
Operators
and

Matrices
Volume 4, Number 4 (2010), 459–484

MULTIPLIERS OF MULTIDIMENSIONAL FOURIER ALGEBRAS

I. G. TODOROV AND L. TUROWSKA

Abstract. Let G be a locally compact σ -compact group. Motivated by an earlier notion for dis-
crete groups due to Effros and Ruan, we introduce the multidimensional Fourier algebra An(G)
of G . We characterise the completely bounded multidimensional multipliers associated with
An(G) in several equivalent ways. In particular, we establish a completely isometric embedding
of the space of all n -dimensional completely bounded multipliers into the space of all Schur mul-
tipliers on Gn+1 with respect to the (left) Haar measure. We show that in the case G is amenable
the space of completely bounded multidimensional multipliers coincides with the multidimen-
sional Fourier-Stieltjes algebra of G introduced by Ylinen. We extend some well-known results
for abelian groups to the multidimensional setting.
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