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ON L2 –EIGENFUNCTIONS OF TWISTED LAPLACIAN ON CURVED

SURFACES AND SUGGESTED ORTHOGONAL POLYNOMIALS

A. GHANMI

Abstract. We show in a unified manner that the factorization method describes completely the
L2 -eigenspaces associated to the discrete part of the spectrum of the twisted Laplacian on con-
stant curvature Riemann surfaces. Subclasses of two variable orthogonal polynomials are then
derived and arise by successive derivations of elementary complex valued functions depending
on the geometry of the surface.
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