
(x2 −1)g′n(x) = −1

2
(a+b)φ1ψn + δnx

n.
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The function gn(x) is a linear combination of f1(x) and a polynomial, so it is holomor-
phic at x = 0 and x = 1. Therefore, by comparison with the definition of fn , we obtain
δn fn = gn . Since φ1 = − 2

a+b we also get that δncn = −ψnc0 . �

REMARK 4.3. For n ∈ N , δncn = −ψnc0 .

Proof. This was mentioned in the proof of Lemma 4.2. �
Let

ρm,n := 〈(−iL0)−1en,em〉 for m,n ∈ Z\{0} (4.15)

denote the entries of the matrix representing the compact operator (−iL0)−1 in the
Fourier basis {en} . These entries are given by the following theorem.

THEOREM 4.4. Suppose (4.1) and a
b �∈ N . Then ρm,n = −ρ−m,−n for all m,n,

and ρm,n = 0 if mn < 0 . If m,n ∈ N then

ρm,n =
1

nδn

{
φmψn if m � n

φnψm if n < m.
(4.16)

Proof. Let n ∈ N . For t ∈ (−π ,π) , define

yn(t) :=
1
n

fn(eit).

This function is real-analytic on (−π ,π) . We define numbers σm,n , m,n ∈ N by

fn(x) =
∞

∑
m=1

σm,nx
m.

Equation (4.2) with p(x) = 0 has a regular singularity at x =−1 with exponent β > 0.
By Darboux’s method [14, Section 8.9], for fixed n ,

σm,n = O(m−β−1).

Therefore,

yn(t) =
1
n

∞

∑
m=1

σm,ne
imt ,

where the series converges absolutely and uniformly. It follows that yn(t) can be ex-
tended continuously onto the interval [−π ,π ] and yn(−π) = yn(π) .

By definition, fn satisfies (4.2) with right-hand side p(x) = xn − cn
c0

. Substituting

x = eit and differentiating with respect to t we obtain yn ∈ D(L0) and −iL0yn = eint .
Therefore, ρm,n = 1

nσm,n and the statement of the theorem follows from Lemma 4.2
when n∈N . Setting zn(t) := yn(−t) we see immediately that zn ∈D(L0) and −iL0zn =
e−int . Therefore, for n ∈ N , ρ−m,−n = −ρm,n . �
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THEOREM 4.5. Suppose (4.1) and a
b �∈ N . There is a constant K depending only

on a and b such that, for m,n ∈ N ,

|ρm,n| � K

{
m−α−1nα−1 if m � n

m−β−1nβ−1 if n < m.

Proof. From Darboux’s method we obtain

φn = O(n−α−1), ψn = O(n−β−1). (4.17)

By Lemma 4.1,

δn = (−1)n 2
a+b

Γ(n− γ)Γ(2+ γ)
Γ(n+1+ γ)Γ(1− γ)

. (4.18)

The asymptotics of the Gamma function yields

δn = O(n−2γ−1). (4.19)

Now Theorem 4.4, (4.17), (4.19) imply the statement of the theorem. �
A compact linear operator T in a separable Hilbert space is said to be of Schatten

class Sp for some p > 0 if its sequence of singular numbers is p -summable; see [10,
page 87]. A criterion of Gohberg and Markus [11] states that, for 0 < p � 2, T is
of Schatten class Sp if and only if there is an orthonormal basis {e j} for which the
sequence of norms {‖Te j‖} is p -summable.

THEOREM 4.6. Suppose (4.1) and a
b �∈ N . If 2a + 2 � b then (−iL0)−1 is of

Schatten class Sp for p > 2
3 . If 2a+2 < b then (−iL0)−1 is of Schatten class Sp for

p > b
a+b+1 . Therefore, in both cases, (−iL0)−1 is of trace class S1 , that is, (−iL0)−1

is nuclear.

Proof. By Theorem 4.5,

∞

∑
n=1

ρ2
mn � K2m−2β−2

m−1

∑
n=1

n2β−2 +K2m−2α−2
∞

∑
n=m

n2α−2

� K2m−2β−2
m−1

∑
n=1

n2β−2 +K2m
−3

� K3

⎧⎪⎨⎪⎩
m−3 if 2a+2 > b

m−3 logm if 2a+2 = b

m−2β−2 if 2a+2 < b.

The stated result follows from the mentioned Gohberg-Markus criterion. �
It follows directly from the theorem above and from Lidskii’s theorem [Theorem

V.2.3 [9]] that the set of eigenfunctions of L0 is complete in L2(−π ,π) if a = 0 and
b > 0.
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Let us now consider the remaining case

a ∈ [0,1), b > 0, � :=
a
b
∈ N. (4.20)

Under these assumptions, we have

δn =

{
− 2

b
(�−1)!�!

(�−n)!(�+n)! if n = 1,2, . . . , �,

0 if n > �.
(4.21)

Since δn �= 0 for n = 1,2, . . . , � , formula (4.16) remains true for n = 1,2, . . . , � . Note
that Lemma 4.3 implies ψn = 0 for n > � . Therefore, ρm,n = 0 for n = 1,2, . . . , � ,
m > � .

In order to obtain formulas for ρm,n when n > � , we define a sequence {ψ̃k} by

f�+1(x) =
∞

∑
k=1

ψ̃kx
k.

Then we define δ̃n as in (4.6) but with ψ replaced by ψ̃ .

LEMMA 4.7. Suppose (4.20). If n > � then

δ̃n = φ�+2
b
2
(−1)n+�+1 (n− �+1)!(2�+2)!

(n+ �)!
.

Proof. The proof is similar to the proof of Lemma 4.1 and will be omitted. �

THEOREM 4.8. Suppose (4.20). Then ρm,n =−ρ−m,−n for all m,n, and ρm,n = 0
if mn < 0 or if |m| > |n|= 1,2 . . . , � . If n = 1,2, . . . , � and m ∈ N then

ρm,n =
1

nδn

{
φmψn if m � n

φnψm if n < m.
(4.22)

If n > � and m ∈ N then

ρm,n =
1

nδ̃n

{
φmψ̃n if m � n

φnψ̃m if n < m.
(4.23)

Proof. We already mentioned (4.22). The proof of (4.23) is similar to the proof of
Theorem 4.4 and is omitted. �

We now see that, under assumptions (4.1), Theorems 4.5 and 4.6 remain true.
Finally, let us determine the asymptotic behavior of the sequences φn , ψn , δn , cn

as n → ∞ more precisely. We assume (4.1) and a
b �∈ N . At x = 1 the function h(x) has

the form

h(x) = −c0
2
b
x−γ(1− x)α(1+ x)β + h̃(x),
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where h̃ is holomorphic at x = 1. Therefore, the Darboux method yields

φn = − 2β+1c0

bΓ(−α)
n−α−1 +O

(
nmin{−α−2,−β−1}

)
, (4.24)

Formula (4.18) gives

δn = (−1)n 2
b
Γ(1+ γ)
Γ(1− γ)

n−2γ−1 +O(n−2γ−2). (4.25)

From (4.5) we obtain
cn = 2−β−1Γ(−α)nα +O(nα−1). (4.26)

Now Lemma 4.3 and (4.5), (4.6) give

ψn = (−1)n+1 2−β

bc0

Γ(−α)Γ(1+ γ)
Γ(1− γ)

n−β−1 +O(n−β−2). (4.27)

As an application we determine the asymptotic behavior of the diagonal entries of
the matrix representing (−iL0)−1 .

THEOREM 4.9. Suppose (4.1) and a
b �∈ N . Then, as n → ∞ ,

ρn,n =
1

bn2 +O
(
nmin{−3,α−β−2}

)
. (4.28)

Proof. This follows from Theorem 4.4, (4.24), (4.25), (4.27). �
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