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REDUCTION OPERATOR ALGEBRAS AND

GENERALIZED SIMILARITY PROBLEM

RACHID EL HARTI

Abstract. In this paper, we give new results on reduction operator algebras. We investigate the
relationship between the generalized similarity problem and the total reduction property. We also
give some sufficient and necessary conditions for a reduction operator algebra to be self-adjoint
or similar to a C ∗ -algebra.

1. Introduction

Let A be a complex Banach algebra. A Banach 〈 left, bi〉-module on A is a
Banach space X which is an algebraic 〈 left, bi〉-module on A such that the mod-
ule actions are continuous. Note that X ∗ becomes a Banach 〈 left, bi〉-module with
respect to the dual actions 〈a, f 〉(b) = f (ba) and 〈 f ,a〉(b) = f (ab) identically for ev-
ery a,b ∈ A and f ∈ X ∗ . A derivation from A into a Banach A -bimodule X is
a bounded map D : A −→ X such that D(ab) = D(a)b + aD(b) for all a,b ∈ A .
A derivation D is inner if there is x ∈ X such that D(a) = a.x− x.a for a ∈ A . A
Banach algebra A is said to be amenable if for each Banach A -bimodule X , every
derivation D : A −→ X ∗ is inner. Amenable Banach algebras were introduced by B.
N. Johnson in [13] and they were well investigated in [3, 10, 14]. It was established in
[1] by A. Connes that every amenable C∗ -algebra A (i.e., every closed self-adjoint of
B(H ) , the algebra of bounded operators on a given Hilbert space H ) is nuclear; i.e.,
for all C∗ -algebra B , there exists a unique C∗ -norm for which the completion of the
(algebraic) tensor product A ⊗B is a C∗ -algebra. The converse has been shown by
U. Haagerup in [11].

Assume now that A is an operator algebra, that is a Banach algebra which acts
as an algebra of bounded operators on a Hilbert space K (in fact, A is a norm-closed
subalgebra of the algebra B(K ) of bounded operators on K ). Identifying the matrix
space Mn(B(K )) over B(K ) with B(K n) , we let Mn(A ) have the induced norm
in B(K n) . A bounded homomorphism φ : A −→ B is completely bounded (c.b. for
short) if for every n , φn : Mn(A ) −→ Mn(B) , (ai j) → (φ(ai j)) is bounded such that

‖φ‖cb = sup‖φn‖Mn(A )→Mn(B) < ∞.

A representation π of A on a Hilbert space H , i.e., a bounded homomorphism
π : A −→ B(H ) , is said to be non-degenerate if π(A )H = H . It is called irre-
ducible when the only closed invariant subspaces of π(A ) are {0} and H . A Hilbert
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A -module H is defined to be a left Banach module for A which is isomorphic to a
Hilbert space. This is equivalent to the existence of a representation π : A −→ B(H )
of A on H . A Hilbert A -module is said to have the reduction property if for every
closed submodule V of H , there is a closed submodule W such that H = V ⊕W .
A operator algebra A ⊆ B(K ) is called a reduction algebra if K has the reduc-
tion property. It is called a complete reduction algebra if the amplified module K ∞
(

= K ⊗2l2(N)
)

has the reduction property for A (∞) . Note that we can define a nat-
ural action of A (∞) on K ∞ via (An)n.(xn)n = (An.xn)n . An operator algebra A is
said to have the total reduction property if every Hilbert A -module has the reduction
property. It A ⊆ B(K ) is an operator algebra, then the total reduction property for
A implies the complete reduction for A , which in turn implies the reduction property.
If A is an operator algebra and π : A −→ B(H )) is a bounded representation, then
H has the reduction property if and only if every submodule of H is an idempotent
operator in π(A )′ , the commutant of π(A ) . Such idempotents are called idempotent
operator module projections. The total reduction property for an operator algebra was
introduced in J.A. Gifford’s thesis [8]. This property is satisfied by amenable operator
algebras. In fact, many problems raised in the amenable case have natural extensions
to operator algebras with the total reduction property. In [19, page 13], Pisier asks
which unital Banach algebras A have the similarity property (SP)?, i.e., such that for
each bounded unital representation φ : A ⊆ B(K ) −→ B ⊆ B(H ) , ∃S ∈ B(H )
invertible such that φS : a → S−1φ(a)S is a contraction. He then gave several results
answering partially this question. In his paper [20], he also raised the Generalized
Similarity Problem (GSP): Which unital operator algebras have the property that any
representation π : A −→ B(H ) (H arbitrary Hilbert space) is c.b.

In the C∗ -algebras case, (SP) is equivalent to (GSP) and in [15] R. Kadison con-
jectured that every unital C∗ -algebra satisfies (SP). J. Gifford in [9] has shown that a
C*-algebra B has the total reduction property if and only if it satisfies (SP), i.e., each
representation of A is similar to a ∗ -homomorphism. In the case of non-selfadjoint
operator algebra, it is natural to look for similar results including the eventual connec-
tion of the total reduction property to (GSP) or (SP). On the other hand, it has been
conjectured in [9] that:

Conjecture 1: Every non self-adjoint operator algebra with the total reduction property
is isomorphic (as a Banach algebra) to a C∗ -algebra.

Conjecture 2: Every weakly closed complete reduction non self-adjoint operator al-
gebra A ⊆ B(K ) is similar to C∗ -algebra B . i.e ∃S ∈ B(K ) invertible such that
A = S−1BS .

As partial results, Gifford has proven that every operator algebra A ⊆ B(K )
with the total reduction property, which is a closed subalgebra of an abelian C∗ -algebra,
is a C∗ -algebra and every operator algebra A ⊆ B(K ) with the total reduction prop-
erty, which a closed subalgebra of the algebra of compact operators on K , is similar
to a C∗ -algebra. It is clear that if Conjecture 2 is true, then the statement of Conjecture
1 holds for weakly closed operator algebras.
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In this paper, the operator algebras with the reduction property are investigated and
some partial answers to both conjectures 1 and 2 are established. We shall give some
sufficient and necessary conditions for a reduction operator algebra to be self-adjoint
or similar to a C∗ -algebra or finite dimensional semi-simple algebra. For example, we
give in Section 4 a partial answer to conjecture 2. Precisely, we show that: if A is
weakly closed complete reduction operator algebra such that the idempotent operators
are in the bidual of A , then A is similar to a C∗ -algebra. In Section 3, we will see that
the total reduction property plays a crucial role for answering (GSP). Thus, we show
in particular that if the operator algebra is isomorphic to a C∗ -algebra, then the total
reduction property is equivalent to (GSP).

2. Preliminaries

In this section, we fix notations and recall some standard results that we will use
throughout the present paper. We start by recalling well known results on the amenabil-
ity.

Let A be a Banach algebra. If X , Y and Z are A -modules and f : X → Y
and g : Y → Z are module morphisms, then the sequence

∑ : 0−→ X −→ Y −→ Z −→0

is exact if f is one-to-one, Img = Z and Im g = kerg . The exact sequence is admis-
sible if Im f has a Banach space complement in Y , equivalently, there is a bounded
linear map h : Z → Y such that hg = I on Z . The sequence splits if there is a A -
module morphism h : Z → Y such that hg = I on Z . This means that Im f has a
Banach space complement in Y which is a submodule.

THEOREM 2.1. ([3], [14]) A Banach algebra A is amenable if and only if
(i) A has a bounded approximate identity, and
(ii) For each essential A -bimodule X , any admissible short exact sequence

∑ : 0−→ X ∗ −→ Y −→ Z −→ 0

of A -bimodules splits. In this case, every two sided ideal J with an approximate
identity is amenable Banach algebra.

We require some results of J.A. Gifford from his paper [9] and from his 1997 Ph.D.
thesis ( see [8]) that we know of no other published reference for. We will collect these
in a single proposition and provide brief proofs because they are needed in this article.

PROPOSITION 2.1. Let A ⊆ B(K ) be an operator algebra.
1. If A has the complete reduction property. Then the set P of central projections

of A
′′

is bounded. Moreover, there exists a similarity S of K which makes all the
central projections self-adjoint.

2. If A is a subalgebra of the algebra of compact operators in B(K ) , then A
satisfies the total reduction property if and only if A is similar to a C∗ -algebra. In
particular A is amenable if and only if A is similar to a nuclear C∗ -algebra.
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PROPOSITION 2.2. Let A ⊆ B(K ) be an operator algebra. Then

1. If A is a reduction algebra, and if J ⊆ A is a two-sided ideal. Then J acts
non degenerate on J K

2. If A is a complete reduction operator algebra and if J ⊆ A a two-sided ideal

such that K = J K . Then, we have h ∈ J (n)h for every positive integer n
and every h ∈ K (n)

3. If A is a complete reduction operator algebra and J ⊆ A a two-sided ideal
such that K = J K . Then the stronger closure of J is the bicommutant J

′′
.

Proof.
2) Since A has the reduction property, there is a submodule V of K such that

K = V ⊕J K . We can easily check that J V = 0 and therefore

J K = J (J K )⊕J V = J (J V ).

3) Since K (n) has the reduction property for A (n) and J (n)h is A (n) -invariant,
then there exists an idempotent operator module projection p ∈ (A (n))′ such that

pK = J (n)h and h = ph+(1− p)h . Note that J (1− p)h = 0 and V = {h ∈ K
such that J h = 0} = 0. Indeed, let q be an idempotent operator module projection
such that qK = V . Then

K = J K ⊆ J qK ⊕J (1−q)K ⊆ J (1−q)K ⊆ (1−q)K .

This implies that V = 0. It follows that (1− p)h = 0 and h ∈ J (n)h .
4) Note first that Since J

′′
is strong closed and J ⊆ J

′′
, then the strong clo-

sure of J is contained in J
′′
. Next, let A ∈ J

′′
and fix n � 1, then the norm-

closure J (n)h is an invariant subspace of A (n) for every fixed h = (h1,h2, ....,hn) ∈
K (n) . Now, since A (n) is a reduction algebra, it follows that J (n)h is the range
of idempotent operator module projection p ∈ (A (n))′ . According to the facts that
A(n) ∈ (A

′′
)(n) and (A

′′
)(n) = (A (n))

′′
together with Proposition 12.2 in [2], we have

(A (n))′ = ((A
′′
)
(n)

)′ . It follows that pA(n) = A(n)p and J (n)h is an invariant sub-

space for An . Since h ∈ J (n)h , we have Anh is in J (n)h . Finally, using Proposition
8.6 in [2], we see that A is in the strong-closure of A . This completes the proof.

3. Reduction operator algebras

We start with the following.

LEMMA 3.1. Let A be an operator algebra. The following are equivalents:
1. A has the total reduction property.
2. Every exact short sequence of Hilbert A -module is split.
3. For each representation π : A −→ B(H ) , H has the reduction property for

π(A ) .
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Proof.
1) ⇒ 2) Consider an exact short sequence of Hilbert A -module

∑ : 0−→ V −→ H −→ W −→0.

Since H has the reduction property for A , there exists a Hilbert A -module V ′ such
that H = V ⊕V ′ . This show that W is isomorphic to V ′ as a Hilbert A -module.

2) ⇒ 3) Consder any representation π : A −→ B(H ) of A . Let M a closed
invariant subspace of π(A ) . Then the short sequence

∑ : 0−→ M −→ H −→ H /M −→0

is exact and thus it is split. There is a Hilbert A -module N ′ such that H = M ⊕N .
This compltes this sens.

3) ⇒ 1) Now, let H be a Hilbert A -module and V be a submodule. Consider
the map π : A −→ B defined by π(a)h = ah for all h ∈ H . It is easy to see that
π is a bounded homomorphism and V is a closed invariant subspace of π(A ) . Then
there is an other closed invariant subspace W which is a submodule of H such that
H = V ⊕W . This complete the proof.

PROPOSITION 3.1. Any amenable operator algebra has the total reduction prop-
erty.

Proof. By applying Theorem 2.1 combined with Lemma3.1, we conclude that
every exact short Hilbert A -module is split.

As examples of amenable operator algebras, we cite the abelian C*-algebras, the
algebra of compact operators on a Hilbert space, Cuntz algebras, AF-algebras. Note
that B(K ) is not amenable when the Hilbert space K is of infinite dimension but it
is a total reduction algebra.

It is important to see that the total reduction property is preserved under continuous
homomorphisms. Therefore any operator algebra similar to a total reduction operator
algebra must be a total reduction algebra.

PROPOSITION 3.2. Let A be a total reduction (respectively amenable) operator
algebra and ψ : A −→ B a continuous homomorphism into an other operator algebra
B such that ψ(A ) =B . Then B is a total reduction (respectively amenable) operator
algebra.

Proof. It is enough to check that if π : B −→ B(H ) is a representation of B ,
then a subspace M ∈B(H ) is a closed invariant subspace of π(B) if and only if it a
is a closed invariant subspace of φ(π(A )) .

PROPOSITION 3.3. Let A ⊆ B(K ) be a complete reduction operator algebra
containing the identity. Then the stronger closure of A is A

′′
.

Proof. The result is a particular case of property (3) in Proposition 2.3.
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COROLLARY 3.1. For any operator algebra A ⊆ B(K ) , we have A is a re-
duction algebra if and only if A

′′
is a reduction algebra.

The proof of this result is a straightforward exercise. It can be handled by writing
down the definition of the reduction property and applying the last proposition.

COROLLARY 3.2. If A is an operator algebra containing the identity with the
total reduction property, then for every representation π : A −→ B(H ) , π(A )

′′
is a

reduction operator algebra. Furthermore, the stronger closure of π(A ) is (π(A ))
′′
.

Proof. Denote by U the norm-closure of π(A ) and note that both the bicommu-
tant and the strong-closure of π(A ) are equal to U . Applying the last proposition to
U , we get the desired result.

It is a known fact that any Banach algebra A is weak∗ dense in its topological
bidual A ∗∗ . Hence for given u,v∈A ∗∗ , we set u .1 v = limβ (limα aαbβ ) and u .2 v =
limα (limβ aαbβ ) where aα and bβ are two sequences in A which converge weakly∗
respectively to u and v . A is called Arens regular if u . v = u .1 v = u .2 v for all u, v∈
A ∗∗ . Thus, it is well know that every C∗ -algebras is Arens regular. Assume now that
A ⊆ B(K) is a non self-adjoint operator algebra and let π : B(K) −→ B(H) denotes
the Gelfand-Naimark-Segal GNS-representation of B(K) . Then A ∗∗ is isometrically
isomorphic to π(A )w∗ and therefore A is Arens regular. From the paper of P.G.
Dixon [5], we can see that A has a bounded approximate identity if and only if the
bidual A ∗∗ has an identity.

As example the algebra of bounded operators B(H) and the algebra of compact
operators K (H ) have both the total reduction property. It is shown in [10] that if
A ∗∗ is amenable, then A is amenable. For the total reduction property case, we have
the same result. Namely

COROLLARY 3.3. Let A ∈ B(K ) be an operator algebra such that the bidual
A ∗∗ has the total reduction property. Then A has a total reduction property.

Proof. Assume that A ∗∗ has the total reduction property and let π : A −→
B(H ) be a representation of A . Let M be a closed invariant subspace of π(A ) .
Note that the map π can be extended to representation π̃ : A ∗∗ −→ B(H ) . Since

π̃(A ∗∗) ⊆ π(A )w∗ ⊆ (π(A ))
′′

and from Corollary 3.2, the stronger closure of π(A )
is (π(A ))

′′
, M is also a closed invariant subspace of π̃(A ∗∗) . Hence there is a closed

invariant subspace N of π̃(A ∗∗) such that H = M ⊕N . Notice that N is also a
closed invariant subspace of π(A ) . This completes the proof.

Notice that the converse is not true for the amenability’s case. Indeed B(H) is not
amenable while K (H ) is amenable. But it seems to be true for the case of the total
reduction property.
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LEMMA 3.2. Let π : A −→ B(H ) be a representation of a operator algebra
A and letV an a closed invariant subspace of π(A ) . If H has the reduction prop-
erty (respectively the complete reduction property) for A then V has the reduction
property (respectively the complete reduction property) for A .

Proof. Let M a closed invariant subspace of π(A ) included in V . Since H
has the reduction property, there is a closed invariant subspace N of π(A ) such that
H = M ⊕N . It is clair that V

⋂
N is a closed invariant subspace of π(A ) included

in V with V = M ⊕V
⋂

N .

LEMMA 3.3. Let A ⊆ B(K ) be a weak∗ closed reduction operator algebra.
Then A is weak∗ closed in B(A K ) .

Proof. Consider the restriction weak∗ continuous contractive operator σ defined
by

σ(T ) = T/A K , T ∈ B(K ).

Since A is a reduction algebra, there is an A -invariant subspace V such that K =
A K ⊕V . Then AV = 0 and so, σ is an isomorphism from A onto σ(A ) =
A /A K . Assume that aα is a net in A /A K convergingweakly∗ to a∈B(A K ) .
It is easy to check that aα ⊕0−→ a⊕0 in the weak∗ topology in B(K ) . This shows
the result.

For any two-sided ideal J of a total reduction (respectively amenable) operator
algebra A , the quotient A /J is a total reduction (respectively. amenable) operator
algebra. From Corollary 3.2.8 and Proposition 3.3.3 in [8], we deduce the following
results:

PROPOSITION 3.4. Let A ⊆ B(K ) be a unital total reduction (or amenable)
operator algebra and let J be a closed two sided ideal of A . Then J has a bounded
approximation identity (b.a.i) . Moreover, it is associated to J a central projection
(central self-adjoint idempotent) p ∈ A ∗∗ such that A ∗∗ = pA ∗∗ ⊕ (1− p)A ∗∗ and
pA ∗∗ = J∗∗ .

Proof. First, consider π : B(K )−→B(H ) , the GNS representation of B(K ) .
Then A ∗∗ and J ∗∗ are isometrically isomorphic to π(A )w∗

and π(J )w∗
, respec-

tively. We have to show that π(J )w∗
has an identity which proves also that J ∗∗ has

also an identity. Therefore, J has a bounded approximate identity.

Using Corollary 3.2, the strong closure of π(A ) is the bicommutant π(A )
′′
.

Since the weak∗ topology is weaker than the strong topology, we have π(A )
′′

=
π(A )w∗ . Therefore, J w∗ is a weak∗ a closed two-sided ideal of π(A )

′′
. In view

of Proposition 3.2 and Proposition 3.3, π(A )
′′

is a complete reduction algebra. Now,
denote by I the tow-sided ideal π(J )w∗ . From (1) in Proposition 2.2, I acts non de-
generate on I H . Thus, the property (3) of Proposition 2.2, infers that the weak∗ clo-
sure of I in B(I H ) is the bicommutant I

′′
. Therefore, π(J )w∗ has an bounded
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approximate identity as a subalgebra of B(I H ) . Next, by Lemma 3.3, we conclude
that I is weak∗ closed in B(I H ) . Whence the restriction I to I H has an
identity e = 1π(J )H . On the other hand, there is a submodule V of H such that

H = V ⊕I H . Notice that eH ⊆ I H and eV = 0. Therefore e is a projection
onto the A

′′
-invariant I H along an A

′′
-invariant kernel V and so, e belongs to

the commutant of A
′′
. This yields that e ∈ A

′′ ⋂
A

′
and so, e is a central projection.

This proves the first part.
Now, since J has an approximate identity (pα)α∈Δ and A is Arens regular,

then J is Arens regular and therefore J ∗∗ is a weak∗ -closed two sided ideal of
A ∗∗ . Passing to a subset, we may assume that pα converges in the weak∗ topology to
an element p ∈ J ∗∗ with ‖p‖ � 1. It is clear that jp = j and p j = j for any j ∈ J .
Let now j ∈ J∗∗ . Then there is a net jβ ∈J which converges to j . Since J is Arens
regular, i.e., the left and the right Arens product coincide, we have jp = p j = j and so,
p is a central projection in A ∗∗ . Finally, p is self-adjoint projection for ‖p‖� 1. This
completes the second part.

COROLLARY 3.4. If A is a total reduction (respectively amenable) operator al-
gebra, then J is a total reduction (respectively amenable) operator algebra.

Proof. J has a bounded appriximate identity according to Proposition 3.4 and
also Proposition 3.1 in the amenability case. Then if A is amenable then from Theorem
2.1 Then if A is amenable then from Theorem 2.1, J is amenable. Now assume that
A is a total reduction algebra, we let π : J −→ B(H ) be a representation. π can
be extended to π̃ : J ∗∗ −→ B(H ) . Thus J ∗∗ has a identity j . This induces a
representation π : A −→ B(H ) defined by π(a) = π̃(a j). Let now M be a closed
invariant subspace of π(J ) . Then M is a closed invariant subspace of π̃(A j) and
also of π(A ) . Since A has the total reduction property, there exists a closed invariant
subspace subspace N of π(A ) such that H = M ⊕N . Using the fact that π is the
restriction of π on J , we see that N is a closed invariant subspace of π(J ) , and
J is then a total reduction algebra.

It is natural to ask if the condition that the quotient A /J is a total reduction
(resp. amenable) operator algebra, where J is assumed to be a two sided ideal which
is a total reduction (resp. amenable) algebra, implies that A is total reduction (resp.
amenable) operator algebra. In fact, this problem is in fact still open for the amenabil-
ity’s case. The following is the positive answer for the case of total reduction algebras.

THEOREM 3.1. Let A be a total reduction operator algebra and J a closed two
sided ideal, which is a total reduction operator algebra, such that the quotient A /J
be total reduction operator algebra. Then A is a total reduction operator algebra.

Proof. Let p be the central projection associated to J in J ∗∗ . Consider π :
J −→ B(H ) and let V be an invariant subspace of π(A ) . Then V is also an
invariant subspace of π̃(A ∗∗) , where π̃ : A ∗∗ −→ B(H ) is the weak∗ continuous
extension of π to A ∗∗ . Put q = π(p) and note that it is easy to check that qV is an



REDUCTION OPERATOR ALGEBRAS AND GENERALIZED SIMILARITY PROBLEM 567

invariant subspace of π̃(A ) , and so it is an invariant subspace of π(J ) . By Lemma
3.3, π(J ) has the total reduction property on qH . Then, there exists an invari-
ant subspace Wq of π̃(J ) such that qH = qV ⊕Wq . On the other hand, we have
A /J ∗∗ ∼= A ∗∗(1− p) and (1−q)V is a submodule of Hilbert A ∗∗(1− p)-module
and so it is a submodule of the Hilbert A /J -module (1− q)H . Thus there is a
submodule Hilbert W(1−q) of (1− q)H such that (1− q)H = (1− q)V ⊕W(1−q) .
Note here that V = qV ⊕ (1− q)V and H = qH ⊕ (1− q)H . Furthermore, it is
obvious that V

⋂
Wq

⋂
W(1−q) = 0 and H = V ⊕Wq ⊕W(1−q) . It remains to show

that Wq ⊕W(1−q) is a submodule of the Hilbert A -module H . Indeed, we have
π̃(A ∗∗p)W(1−q) = 0 and π̃(A ∗∗)(1− p))Wq = 0. This gives rise to the following

π̃(A ∗∗)(Wq⊕W(1−q)) ⊆ π̃(A ∗∗p)⊕ (
π̃(A ∗∗)(1− p)

)(
Wq⊕W(1−q)

) ⊆ Wq⊕W(1−q).

This completes the proof.

COROLLARY 3.5. Let A be a C∗ -algebra and J any closed two-sided ideal of
A . Then A satisfies (GSP) if and only if J and A /J satisfies (GSP).

In the sequel, we make use of the following notations. We define A (n) , for given
A ∈ B(K ) and positive integer n , to be the direct sum of n copies of A acting on
K (n) , the direct sum of n copies of K . If A is a collection of operators, we denote
by LatA the set of closed invariant subspaces of A .

PROPOSITION 3.5. Let A be a reduction operator algebra. Then A (n) is a re-
duction operator algebra for every positive integer n.

Proof. Let M ∈ LatA (n) and consider Mk , the set of all elements (x1,x2, ....,xn)
of M for which xi = 0 for i � k . Then, we assert that Pk(Mk) ∈ Lat A , where Pk is
the orthogonal projection of K (n) on K (k) . Since A (k) is a reduction algebra, there is
Nk such that K = Pk(Mk)⊕Nk . It is easy to check that M = ∑n

k=1 ⊕Pk(Mk) and
N = ∑n

k=1 ⊕Nk belong to LatA (n) . This proves that A (n) is a reduction operator
algebra for every positive integer n .

It is conjectured by Galé, Ransford and White in [7] that a reflexive amenable
Banach algebra is finite dimensional and semi-simple. The following results answer
partially to this conjecture in the case of operator algebras.

THEOREM 3.2. Let A be a total reduction operator algebra whose underling
Banach space is reflexive. Then it is a semi-simple operator algebra.

Proof. We begin by noting that A is Arens regular and that the Jacobson Radi-
cal Rad(A ) of A is a closed ideal of A which is also Arens regular. Assume that
Rad(A ) �= {0} . By Proposition 3.4, Rad (A ) has a b.a.i and so, the bidual Rad(A )∗∗
has an identity. But Rad (A ) is reflexive as a Banach space. This is a contradiction.

COROLLARY 3.6. A reflexive amenable operator algebra A is semi-simple.
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COROLLARY 3.7. An operator algebra A with the total reduction property, which
is a Hilbert space is finite dimensional and semi-simple.

Proof. Notice that A is semi-simple by the previous theorem. Now, for any max-
imal left ideal M of A , the exact short sequence

0 −→ M ∗ −→ A −→ A /M −→ 0

of Hilbert A -modules is split according to Lemma 3.1. Then there is a left ideal N
such that A = M ⊕N . Finally, the result follows using similar argument as in the
proof of Theorem 3.1 in [6].

THEOREM 3.3. Let A be a reflexive abelian operator algebra. Then the follow-
ing are equivalent:

1. A is a total reduction operator algebra.

2. A is finite dimensional and semi-simple.

3. A is amenable.

Proof. We only need to show that 1⇒ 2. Let M be a maximal two-sided ideal of
A . Since M is reflexive with a b.a.i, it has identity. Then there is a central self-adjoint
projection p such that A = pA ⊕ (1− p)A with M = pA . Let χ be a character
on A and let p be the central self-adjoint projection associated to kerχ . If χ ′ is an
other character such that χ ′(p) = χ ′(p) = 0, then we have pA ⊆ ker(χ ′)

⋂
ker(χ) and

so, χ ′ = χ . This shows that for each character χ , {χ} is weak-closed set in the dual
A ∗ . Now, for χ ′ �= χ and χ(p) = 0, we have χ ′(p)∼= 0. Also, we have χ ′(p) = 1 for
p2 = p . This proves that {χ} is a weak open set in A ∗ . Consequently, the set X of
all characters on A is discrete. Since A is reflexive with an approximate identity, it is
unital and hence X is a compact set and so finite. The algebra A is then the finite direct
sum of one dimensional two-side ideals (1− pk)A with pk is the central self-adjoint
projection of kerχk , where χk ∈ X .

COROLLARY 3.8. A finite dimensional operator algebra with the total reduction
property is isomorphic to a finite direct sum of full matrix algebras.

THEOREM 3.4. Let A be a total reduction operator algebra and assume that A
is generated by its normal elements. Then A is self-adjoint.

Proof. Note that A satisfies the conditions of Proposition in [4], and therefore
demonstration of Theorem in the same paper gives the result.

We now focus on the abelian case. An abelian C∗ -algebra is amenable and thus it
is a total reduction operator algebra. For general operator algebras case, the amenability
implies the total reduction property according to Proposition 3.1. It is natural to ask if
the total reduction property implies the amenability for abelian operator algebras. From
Theorem 3.4, the following result is a partial answer to this question.
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PROPOSITION 3.6. An abelian operator algebra with the total reduction property,
which is isomorphic to a closed subalgebra of a C∗ -algebra is similar to a C∗ -algebra
and so amenable.

COROLLARY 3.9. [9] An operator algebra with the total reduction property con-
taining in an abelian C∗ -algebra is self-adjoint.

Let now A and B be two operator algebras with B semisimple and φ : A −→B
an isomorphism map onto B . If φ is bounded then open mapping theorem implies that
the inverse map φ−1 is bounded. But φ−1 is not necessarily c.b even if φ is c.b. Indeed,
consider the disc algebra A(D) which can be described as the completion of the set of
all polynomials for the norm

‖P‖∞ = sup{|P(z)| / z ∈ D}

or also as an operator algebra of the C∗ -algebra C(∂D) . Let u : A(D) −→ B(H )
the homomorphism given by G. Pisier in [18] which is bounded but not c.b. (The disc
algebra does not satisfy then (GSP)). Consider also w : A → B(H )⊕C(∂D) defined
by w(a) = u(a)⊕ a . Then w(A(D)) is closed in B(H )⊕C(∂D) and w is an iso-
morphism into w(A(D)) . Furthermore, one can check that the inverse homomorphism
w−1 : w(A(D)) −→ A(D) is c.b. but w is not c.b.

Now assume that B is a C∗ -algebra. Then φ is bounded. Moreover, φ is com-
pletely continuous by Pitts’ theorem [21]. In addition, the inverse homomorphism φ−1

is bounded. It is c.b. if and only if A is similar to a C∗ -algebra.

THEOREM 3.5. An operator algebra A ∈ B(K ) with the total reduction prop-
erty, which is isomorphic to a C∗ -algebra B is similar to a C∗ -algebra.

Proof. Using Proposition 3.2, it follows that B is a total reduction operator alge-
bra. Therefore, it satisfies (SP). Now, let φ : A −→ B be a given isomorphism. By
Corollary 3.6 of [9] , φ−1 is similar to ∗ -homomorphism, i.e, there exists S ∈ B(K )
and a ∗ -representation ρ : B −→ B(K ) such that φ−1(a) = S−1ρ(a)S for a ∈ B .
This yields that ρ(B) is a C∗ -algebra and A = S−1ρ(B)S .

By using Paulsen’s theorem in [17], (GSP) implies (SP) for general operator alge-
bras and both of them is equivalent to the total reduction property for a C∗ -algebra. It
is natural to ask it is the same case for nonself-adjoint operator algebras.

THEOREM 3.6. Let A ⊆ B(K ) be an operator algebra isomorphic to a C∗ -
algebra B and let φ : A −→ B the isomorphism. We assert the following:

1. If A is a total reduction algebra, then A satisfies (GSP) and so (SP).
2. If φ−1 is c.b. and A satisfies (GSP), then A is a total reduction algebra.
3. If φ−1 is c.b. and if J is a closed two-sided ideal of A , then A satisfies

(GSP) if and only if J and A /J satisfy (GSP).
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Proof. 1. Let π : A −→ B(H ) be a bounded representation of A on a Hilbert
space H . Since A is isomorphic to C∗ -algebra B which is a total reduction alge-
bra. Thus, C∗ -algebra B satisfies (GSP). Hence π ◦ φ−1 is c.b. Now making use of
Theorem 2.3 in [21], it follows that φ is c.b. and and thus π is c.b.

2. According to the fact that A is isomorphic to C∗ -algebra B , it is enough
to show that B is a total reduction algebra. Let π : B −→ B(H ) be a bounded
representation of A on a Hilbert space H . Since A satisfies (GSP), π ◦ φ is c.b..
Hence π is c.b. so that B is C∗ -algebra satisfying (GSP). It is then a total reduction
algebra.

3. Using property 2 above, A is a total reduction algebra. By Proposition 3.4
and Corollary 3.4, J and A /J are total reduction algebras. Notice that J and
A /J are respectively isomorphic to C∗ -algebras φ(J ) and B/φ(J ) . Next, the
first property shows that J and A /J satisfy (GSP). To prove the converse, we use
the property 2 and Theorem 3.1.

An operator algebra A satisfies (CC) if each contractive representation φ : A −→
B(H ) is completely contractive, i.e., it is c.b. and ‖φ‖cb � 1. . Every C∗ -algebra
satisfies (CC) and it is clear that for an operator algebra A which verifies (CC), the
algebra A satisfies (SP) if and only if satisfies (GSP). For example, the disc algebra
A(D) satisfies (CC) but not the (GSP), then it does not satisfies (SP). It is also not a
total reduction algebra.

4. Complete reduction operator algebras

Here, we deal with complete reduction algebras. We discuss some particular cases
of complete reduction algebras which are similar to self-adjoint operator algebras.

PROPOSITION 4.1. Let A ⊆B(K ) be an operator algebra containing the iden-
tity. Then A is a complete reduction operator algebra if and only if A

′′
is a complete

reduction operator algebra.

Proof. According to Corollary 3.1, A (∞) has the reduction property for K (∞) if

and only if A (∞)
′′

has the reduction property for K (∞) . Hence A (∞)
′′
= (A

′′
)(∞) , A

is a complete reduction algebra if and only if A
′′

is a complete reduction algebra.

COROLLARY 4.1. Let A ⊆ B(K ) be an operator algebra containing the iden-
tity. A has the complete reduction property if and only if the bidual A ∗∗ has the
complete reduction property.

THEOREM 4.1. Let A ⊆ B(K ) be an operator algebra. A is a complete re-
duction operator algebra if and only if A (n) is a complete reduction operator algebra
for every positive integer n.

Proof. By Proposition 3.2, (A (∞))n has the reduction property on (K (∞))n . Then,
it is easy to check that (A (∞))n ∼= (A (n))(∞) and (K (∞))n ∼= (K n)(∞) . Whence, it fol-
lows that (A (n))(∞) has the reduction property on (K n)(∞) .
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An operator algebra is said to be reductive if it is weakly closed, contains the
identity operator, and has the property that every closed subspace invariant under (all
operators in) A reduces (all the operators in) A . Von Neumann algebras are obviously
reductive. The reductive algebra problem lifted by M. Radjavi and P. Rosenthal in [16]
is the following question: Is every reductive algebra a von Neumann algebra? The
conjecture 2 can be considered as a non-self-adjoint analogue of the reduction algebra
problem.

THEOREM 4.2. Let A ⊆B(K ) be a weakly closed complete reduction operator
algebra. Assume that each idempotent operator in A ′ is in A

′′
. Then A is similar to

a C∗ -algebra.

Proof. For each positive integer n , let Pn denote the set of idempotent operators
in (A (n))′ . Since (A ′)(n) = (A (n))′ , then Pn is exactly P(n) . Using Lemma 4.4 of
[9], there exists a similarity S of K which makes all elements of P self-adjoints,
i.e., S−1pS is self-adjoint projection for any p ∈ P. Set U = S−1A S and note that

U (n) = S(n)−1
A (n)S(n) . Therefore S(n)−1

pS(n) is a self-adjoint projection for every
fixed p ∈ Pn . Now, since the similarity preserves the idempotent operators module
projections, each Un is a reduction operator algebra. Indeed, note that S(n)M ∈ Lat
A (n) for M being in LatUn . Hence, there is p(n) ∈ Pn such that p(n)K (n) = S(n)M .

Therefore S(n)−1
pS(n)K (n) = M and thus M reduces Un . It follows from principal

result in [16] that U is self-adjoint.
Let mention here that the assumed condition of Theorem 4.2 occurs if A ′ is

abelian. The latest one is satisfied only in some particular situations, for example when
A contains a unilateral shift or a maximal abelian subalgebra of B(K ) .

COROLLARY 4.2. A complete reduction maximal abelian operator algebra is sim-
ilar to a maximal abelian (von-Neumann) self-adjoint algebra.

THEOREM 4.3. Let A ⊆ B(K ) be a complete reduction operator algebra and
let A the weak-closed algebra generated by A ′ and A

′′
. Then A is similar to a

C∗ -algebra.

Proof. In view of Proposition 4.1, A
′′

is a weak closed complete reduction op-
erator algebra. Also, let note that A′ is clearly contained in A ′ ⋂A

′′
. Now, making

use of Lemma 4.4 in [9], there exists a similarity S on K which makes all idempotent
operator module projection p of in A self-adjoint. Using the technical argument in the
proof of Theorem 4.2, we check that S−1AS is C∗ -algebra.

RE F ER EN C ES

[1] A. CONNES, On the Cohomology operator algebras, J. Funct. Anal., 28 (1978), 248–253.
[2] J. B. CONWAY, A cours in Operator Theory, Graduate students in Mathematics, Vol 21, Amer. Math.

Soc. Providence, Rhode Island.



572 R. EL HARTI

[3] P. C. CURTIS, JR AND R. J. LOY, The structure of amenable Banach algebras, Proc. London. Math.
Soc., 40, 2 (1989), 89–104.

[4] P. C. CURTIS, JR AND R. J. LOY, A note on amenable algebras of operators, Bull. Austral. Math.
Soc., 52 (1995) 327–329.

[5] P.G. DIXON, Approximate identities in normed algebras, Proc. Lond. Math. Soc., 26, 3 (1973) 485–
496.

[6] R. EL HARTI, The structure of a subclass of amenable operator algebra, International J. Math. Math.
Soc., 55, (2004) 2963–2969.
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