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TANNAKA–KREIN DUALITY FOR COMPACT

GROUPOIDS II, DUALITY

MASSOUD AMINI

Abstract. We show that from the representation theory of a locally non-trivial compact groupoid
whose irreducible representations separate its points, one can reconstruct the groupoid using a
procedure similar to the Tannaka-Krein duality for compact groups. We study the Fourier and
Fourier-Plancherel transforms and prove the Plancherel theorem for compact groupoids.

1. introduction

In this paper, we have generalized the Tannaka-Krein duality to compact groupoids.
In [1] we studied the representation theory of compact groupoids. In particular, we
showed that irreducible representations have finite dimensional fibres. We also proved
the Schur’s lemma, Gelfand-Raikov theorem and Peter-Weyl theorem for compact group-
oids. Here we first study the Fourier and Fourier-Plancherel transforms on compact
groupoids. In section two we develop the theory of Fourier transforms on sections of
the Banach algebra bundle L1(G ) of a compact groupoid G . As in the group case, a
parallel theory of Fourier-Plancherel transform on the Hilbert space bundle L2(G ) is
constructed. Section three considers the inverse Fourier and Fourier-Plancherel trans-
forms. In this section we prove Plancherel theorem for compact groupoids. Section
four introduces the Tannaka groupoid and finally section five is devoted to the duality
theorem.

The theory of (topological) groupoids has a long history. We refer the interested
reader to [11] for historical remarks and references. The first one who treated cate-
gories endowed with topological (or differential) structure was C. Ehresmann [4]. The
next important work in this direction was the pioneering work of K. Seda on invariant
measures on topological groupoids [10]. Recent monographs by R. Brown [3], K. C.
H. Mackenzie [6], A. L. T. Paterson [7], and J. Renault [8] have considerably promoted
the area.

Here we follow [8] in our treatment of topological groupoids, with a minor differ-
ence that we only work with continuous representations [1]. As for the Tannaka-Krein
duality, we follow the classical treatment of duality for compact groups as presented in
[5].
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All over this paper, X = G (0) . We assume that G is compact and the Haar system
on G is normalized so that λu(Gu) = 1, for each u ∈ X . In general G may be non-
Hausdorff, but as usual we assume that G (0) and G u , Gv , for each u,v ∈ G (0) are
Hausdorff.

2. Fourier transform

Let G be a groupoid [8, 1.1]. The unit space of G and the range and source maps
are denoted by X = G (0) , r and s , respectively. For u,v ∈ G (0) , we put G u = r−1{u} ,
Gv = s−1{v} , and G u

v = G u∩Gv . Also we put G (2) = {(x,y) ∈ G ×G : r(y) = s(x)} .
We say that G is a topological groupoid [8, 2.1] if the inverse map x �→ x−1 on G

and the multiplication map (x,y) �→ xy from G (2) to G are continuous. This implies
that the range and source maps r and s are continuous and the subsets G u , Gv , and G u

v
are closed, and so compact, for each u,v ∈ X . We fix a left Haar system λ = {λ u}u∈X

and put λu(E) = λ u(E−1) , for Borel sets E ⊆ Gu , and let λ v
u be the restriction of λu

to the Borel σ -algebra of G v
u . The integrals against λ u and λ v

u are understood to be
on G u and G v

u , respectively. The functions on G v
u are extended by zero, if considered

as functions on G . All over this paper, we assume that λu(G v
u ) �= 0, for each u,v ∈ X .

This holds in transitive groupoids (see the discussion after Theorem 5.6). In this case,
we say that G is locally non-trivial.

The convolution product of two measurable functions f and g on G is defined by

f ∗ g(x) =
∫

f (y)g(y−1x)dλ r(x)(y) =
∫

f (xy−1)g(y)dλs(x)(y).

A (continuous) representation of G is a double (π ,Hπ) , where Hπ = {H π
u }u∈X

is a continuous bundle of Hilbert spaces over X such that:

(i) π(x) : B(H π
s(x),H

π
r(x)) is a unitary operator, for each x ∈ G ,

(ii) π(u) = idu : H π
u → H π

u , for each u ∈ X ,

(iii) π(xy) = π(x)π(y) , for each (x,y) ∈ G (2) ,

(iv) π(x−1) = π(x)−1 , for each x ∈ G ,

(v) x �→ 〈π(x)ξ (s(x)),η(r(x))〉 is continuous on G , for each ξ ,η ∈C0(G(0),Hπ) .

Two representations π1,π2 of G are called (unitarily) equivalent if there is a (con-
tinuous) bundle U = {Uu}u∈X of unitary operators Uu ∈ B(H π

u ,H π
u ) such that

Ur(x)π1(x) = π2(x)Us(x) (x ∈ G ).

We use Rep(G ) to denote the category consisting of (equivalence classes of con-
tinuous) representations of G as objects and intertwining operators as morphisms [1,
Notation 2.5]. Let π ∈ Rep(G ) , the mappings

x �→ 〈π(x)ξs(x),ηr(x)〉,



DUALITY FOR GROUPOIDS 575

where ξ ,η are continuous sections of Hπ are called matrix elements of π . This termi-
nology is based on the fact that if {ei

u} is a basis for H π
u , then πi j(x)= 〈π(x)e j

s(x),e
i
r(x)〉

is the (i, j)-th entry of the (possibly infinite) matrix of π(x) . We denote the linear
span of matrix elements of π by Eπ . By continuity of representations, Eπ is a sub-
space of C(G ) . It is clear that Eπ depends only on the unitary equivalence class of
π . For u,v ∈ X , E π

u,v consists of restrictions of elements of Eπ to G v
u . Also we put

Eu,v = span
(∪π∈Ĝ E π

u,v

)
and E = span

(∪π∈Ĝ Eπ
)
.

It follows from the Peter-Weyl theorem [1, Theorem 3.10] (note that there is a
typo in [1, Theorem 3.10], and the orthonormal basis elements

√
dπu /λu(G v

u )π i j
u,v is

wrongly inscribed as
√

dπu λu(G v
u )π i j

u,v ) that, for u,v ∈ X , if λu(G v
u ) �= 0, then for each

f ∈ L2(G v
u ,λ v

u ),

f = ∑
π∈Ĝ

dπv

∑
i=1

dπu

∑
j=1

ci j
u,v,ππ i j

u,v ,

where

ci j
u,v,π =

dπu
λu(G v

u )

∫
G v

u

f (x)π i j
u,v(x)dλ v

u (x) (1 � i � dπv , 1 � j � dπu ).

This is a local version of the classical non commutative Fourier transform. As in
the classical case, the main drawback is that it depends on the choice of the basis (which
in turn gives the choice of the coefficient functions). The trick is similar to the classical
case, that’s to use the continuous decomposition using integrals. This is the content of
the next definition. As usual, all the integrals are supposed to be on the support of the
measure against which they are taken.

DEFINITION 2.1. Let u,v ∈ X and f ∈ L1(G v
u ,λ v

u ) , then the Fourier transform of
f is Fu,v( f ) : Rep(G ) → B(H π

v ,H π
u ) defined by

Fu,v( f )(π) =
∫

f (x)π(x−1)dλ v
u (x).

To better understand this definition, let us go back to the group case for a moment.
Let’s start with a locally compact abelian group G . Then the Pontryagin dual Ĝ of
G is a locally compact abelian group and for each f ∈ L1(G) , its Fourier transform
f̂ ∈C0(Ĝ) is defined by

f̂ (χ) =
∫

G
f (x)χ(x)dx (χ ∈ Ĝ).

The continuity of f̂ is immediate and the fact that it vanishes at infinity is the so
called Riemann-Lebesgue lemma. For non abelian compact groups, a similar con-
struction exists, namely, with an slight abuse of notation, for each f ∈ L1(G) one has
f̂ ∈ C0(Ĝ,B(H )) , where Ĝ is the set of (unitary equivalence classes of) irreducible
representations of G endowed with the Fell topology. In the groupoid case, one has
a similar local interpretation. Each f ∈ L1(G v

u ,λ v
u ) has its Fourier transform Fu,v( f )
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in C0(Ĝ ,Bu,v(H )) , where Ĝ is the set of (unitary equivalence classes of) irreducible
representations of G endowed again with the Fell topology, and Bu,v(H ) is a bundle
of operator spaces over Ĝ whose fiber at π is B(H π

v ,H π
u ) , and C0(Ĝ ,Bu,v(H )) is

the set of all continuous sections vanishing at infinity.
Now let us discuss the properties of the Fourier transform. If we choose (possibly

infinite) orthonormal bases for H π
u and H π

v and let each π(x) be represented by the
(possibly infinite) matrix with components π i j

u,v(x) , then Fu,v( f ) is represented by the

matrix with components Fu,v( f )(π)i j = λu(G v
u )

dπu
c ji
u,v,π . When f ∈ L2(G v

u ,λ v
u ) , summing

up over all indices i, j , we get the following.

PROPOSITION 2.2. (Fourier inversion formula) For each u,v ∈ X and f ∈
L2(G v

u ,λ v
u ) ,

f = ∑
π∈Ĝ

dπu
λu(G v

u )
Tr

(
Fu,v( f )(π)π(·)),

where the sum converges in the L2 norm and

‖ f‖2
2 = ∑

π∈Ĝ

dπu
λu(G v

u )
Tr

(
Fu,v( f )(π)Fu,v( f )(π)∗

)
.

We collect the properties of the Fourier transform in the following lemma. The
proof is routine and is omitted. Note that in part (iii) , f ∗(x) = f (x−1) , for x ∈ G v

u and
f ∈ L1(G v

u ,λ v
u ) .

LEMMA 2.3. Let u,v,w∈X , a,b∈C , and f , f1, f2 ∈L1(G v
u ,λ v

u ) , g∈L1(G w
v ,λw

v ) ,
then for each π ∈ Rep(G ) ,

(i) Fu,v(a f1 +b f2) = aFu,v( f1)+bFu,v( f2) ,
(ii) Fu,w( f ∗ g)(π) = Fu,v( f )(π)Fv,w(g)(π) ,
(iii) Fv,u( f ∗)(π) = Fu,v( f )(π)∗ ,

(iv) Fu,w(�x( f ))(π) = Fu,v( f )(π)π(x−1) and Fw,v(ry( f ))(π) = π(y) Fu,v( f )(π) ,
whenever x ∈ G w

v ,y ∈ G w
u .

As in the group case, there is yet another way of introducing the Fourier transform.
For each finite dimensional continuous representation π of G , let the character χπ of
π be the bundle of functions χπ whose fiber χπu at u ∈ X is defined by χπu (x) =
Tr(π(x)) , for x ∈ G u

u , where Tr is the trace of matrices. Note that one can not have
these as functions defined on G v

u , since when x ∈ G v
u , π(x) is not a square matrix in

general. Also note that the values of the above character functions depend only on the
unitary equivalence class of π , as similar matrices have the same trace. Now if π ∈ Ĝ ,
x ∈ G v

u , and f ∈ L1(G v
u ,λ v

u ) , then

Tr
(
Fu,v( f )(π)π(x)

)
=

∫
f (y)Tr(π(y−1x))dλ v

u (y) = f ∗ χπu (x),

where in the last equality f is understood to be extended by zero to Gu . Hence, it
follows from Proposition 2.2 that
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COROLLARY 2.4. The map Pπ
u,v : L2(G v

u ,λ v
u )→ E π

u,v, f �→ dπu f ∗χπu is a surjective
orthogonal projection and for each f ∈ L2(G v

u ,λ v
u ) , we have the decomposition

f = ∑
π∈Ĝ

dπu f ∗ χπu ,

which converges in the L2 norm.

Applying the above decomposition to the case where u = v and f = χπu , we get

COROLLARY 2.5. For each u ∈ X and π ,π ′ ∈ Ĝ ,

χπu ∗ χπ
′

u =

{
dπu

−1 if π ∼ π ′
,

0 otherwise.

3. inverse Fourier and Fourier-Plancherel transforms

Next we are aiming at the construction of the inverse Fourier transform. This is
best understood if we start with yet another interpretation of the local Fourier trans-
form. It is clear from the definition of Fu,v that if u,v ∈ X , π1,π2 ∈ Rep(G ) , and
f ∈ L1(G v

u ,λ v
u ) , then

Fu,v( f )(π1 ⊕π2) = Fu,v( f )(π1)⊕Fu,v( f )(π2),

and the same is true for any number (even infinite) of continuous representations, so it
follows from Theorem 2.16 in [1] that Fu,v( f ) is uniquely characterized by its values
on Ĝ , namely we can regard

Fu,v : L1(G v
u ,λ v

u ) → ∏
π∈Ĝ

B(H π
v ,H π

u ),

where the Cartesian product is the set of all choice functions g : G →⋃
π∈Ĝ B(H π

v ,H π
u )

with g(π) ∈ B(H π
v ,H π

u ) , for each π ∈ Ĝ . Consider the �∞ -direct sum

∑
π∈Ĝ

⊕
B(H π

v ,H π
u ).

The domain of our inverse Fourier transform then would be the algebraic sum

∑
π∈Ĝ

B(H π
v ,H π

u ),

consisting of those elements of the direct sum with only finitely many nonzero compo-
nents. An element g ∈ D(F−1

u,v) is a choice function such that g(π) ∈ B(H π
v ,H π

u ) ,
for each π ∈ Ĝ is zero, except for finitely many π ’s.
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DEFINITION 3.1. Let u,v ∈ X . The inverse Fourier transform

F−1
u,v : ∑

π∈Ĝ

B(H π
v ,H π

u ) →C(G v
u )

is defined by

F−1
u,v(g)(x) = ∑

π∈Ĝ

dπu
λu(G v

u )
Tr

(
g(π)π(x)

)
(x ∈ G v

u ).

To show that this is indeed the inverse map of the (local) Fourier transform we
need a version of the Schur’s orthogonality relations [1, Theorem 3.6]. We only give a
sketch of the proof.

PROPOSITION 3.2. (Orthogonality relations) Let τ,ρ ∈ Ĝ , u,v∈X , T ∈B(Hτ ) ,
S ∈ B(Hρ ) , A ∈ B(Hρ ,Hτ ) , and ξ ∈ Hτ , η ∈ Hρ , then

(i) ∫
τ(x−1)Ar(x)ρ(x)dλ v

u (x) =

{
λu(G v

u )
dτu

Tr(Au)idH τ
u

if τ = ρ ,

0 otherwise,

(ii) ∫
τ(x−1)ξr(x) ⊗ρ(x)ηs(x)dλ v

u (x) =

{
λu(G v

u )
dτu

ηu ⊗ ξu if τ = ρ ,

0 otherwise,

(iii) ∫
Tr(Ts(x)τ(x−1))Tr(Sr(x)ρ(x))dλ v

u (x)

=

{
λu(G v

u )
dτu

Tr(TuSu) if τ = ρ ,

0 otherwise,

(iv) ∫
Tr(Ts(x)τ(x−1))ρ(x)dλ v

u (x) =

{
λu(G v

u )
dτu

Tu if τ = ρ ,

0 otherwise.

Proof. (i) For a fixed v ∈ X , call the left hand side Ãu . As in [1, Lemma 3.4], the
following equality shows that Ã ∈ Mor(ρ ,τ) .

Ãr(x)ρ(x) =
∫
τ(y−1)Ar(y)ρ(y)ρ(x)dλ v

r(x)(y)

=
∫
τ(y−1)Ar(y)ρ(yx)dλ v

r(x)(y)

=
∫
τ(xy−1)Ar(y)ρ(y)dλ v

s(x)(y)

= τ(x)Ãs(x).
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Hence by Schur’s lemma [1, Theorem 2.14] it is c.idH τ
u

, if τ = ρ , and 0, otherwise.
Now

Tr
(∫

τ(x)Ar(x)τ(x−1)dλ v
u (x)

)
= Tr

(∫
τ(x)τ(x−1)As(x)dλ v

u (x)
)

= λu(G v
u )Tr(Au),

where as Tr
(
c.idH τ

u

)
= cdτu , so c is what it should be.

(ii) Take any φ ,ψ ∈ H ∗
τ and apply (i) to A defined by

Au(ζu) = φu(ζu)ξu (u ∈ X)

and then calculate both sides of the resulting operator equation at ηu to get

∫
τ(x−1)ξr(x)φ(ρ(x)ηs(x))dλ v

u (x) =

{
λu(G v

u )φu(ξu)
dτu

ηu if τ = ρ ,

0 otherwise.

The result now follows if we apply ψu to both sides of the above equality and use
the fact that φu(ξu)ψu(ηu) = (ψ⊗φ)u(ηu ⊗ ξu) .

(iii) Note that all the involved Hilbert spaces are finite dimensional [1, Theorem
2.16]. In particular, rank one operators generate all operators on these spaces. Also
the required relation is linear in T and S . Hence we may assume that T and S have
rank one fibers, say S = φ(.)ξ ,T = ψ(.)η , where φ ,ψ are as above. Now applying
(φ ⊗ψ)u to both sides of (ii) , we get (iii) .

(iv) Let L and R be the left and right hand sides of (iv) , respectively. We need
only to show that Tr((L−R)S) = 0, for each S ∈ B(Hρ ) . But Tr(LS) is clearly the
right hand side of (iii) , which is in turn equal to Tr(RS) . �

In some applications we need to use the orthogonality relations over Gu (not G v
u ).

In this case, using the normalization λu(Gu) = 1, and essentially by the same argument
we get the following result.

PROPOSITION 3.3. (Orthogonality relations) Let τ,ρ ∈ Ĝ , u ∈ X , T ∈ B(Hτ ) ,
S ∈ B(Hρ ) , A ∈ B(Hρ ,Hτ ) , and ξ ∈ Hτ , η ∈ Hρ , then

(i) ∫
τ(x−1)Ar(x)ρ(x)dλu(x) =

{
Tr(Au)

dτu
idH τ

u
if τ = ρ ,

0 otherwise,

(ii) ∫
τ(x−1)ξr(x) ⊗ρ(x)ηs(x)dλu(x) =

{
1
dτu
ηu⊗ ξu if τ = ρ ,

0 otherwise,

(iii) ∫
Tr(Ts(x)τ(x−1))Tr(Sr(x)ρ(x))dλu(x)

=

{
1
dτu

Tr(TuSu) if τ = ρ ,

0 otherwise,
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(iv) ∫
Tr(Ts(x)τ(x−1))ρ(x)dλu(x) =

{
1
dτu

Tu if τ = ρ ,

0 otherwise.

Now we are ready to prove the properties of the local inverse Fourier transform.
But let us first introduce the natural inner products on its domain and range. For f ,g ∈
C(G v

u ) and h,k ∈ ∑π∈Ĝ B(H π
v ,H π

u ) put 〈 f ,g〉 =
∫

f .gdλ v
u , and

〈h,k〉 = ∑
π∈Ĝ

dπu
λu(G v

u )
Tr(k(π)h∗(π)),

where the right hand side is a finite sum as h and k are of finite support. Also note
that if εu : C(G u

u ) → C is defined by εu( f ) = f (u) , then for each f ,g ∈ C(G v
u ) , we

have g∗ f ∗ ∈C(G u
u ) and 〈 f ,g〉 = εu(g∗ f ∗) , where f ∗ ∈C(G u

v ) is defined by f ∗(x) =
f (x−1) , for x ∈ G u

v . Similarly, h∗ ∈ ∑π∈Ĝ B(H π
v ,H π

u ) is defined by h∗(π) = h(π̌) ,
where h(π) = h(π)∗ , π(x) = π(x)∗ , and π̌(x) = π(x−1)∗ , for each π ∈ Ĝ and x ∈ G .
The star superscript denotes the conjugation of Hilbert space operators.

PROPOSITION 3.4. For each u,v ∈ X and h,k ∈ ∑π∈Ĝ B(H π
v ,H π

u ) ,
� ∈ ∑π∈Ĝ B(H π

w ,H π
v ) we have

(i) Fu,vF
−1
u,v(h) = h,

(ii) λu(G v
u )F−1

u,w(hk) = F−1
u,v(h)∗F−1

v,w(k) ,

(iii) F−1
v,u (h∗) = (F−1

u,v(h))∗ ,

(iv) 〈F−1
u,v(h),F−1

u,v(k)〉 = 〈h,k〉 .

Proof. (i) By (iv) of Proposition 3.2, for each τ ∈ Ĝ ,

Fu,vF
−1
u,v(h)(τ) = ∑

π∈Ĝ

∫
dπu

λu(G v
u )

Tr(h(π)π(x−1))τ(x)dλ v
u (x) = h(τ).

(ii) By (iii) of Proposition 3.2, for each x ∈ G v
u ,

(F−1
u,v(h)∗F−1

u,v(k))(x) =
∫

F−1
u,v(h)(xy−1)F−1

u,v(k)(y)dλ
v
u (y)

= ∑
τ,ρ∈Ĝ

∫
dτudρu

λu(G v
u )2 Tr

(
h(τ)τ(yx−1)

)
Tr

(
k(ρ)ρ(y−1)

)
dλ v

u (y)

= ∑
τ,ρ∈Ĝ

dτudρu
λu(G v

u )2

∫
Tr

(
h(τ)τ(x−1)τ(y)

)
Tr

(
k(ρ)ρ(y−1)

)
dλ v

u (y)

= ∑
τ∈Ĝ

dτu
λu(G v

u )
Tr

(
h(τ)k(τ)τ(x−1)

)
= F−1

u,v(hk)(x).
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(iii) For each x ∈ G u
v

F−1
v,u (h∗)(x) = ∑

τ∈Ĝ

dτu
λu(G v

u )
Tr

(
h∗(τ)τ(x−1)

)
= ∑

τ∈Ĝ

dτu
λu(G v

u )
Tr

(
h(τ)τ̌(x−1)

)

= ∑
τ∈Ĝ

dτu
λu(G v

u )
Tr

(
h(τ)τ (x)

)
= (F−1

u,v(h))∗(x).

(iv) By the above observation about εu ,

〈F−1
u,v(h),F−1

u,v(k)〉 = εu((F−1
u,v)(k)∗F−1

u,v(h
∗))

= εu(F−1
u,v(kh

∗)) = F−1
u,v(kh

∗)(u)

= ∑
τ∈Ĝ

dτu
λu(G v

u )
Tr

(
k(τ)h∗(τ)

)
= 〈h,k〉.

�

Next we define a norm on the domain of the inverse Fourier transform in or-
der to get a Plancherel type theorem. Let u,v ∈ X , for h ∈ ∑π∈Ĝ B(H π

v ,H π
u )

we put ‖h‖2 = 〈h,h〉 1
2 . This is the natural norm on the algebraic direct sum, when

one endows each component B(H π
v ,H π

u ) with the Hilbert space structure given by

〈T,S〉 = dπu
λu(G v

u ) Tr(ST ∗) . We denote the completion of ∑π∈Ĝ B(H π
v ,H π

u ) with re-

spect to this norm by L 2
u,v(G ) .

THEOREM 3.5. (Plancherel Theorem) For each u,v ∈ X such that λu(G v
u ) �= 0 ,

Fu,v extends to a unitary Fu,v : L2(G v
u ,λ v

u ) → L 2
u,v(G ) .

Proof. By Proposition 3.2 (iii) , F−1
u,v : L 2

u,v(G ) → L2(G v
u ,λ v

u ) is an isometric em-
bedding. It is also surjective, since Im(F−1

u,v) is complete and so closed, and also it
clearly includes Eu,v which is dense in L2(G v

u ,λ v
u ) . �

The above map is called the (local) Fourier-Plancherel transform. Before we end
this section, let us show that how one can use characters of representations in Ĝ and
the orthogonality relations of the beginning of this section to prove statements about
subsets of Rep(G ) .

LEMMA 3.6. For each u ∈ X and π ∈ Ĝ , χπu ∈ Eu,u .

Proof. Let {ei
u}1�i�dπu be a basis for H π

u , then

χπu = Tr(π(·)) =
dπu

∑
i=1

〈π(·)eπu ,eπu 〉.

�
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DEFINITION 3.7. A subset Σ of Rep(G ) is called closed if it contains

(i) π1 if π1 is unitary equivalent to some π2 ∈ Σ ,

(ii) π1 if π1 is weakly contained in some π2 ∈ Σ ,

(iii) π1⊕π2 if π1,π2 are in Σ ,

(iv) π1⊗π2 if π1,π2 are in Σ ,

(v) π1 if π1 is in Σ ,

(vi) the trivial representation tr .

PROPOSITION 3.8. If Σ⊆ Rep(G ) is closed and separates the points of G , then
Σ= Rep(G ) .

Proof. If not, by condition (iii) of the definition of closedness and Theorem 2.16
of [1], there is τ ∈ Ĝ which is not in Σ . Let E Σ

u,v = ⊕π∈ΣE π
u,v , for u,v ∈ X . By

Proposition 3.2, elements of each E τ
u,v is orthogonal to E Σ

u,v . In particular, by the above
lemma, χτu ∈ (E Σ

u,v)
⊥ . But by conditions (iii)-(v) of the definition of closedness, E Σ

u,v
is a subalgebra of C(G ) which is closed under conjugation, and by condition (vi) , it
contains the constants, and finally by assumption, it separates the points of G . Hence,
by Stone-Weierstrass Theorem, E Σ

u,v is dense in C(G ) . Therefore χτu is orthogonal to
C(G ) and so it is zero, which is a contradiction. �

4. Tannaka groupoid

Let Rep(G ) be the category of continuous representations of G and sections
of intertwining bundles [1, Notation 2.5] and H ilX be the category of Hilbert bundles
over X and operator bundles. There is a forgetful functor U : Rep(G )→H ilX [1]. A
natural transformation a : U →U is a family of bundle maps aπ : Hπ →Hπ indexed
by Rep(G ) such that for each π1,π2 ∈ Rep(G ) and h ∈ Mor(π1,π2) the following
diagram commutes

Hπ1

aπ1−−−−→ Hπ1

h

⏐⏐� ⏐⏐�h

Hπ2 −−−−→
aπ2

Hπ2

One should understand this as each aπ being a bundle aπ = {aπu,v} of bounded
linear operators aπu,v ∈ B(Hπ

u ,H π
v ) (possibly zero) indexed by X ×X such that for

each u,v ∈ X the following diagrams commute

H π1
u

a
π1
u,v−−−−→ H π1

v

hu

⏐⏐� ⏐⏐�hv

H π2
u −−−−→

a
π2
u,v

H π2
v
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To justify the name natural transformation for a , one might compose the forgetful
functor U with evaluation at u ∈ X to get a functor Uu : Rep(G ) → H il . Then each
au,v : Uu → Uv; π �→ aπu,v is a natural transformation in the classical sense.

Given x ∈ G there is a natural transformation Tx : U → U defined by

(Tx)πu,v =

{
π(x) if u = s(x),v = r(x),
0 otherwise

(4.1)

Another interesting example of a natural transformation is the global Fourier trans-
form. Recall that we looked at L1(G ) as a bundle of Banach algebras over G (0)×G (0) ,
whose fiber at (u,v) is L1(G v

u ,λ v
u ) , and then each section f of L1(G ) had its Fourier

transform F( f ) in C0(Ĝ ,B(H )) , where F( f )(π)(u,v) = Fu,v( f(u,v))(π) . Now we
need a flip in the order of u,v , when we consider F( f ) as a natural transformation,
namely we put F( f )πu,v = F( f )(π)(v,u) . Then we have F( f )πu,v ∈ B(H π

u ,H π
v ) . To

see that this is indeed a natural transformation, note that for each u,v ∈ X , x ∈ G u
v ,

π1,π2 ∈ Rep(G ) , and h ∈ Mor(π1,π2) we have

H π1
u

π1(x−1)−−−−→ H π1
v

hu

⏐⏐� ⏐⏐�hv

H π2
v −−−−→

π2(x−1)
H π2

v

Multiplying both sides with f(v,u)(x) and integrating against λ u
v we get

H π1
u

F( f )π1u,v−−−−→ H π1
v

hu

⏐⏐� ⏐⏐�hv

H π2
v −−−−→

F( f )π2u,v

H π2
v

This means that F( f ) : U → U is a natural transformation. Let E nd(U ) be the
set of all natural transformations : U →U with the coarsest topology making all maps
a �→ aπu,v continuous. We define an involution on E nd(U ) by

aπu,v(ξ ) = aπu,v(ξ ) (u,v ∈ X ,π ∈ Rep(G ),ξ ∈ H π
u ).

The following is trivial.

LEMMA 4.1. E nd(U ) is a topological vector space with continuous involution.

In the next proposition, E nd(Hρ) could be understood as a bundle over X with
fiber B(H ρ

u ) at u ∈ X .
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PROPOSITION 4.2. The map

q : E nd(U ) → ∏
ρ∈Ĝ

E nd(Hρ)

a �→ (aρ)ρ∈Ĝ

is an isomorphism of topological vector spaces.

Proof. The following commutative diagrams (with vertical maps being canonical
imbeddings) illustrates that aπ1⊕π2 = aπ1 ⊕ aπ2 , for each π1,π2 ∈ Rep(G ) and a ∈
E nd(U ) .

Hπ1

aπ1−−−−→ Hπ1

ι1
⏐⏐� ⏐⏐�ι1

Hπ1 ⊕Hπ2 −−−−→
aπ1⊕π2

Hπ1 ⊕Hπ2

ι2
�⏐⏐ �⏐⏐ι2

Hπ2 −−−−→
aπ2

Hπ2

This plus the fact that each representation of G is the direct sum of its irreducible
subrepresentations [1, Theorem 2.16] shows that q is one-one. To show that it is onto,
let b = (bρ) with bρ ∈ E nd(Hρ) be given. Let π ∈Rep(G ) and Hπ =⊕ρ∈Ĝ Hπρ be

the unique decomposition into isotropical components. For ρ ∈ Ĝ , the canonical map

ψρ : Hρ ⊗HomG (Hρ ,Hρ ) → Hρ

ξ ⊗ϕ �→ ϕ(ξ )

is an isomorphism of G -modules. Put aπρ = ψρ ◦ (bρ ⊗ id) ◦ψ−1
ρ , aπ = ⊕ρ∈Ĝ aπρ ,

and a = (aπ)π∈Rep(G ) . It is easy to see that a : U → U is a natural transformation

and aρ = bρ , for each ρ ∈ Ĝ . Hence q is onto. The way we defined the topology of
E nd(U ) makes q−1 continuous. The fact that q is continuous is trivial. �

DEFINITION 4.3. An element a ∈ E nd(U ) is called monoidal (tensor preserv-
ing) if for each π1,π2 ∈ Rep(G ) , aπ1⊗π2 = aπ1 ⊗ aπ2 and atr is trivial, i.e. for each
u,v ∈ X the following diagram commutes

H π1
u ⊗H π2

u
a
π1
u,v⊗a

π2
u,v−−−−−→ H π1

v ⊗H π2
v∥∥∥ ∥∥∥

H π1⊗π2
u −−−−→

a
π1⊗π2
u,v

H π1⊗π2
v

and atr
u,v = id , where tr is the trivial representation of G on C . An element a ∈

E nd(U ) is called Hermitian if a = a .
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DEFINITION 4.4. For each u,v ∈ X and a ∈ E nd(U ) , consider the continuous
section au,v defined on Rep(G ) by au,v(π) = aπu,v . The set T (G ) of all triples
(u,v,au,v) , which we briefly denote by au,v , where a ∈ E nd(U ) is monoidal and Her-
mitian and u,v∈ X , is called the Tannaka groupoid of G . For fixed u,v∈ X , we denote
the set of all au,v ∈ T (G ) by Tu,v(G ) .

THEOREM 4.5. T (G ) is a compact groupoid.

Proof. We define the product for the pairs of the form (aw,v,bu,w) ∈ T (G )(2) by
composition

(ab)πu,v = aπw,v ◦ bπu,w.

This is clearly an associative partial operation on T (G ) .
It is easy to check that if a,b ∈ E nd(U ) are monoidal and Hermitian, then so is

ab . Indeed

(ab)π1⊗π2
u,v = aπ1⊗π2

w,v ◦ bπ1⊗π2
u,w = (aπ1

w,v ⊗aπ2
w,v)◦ (bπ1

u,w⊗bπ2
u,w)

= (aπ1
w,v ◦ bπ1

u,w)⊗ (aπ2
w,v ◦ bπ2

u,w) = (ab)π1
u,v ⊗ (ab)π2

u,v.

For each π ∈ Rep(G ) let π ∈ Rep(G ) be its conjugate representation, and put

(a−1
u,v)

π := t aπu,v (u,v ∈ X ,π ∈ Rep(G )).

For each u ∈ X , let jπ be the anti-unitary intertwiner from π to π , and define εu :
H π

u ⊗H π
u → C by

εu( jπu η⊗ ξ ) = 〈η ,ξ 〉 (ξ ,η ∈ H π
u ).

We claim that ε ∈ Mor(π ⊗π ,tr) . Indeed for each x ∈ G and ξ ,η ∈ H π
s(x) we have

εr(x)(π ⊗π)(x)(η⊗ ξ ) = εr(x)(π(x)η⊗π(x)ξ ) = 〈 jπr(x)π(x)η ,π(x)ξ 〉
= 〈 jπs(x)η ,ξ 〉 = εs(x)(η⊗ ξ )

= tr(x)εs(x)(η⊗ ξ ).

Therefore, for each u,v ∈ X and a ∈ E nd(U ) , we have εvaπ⊗πu,v = atr
u,vεu . In

particular for each au,v ∈ T (G ) and ξ ,η ∈ H π
v , we have

〈aπu,v( jπu η),aπu,v(ξ )〉 = εv(aπu,v( jπu η)⊗aπu,v(ξ ))

= εv(aπ⊗πu,v ( jπu η⊗ ξ )) = atr
u,vεu( jπu η⊗ ξ ) = 〈η ,ξ 〉.

Put jπuη = bπw,u(ζ ) ∈ H π
u , where ζ ∈ H π

w , then

〈aπu,v(b
π
w,u(ζ )),aπu,v(ξ )〉 = 〈bπw,u(ζ ),ξ 〉,



586 MASSOUD AMINI

for each ζ ,ξ as above. Hence, changing π to π , we get

t aπu,v ◦ aπu,v ◦ bπw,u = bπw,u,

that is a−1
u,vau,vbw,u = bw,u . Similarly bv,wa−1

v,u av,u = bv,w . This shows that T (G ) is a
groupoid.

Next we show that T (G ) is a closed subset of a compact groupoid. Recall that
isotropy groups G u

u are compact groups and the restriction of the invariant measure λu

to G u
u is a left (and so right) Haar measure. For each π ∈ Rep(G ) and u ∈ X , let

gu : H π
u ⊗H π

u → C be defined by

gu(ξ ,η) =
∫
〈π(x)ξ ,η〉dλ u

u (x) (ξ ,η ∈ H π
u ).

Also define hu : H π
u ⊗H π

u → C by hu(ξ ,η) = gu(ξ ,η) . We claim that h ∈Mor(π⊗
π ,tr) . Indeed for each ξ ,η ∈ H π

u and x ∈ G we have

hr(x)(π⊗π)(x)(ξ ⊗η) = hr(x)(π(x)ξ ⊗π(x)η) = gr(x)(π(x)ξ ⊗π(x)η)

=
∫
〈π(y)π(x)ξ ,π(x)η〉dλ r(x)

r(x) (y)

=
∫
〈π(x−1yx)ξ ,η〉dλ r(x)

r(x) (y)

=
∫
〈π(y)ξ ,η〉dλ s(x)

s(x) (y)

= gs(x)(ξ ⊗η) = hs(x)tr(x)(ξ ⊗η).

Therefore, for each u,v∈ X and a∈ E nd(U ) , we have hvaπ⊗πu,v = atr
u,vhu . In particular,

for each au,v ∈ T (G ) , using the monoidal property, we get

hv(aπu,v(ξ ),aπu,v(η)) = hu(ξ ,η),

that is
gv(aπu,v(ξ ),aπu,v(η)) = gu(ξ ,η),

for each ξ ,η ∈ H π
u . Now we can view gu and gv as new inner products on H π

u
and H π

v , respectively, and look at the unitary elements in B(H π
u ,H π

v ) . If we
denote the set of unitaries from (H π

u ,gu) onto (H π
v ,gv) by U (H π

u ,H π
v ) , then

aπu,v ∈ U (H π
u ,H π

v ) , whence

T (G ) ⊆∏
π

⊔
u,v

U (H π
u ,H π

v ),

where the right hand side is a product of compact groupoids. The fact that T (G ) is a
closed subset of this groupoid follows immediately from the definition of the topology
on E nd(U ) . �

PROPOSITION 4.6. G (0) ⊆ T (G )(0) and T (G )v
u ⊆ Tu,v(G ) , for each u,v ∈ X .
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Proof. Given u ∈ X , it is easy to see that

(Tu)πv,w = (T −1
u )πv,w =

{
idu if v = w = u,

0 otherwise

for each v,w ∈ X . In particular T −1
u Tu = Tu and so u ∈ T (G )(0) . Also if t =

(y,z,by,z) ∈ T (G ) and s(t) = u,r(t) = v , then

(y,y,b−1
y,z by,z) = (u,u, idu),

hence y = u . Similarly we get z = v and so t ∈ Tu,v(G ) . �

5. Tannaka duality

Let us consider the natural transformations Tx ∈ E nd(U ) , x ∈ G . It is clear that
for each x ∈ G , Tx ∈ T (G ) and

Txy = TxTy (x,y ∈ G (2)).

In particular the image of G under T is a subgroupoid of T (G ) . We identify G
with its image in T (G ) . For each u,v ∈ X , let Tu,v : G v

u → Tu,v(G ) be defined by
Tu,v(x)(π) = π(x) , for x ∈ G v

u . Consider two adjoint maps

T ∗ : Rep(T (G )) → Rep(G )

defined by
T ∗(Π)(x) = Π(Tx) (x ∈ G ,Π ∈ Rep(T (G ))),

and
T∗ : E (T (G )) → E (G )

defined by
T∗( f )(x) = f (Tx) (x ∈ G , f ∈ E (T (G ))),

where E (G ) and E (T (G )) are the representation algebras of G and T (G ) , respec-
tively [1, Proposition 3.8].

LEMMA 5.1. The restriction map

T ∗ : Rep(T (G )) → Rep(G )

is a bundle isomorphism.

Proof. We define the extension bundle map E : Rep(G ) → Rep(T (G )) as fol-
lows. Given u,v ∈ X , au,v ∈ T (G ) , and π ∈ Rep(G ) , the map Pπ : au,v �→ aπu,v is a
representation of T (G ) on Hπ and we have the commutative diagram
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Gu,v
π−−−−→ B(H π

u ,H π
v )

Tu,v

⏐⏐� �⏐⏐Pπ

Tu,v(G ) −−−−→
=

Tu,v(G )

Therefore T ∗(Pπ) = π . We put E(π) = Pπ . If h ∈ MorG (π1,π2) then clearly
h ∈ MorT (G )(Pπ1 ,Pπ2) . Also it is easy to check that E preserves direct sums, tensor
products, and conjugation of representations. Moreover the above commutative dia-
gram shows that if π is irreducible, then so is Pπ . Hence Im(E) is a closed sub-
set of Rep(T (G )) in the sense of Definition 3.7. It also separates the points of
T (G ) . Indeed If au,v and bw,z are distinct elements of T (G ) , there is a represen-
tation π ∈Rep(G ) such that aπu,v �= bπw,z , which means that Pπ separates au,v and bw,z .
By Proposition 3.8, E is surjective. Now T ∗ ◦E = id , so T ∗ is a bundle isomor-
phism. �

For the next two lemmas, we assume that G is locally non-trivial, that is λu(G v
u ) �=

0, for each u,v ∈ X .

LEMMA 5.2. The restriction map

T∗ : E (T (G )) → E (G )

is a bundle isomorphism.

Proof. We define the extension bundle map E : E (G ) → E (T (G )) as follows.
Given u,v ∈ X , by Proposition 2.2, any f ∈ E π

u,v has a unique representation in the
form

f = ∑
π∈Ĝ

dπu
λu(G v

u )
Tr

(
g(π))π(·)),

where g = Fu,v( f ) ∈ ∑π∈Ĝ B(H π
v ,H π

u ) . Define Eu,v( f ) on Tu,v(G ) by

Eu,v( f )(au,v) = ∑
π∈Ĝ

dπu
λu(G v

u )
Tr

(
g(π)Pπ(au,v)

)
(au,v ∈ Tu,v(G )).

By the proof of the above lemma, E is injective, so T∗ is bijective, and we have
T∗ ◦E = id . �

LEMMA 5.3. For each f ∈C(T (G )) and u,v ∈ X ,

∫
T (G )vu

f (t)dλ̃ v
u (t) =

∫
G v

u

f (π(x))dλ v
u (x),

where λ̃ is the Haar system of T (G ) . In particular, λ̃u(T (G )v
u) = λu(G v

u ) .
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Proof. Let f ∈ E (T (G )) . As in Proposition 2.2, we may represent f on T (G )v
u

as

f (t) = ∑
π∈Ĝ

dπu
λ̃u(T (G )uv)

Tr
(
g(π)Pπ(t)

)
(t ∈ T (G )v

u),

where g = F(T∗( f )) . In particular, for each x ∈ G v
u ,

f (Tx) = ∑
π∈Ĝ

dπu
λ̃u(T (G )uv)

Tr
(
g(π)Pπ(Tx)

)

= ∑
π∈Ĝ

dπu
λ̃u(T (G )uv)

Tr
(
g(π)Pπ(x)

)
.

By Proposition 3.2(iii) , we have

Tr
(
g(π)π(x)

)
dλ v

u (x) =

{
λu(G v

u )g(tr) if π = tr,

0 otherwise,

where tr is the trivial representation. Similarly, one can show that

∫
Tr

(
g(π)Pπ(t)

)
dλ̃ v

u (t) =

{
λ̃u(T (G )v

u)g(tr) if π = tr,

0 otherwise,

hence the result. �

If {λ u} is a (left) Haar system on G and {λ u
u } is a (left) Haar system on the

isotropy groupoid IG := ∪uG
u
u , then there is a (left) Haar system {νu} on the equiva-

lence relation RG = X ×X such that

λ u =
∫
λ v

udνu(v,u) (u ∈ X).

Conversely, if {λ v
u} and {νu} are (left) Haar systems on IG and RG , the above for-

mula gives a (left) Haar system on G [9]. Using {λ v
u} one can construct the continuous

field of Banach spaces (Lp(G ),Δp(G )) over IG [2, 4.2.5]. This is a continuous field
of Hilbert spaces for p = 2. Let 1 � p <∞ . For f ∈Cc(G ) , let fu ∈ Lp(Gu,λu) be the
restriction of f to Gu and put

‖ f‖p = supu∈X

(∫
| fu|pdλu

) 1
p .

Let Δp(G ) be the closure of Cc(G) in this norm. This is a Banach C0(X)-module.
Let E (G ) ⊆ Δ2(G ) be the C0(RG )-submodule spanned by the coefficient functions of
irreducible continuous representations of G . Note that irreducibility defined in [1] is
stronger than the same concept in [2], however the results quoted here from [2] also
hold in our setting. Let u ∈ X . The restriction map

Resu : Rep(G ) → Rep(G u
u )
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is called dominant if for each continuous representation (σ ,K ) of G u
u , there is a

continuous representation (π ,H ) of G such that (σ ,K ) is equivalent to a sub-
representation of (πu

u ,Hu) , where πu
u is the restriction of π to G u

u [2, 6.4.1]. If this
happen to hold for each u ∈ X we say that G is dominant. Examples of dominant
Hausdorff groupoids include G = H � M , where H is a compact connected Lie
group acting on a manifold M [2, 6.4.4]. When M is also compact, G is a compact
groupoid. An example of a non dominant (non Hausdorff) groupoid is G = (R×Z2)/
∼ with quotient topology, where (x,0) ∼ (x,1) for x �= 0. Here G (0) = R , G y

x = /0 ,
unless x = y , G 0

0 = Z2 , whereas G x
x = G x is a singleton consisting of the equivalence

class of (x,0) , for x �= 0. In particular, G is not transitive. The discrete group Z2 has
a non trivial representation which is not image of any representation of G under Res0

(all of whose images are trivial) [2, 6.4.5]. If we replace R with T in this example, we
get a compact (non Hausdorff) groupoid which is not dominant. It is shown in [2, 6.4.6]
that if G is dominant then E (G ) is dense in Δ2(G ) in L∞ norm. A similar argument
shows that in this case, E (G ) is dense in C(G ) in L∞ norm.

We have shown in [1, Theorem 3.9] that a weak version of the Gelfand-Raikov
Theorem holds for compact Hausdorff groupoids. We say that Ĝ separates the points
of G if for each x,y ∈ G with x �= y , there is π ∈ Ĝ and ξ ,η ∈ Hπ such that

〈π(x)ξs(x),ηr(x)〉 �= 〈π(y)ξs(y),ηr(y)〉.

We then (formally) write π(x) �= π(y) . This is just an abbreviation, as π(x) and π(y)
are acting on different Hilbert spaces. If G is Hausdorff and E (G ) is dense in C(G )
in the L∞ norm, then Ĝ separates the points of G [1, Theorem 3.9]. We have also the
converse.

LEMMA 5.4. If G is Hausdorff and Ĝ separates the points of G , then E (G ) is
dense in C(G ) in both L∞ and L2 norms.

Proof. E (G ) is a subalgebra of C(G ) [1, Proposition 3.8] which is closed under
conjugation (consider the conjugate representations) and vanishes nowhere (consider
the trivial representation). By assumption it also separates the points. Therefore it
is dense by Stone-Weierstrass Theorem. Since G is compact and the Haar system is
normalized, ‖.‖2 � ‖.‖∞ on C(G ) , hence it is also dense in the L2 -norm. �

LEMMA 5.5. If E (G ) is dense in C(G ) in L2 norm, then E (T (G )) is dense in
C(T (G )) in L2 norm.

Proof. Let f ∈ C(T (G )) , then by restriction we get f0 ∈ C(G ) . Given ε > 0,
there is g0 ∈ C(G ) such that ‖ f0 − g0‖ < ε . By Lemma 5.2, choose g ∈ E (T (G ))
such that T∗(g) = g0 . Then ‖ f −g‖= ‖C( f0 −g0)‖ � ‖ f0−g0‖ < ε . �

In particular the conclusions of the last two lemmas hold for any Hausdorff dom-
inant compact groupoid. Now we are ready to prove the main result of these series of
papers, the Tannaka-Krein duality theorem for compact groupoids.
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THEOREM 5.6. (Tannaka-Krein Duality Theorem) For a locally non-trivial, com-
pact Hausdorff groupoid whose dual object separates the points is isomorphic to its
Tannaka groupoid.

Proof. Let G be a compact Hausdorff groupoid such that Ĝ separates the points
of G . We show that T : G → T (G ) is an isomorphism of topological groupoids. By
Lemmas 5.3 and 5.5, the compact groupoid T (G ) satisfies conditions of the Peter-
Weyl Theorem [1, Theorem 3.10]. The injectivity of T follows from this theorem
applied to T (G ) . For the surjectivity, assume on the contrary that Im(T ) is a proper
subset of T (G ) . This is a closed subset. Let f ∈C(T (G )) be a positive function such
that supp( f ) is contained in the complement of Im(T ) . Then from the two integrals
in Lemma 5.3, the one on the right hand side is 0, where as the one on the left hand
side is strictly positive, a contradiction. �

In Peter-Weyl Theorem [1, Theorem 3.10] we have required Eu,v to be dense in
C(G v

u ) and λ v
u (G v

u ) �= 0, for each u,v ∈ X . Each Eu,u is the set of trigonometric poly-
nomials on the (Hausdorff) compact group G u

u and so it is dense in C(G u
u ) , by Stone-

Weierstrass Theorem. Now if G is transitive and we choose y ∈ G u
v , the map x �→ yx

is a (measure preserving) homeomorphism from G v
u onto G u

u . This induces an isomet-
ric isomorphism from C(G v

u ) onto C(G u
u ) which sends Eu,v onto Eu,u . Hence Eu,v is

dense in C(G v
u ) . Also, under this homeomorphism, λ v

u (G v
u ) = λ u

u (G u
u ) �= 0, as the right

hand side is the norm of the Haar measure of (non empty) compact group G u
u . This

argument replaces part of the proof of the above theorem, and proves the following.

COROLLARY 5.7. Each compact, Hausdorff, transitive groupoid is isomorphic to
its Tannaka groupoid.

A possible way to avoid the local non-triviality assumption in Theorem 5.6 could
be to use a local Fourier-Plancherel transform Fu on L2(Gu,λu) (instead of Fv

u on
L2(G v

u ,λu)) and use Proposition 3.3 (instead of proposition 3.2) in a modified version
of Lemma 5.3 in which integrals are taken against λu and λ̃u .
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