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FINITE INTERTWININGS AND SUBSCALARITY

B. P. DUGGAL

Abstract. Quasinilpotent equivalence does not preserve subscalarity. However, if we replace
quasinilpotent equivalence by “finite intertwining by the identity operator”, then subscalarity is
preserved (in one direction). We shall prove that if A , B and N are Banach space operators

such that �n
AB(I) = �AB(�n−1

AB (I)) = ∑n
i=0 (−1)i

(
n
i

)
An−iBi = 0 for some positive integer n ,

and if N is an algebraic operator which commutes with B , then A is subscalar implies B+N
is subscalar. Applications to classes of Hilbert space operators, and the elementary operators
LA −RB and LARB −1 for certain choices of subscalar operators A and B∗ , are considered.
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