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THE q–DEFORMED CONVOLUTIONS: EXAMPLES

AND APPLICATIONS TO MOMENT PROBLEM

ANNA KULA

Abstract. The paper provides examples of the q -convolution and the (p,q) -convolution, which
put some light on how complicated these operations are. They show that the q -convolution
of two Dirac delta’s need not be compactly supported and that the (1,1) -convolution of two
Dirac delta’s can be absolutely continuous. A (possibly not unique) measure corresponding to a
moment sequence from the limit theorem for the (p,q) -convolution is described.
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The paper is concentrated on two objects for which we use the common name
“q -deformed convolutions”. These are: the q -convolution, defined by Carnovale and
Koornwinder [5], and the (p,q)-convolution, defined by Ricard and the author [9], p
and q being two positive parameter.

The q -deformed convolutions both originates from the non-commutative proba-
bility and braided algebras, but they can also be interpreted as operations on sequences,
involving the classical q -calculus. With this approach, as proved in [9], they turn out to
be associative and commutative, and preserve a kind of strong positivity. By the latter
we mean that they tranform the set of the q -moment sequences (moment sequences
with ”weights” depending on the parameter q ) corresponding to measures on positive
real half-line into itself. In the same paper, the (central) limit theorem for the (p,q)-
convolution was established.

Although the q -convolution and (p,q)-convolution have already been studied,
examples of them were unavailable untill now, and the aim of this paper is to fill this
gap. After presenting the two convolutions and related notions (Section 1.), we describe
four examples of the q -deformed convolutions (Section 2.). They put some light on
how complicated operations the q -convolution and the (p,q)-convolution could be. In
particular, we show that the q -convolution of two Dirac delta’s need not be compactly
supported and that the (1,1)-convolution of two Dirac delta’s gives the (shifted) arcsine
law. We also find a measure corresponding to moments from cental limit theorem
for the (p,q)-convolution. Moreover, we show how the properties of the q -deformed
convolutions help solving moment problem in some special cases.
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Notation

Given a (positive Borel) measure μ supported on the real-line R , the moments of
μ are defined by

mn(μ) =
∫

tnμ(dt), n ∈ N.

The set of all such measures which have all moments finite will be denoted by P fm .
Similarily, the set of measures supported on the non-negative half-line [0,+∞) with all
moments finite will be denoted by P+

fm . Moment sequences corresponding to mea-

sures from P+
fm are often called Stieltjes moment sequences.

For a measure μ ∈P+
fm and a � 0, Ta denotes the dilation μ �→ Taμ , defined for

a measurable set A ⊂ [0,+∞) by the formula (Taμ)(A) = μ(A/a) , when a > 0, and
T0μ = δ0 . As usual, δa denotes the point mass measure concentrated at a .

Let us also recall that, by the Schur’s Lemma, the pointwise product of two mo-
ment sequences is again a moment sequence. If, moreover, both sequences correspond
to measures supported on [0,+∞) , then the resulting sequence also shares this prop-
erty. The corresponding transformation of measures is the multiplicative convolution,
denoted by ◦ . It can be defined for two measures μ ,ν as the image of the product
measure μ⊗ν under the mapping (x,y) �→ xy . It follows that δa ◦δb = δab . Moreover,
for measures μ ,ν ∈ P+

fm we have

mn(μ ◦ν) = mn(μ) ·mn(ν), n ∈ N. (1)

Throughout all the paper, p and q are two positive parameters. Moreover, N =
{0,1,2, . . .} is the set of non-negative integers. Unless otherwise stated, all sequences
appearing below are indexed by N . We also denote as usual (cf. [6])

(a;q)n =
n−1

∏
k=0

(1−qka), (a;q)∞ = lim
n→+∞

(a;q)n,

[n]q =
1−qn

1−q
, [n]q! =

(q;q)n

(1−q)n ,

[
n
k

]
q
=

[n]q!
[k]q![n− k]q!

.

We shall need the q -binomial theorem ([6]):

+∞

∑
k=0

(a;q)k

(q;q)k
zk =

(az;q)∞
(z;q)∞

, |z| < 1, a ∈ C (2)

and the formula
(z;q)∞

(zqn;q)∞
= (z;q)n, n ∈ N. (3)

1. q -moment sequences and deformed convolutions

DEFINITION 1. A sequence (μn)n is called a q-moment sequence if there exists
a (positive Borel) measure μ on R such that

μn = μ (q)
n = q

n(n−1)
2

∫
R

tndμ(t), n ∈ N. (4)
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Note that if q = 1, what we get is the standard notion of moment sequences. Since the

parameter q is fixed, we simplify the notation by omitting the superscript (q) in μ (q)
n .

The only problem which can appear is when considering moments and q -moments of
a given measure. To avoid this, we will always denote by μn the q -moments of a
measure μ wheras for the standard moments of μ we reserve the notation mn(μ) . In

particular, μ (1)
n = mn(μ) for n ∈ N .

We will denote by M +
q the set of all q -moment sequences (μn)n corresponding

to measures from P+
fm . In a special case q = 1, M +

1 is the set of Stieltjes moment
sequences. A nice description of M +

q for q > 0 presented below contains the q -
deformed version of the Stieltjes theorem (see [8] for details). In this paper, we will
often use the equivalence (1) ⇔ (3) from the following.

PROPOSITION 1.1. For a sequence (μn)n with μ0 = 1 the following conditions
are equivalent:

1. (μn)n ∈ M +
q , i.e. (μn)n is a q-moment sequence corresponding to a probability

measure μ on [0,+∞) ,

2. both sequences (μn)n and (μn+1)n are q -positive definite, that is, for all n ∈ N

and all scalars α1, . . . ,αn ∈ C we have

n

∑
i, j=0

q−i jαiα jμi+ j � 0 and
n

∑
i, j=0

q−i jαiα jμi+ j+1 � 0.

3.
(
q−

n(n−1)
2 μn

)
n is a moment sequence corresponding to a probability measure μ

on [0,+∞) .

From the papers [5] and [9], we derive the following definitions:

DEFINITION 2. Let (μn)n and (νn)n belong to M +
q .We shall call:

1. the q-convolution of (μn)n and (νn)n the sequence given by the formula

(μ �q ν)n =
n

∑
k=0

[
n
k

]
q
μkνn−k, n ∈ N; (5)

2. the (p,q)-convolution of (μn)n and (νn)n the sequence given by the formula

(μ �p,q ν)n =
n

∑
k=0

(
q
p

)k(n−k) [
n
k

]2

p
μkνn−k, n ∈ N. (6)

Two crucial facts concerning the behaviour of the q -convolution and (p,q)-convolution
are Propositions 3.3 and 4.3 from [9], which we recall here.

PROPOSITION 1.2.

1. If 0 < q < 1 , then the q-convolution preserves the sequences from M +
q in the

sense that the q-convolution of two sequences from M +
q belongs to M +

q .
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2. If p,q > 0 , then the (p,q)-convolution preserves the sequences from M +
q in the

sense that the (p,q)-convolution of two sequences from M +
q belongs to M +

q .

In both cases, it is to be checked directly that the operation is associative and
commutative. Moreover, the (p,q)-convolution is symmetric with respect to p ↔ p−1 .
Easy examples show that the convolutions are not (inner) operations on the set of q -
moments sequences corresponding to measures on R (see [9] for details).

Observe also that the 1-convolution coincides with the classical convolution of
sequences, so the q -convolution can be called a q -deformation of the classical convo-
lution. This is not the case with the (p,q)-convolution. Moreover, the q -convolution is
not a special case of the (p,q)-convolution, but for p = q we have

(μ �q,q ν)n =
n

∑
k=0

[
n
k

]2

q
μkνn−k,

which differs from the q -convolution only by the second power of the q -binomial co-
efficient.

The motivation for both the q -convolution and the (p,q)-convolution comes from
the non-commutative probability (in particular, braided algebras, cf. [9]) and that is why
the q -moments fits better to describe this operations. It turns out however that, thanks
to the characterisation of M +

q (Proposition 1.1), we are able to reveal their action on
the classical moment sequences.

We start with the q -convolution. Let us take two sequences (mn(μ))n , (mn(ν))n

from M +
1 . Then, obviously,

μn = q
n(n−1)

2 mn(μ), νn = q
n(n−1)

2 mn(ν) for n ∈ N

belong to M +
q and thus

(μ �q ν)n =
n

∑
k=0

[
n
k

]
q
μkνn−k =

n

∑
k=0

[
n
k

]
q
q

k(k−1)
2 + (n−k)(n−k−1)

2 mk(μ)mn−k(ν)

= q
n(n−1)

2

n

∑
k=0

[
n
k

]
q
q−k(n−k)mk(μ)mn−k(ν).

According to Proposition 1.2, the resulting sequence belongs to M +
q and by Proposi-

tion 1.1,
(
q−

n(n−1)
2 (μ �q ν)n

)
n belongs to M +

1 . Thus there is a measure η ∈P+
fm such

that

mn(η) =
n

∑
k=0

[
n
k

]
q
q−k(n−k)mk(μ)mn−k(ν). (7)

This formula shows how the q -convolution transform two sequences from M +
1 into a

sequence from M +
1 .

When we consider the (p,q)-convolution acting on moment sequences (instead of
q -moment sequences), the parameter q disappears. Indeed, for (mn(μ))n , (mn(ν))n
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from M +
1 and (μn)n,(νn)n ∈ M +

q as in (7), we have

(μ �p,q ν)n =
n

∑
k=0

(
q
p

)k(n−k) [
n
k

]2

p
μkνn−k

=
n

∑
k=0

[
n
k

]2

p
q

n(n−1)
2 p−k(n−k)mk(μ)mn−k(ν)

= q
n(n−1)

2

n

∑
k=0

[
n
k

]2

p
p−k(n−k)mk(μ)mn−k(ν).

This means that the mapping

M +
1 ×M +

1 
 ((mn(μ))n,(mn(ν))n) → (mn(η))n ∈ M +
1

where

mn(η) =
n

∑
k=0

[
n
k

]2

p
p−k(n−k)mk(μ)mn−k(ν)

is a well defined operation on M +
1 , which depends only on the parameter p > 0. This

is exactly the (p,1)-convolution.
Here again a similarity between q - and (q,1)-convolution is evident.

2. Applications of the q -deformed convolutions

2.1. Example of the q -convolution

In this section we assume that 0 < q < 1. For a > 0 let

Gn(a) = Gn(a;q) =
n

∑
k=0

[
n
k

]
q
q−k(n−k)ak.

Then {Gn(a)}n is a Stieltjes moment sequence (i.e. a moment sequence of a measure
on [0,+∞)). This fact was shown by Al-Salam and Carlitz in [1], the authors used
hypergeometric series’ techniques.

An alternative proof is a straithforward application of the definition of the q -
convolution.

PROPOSITION 2.1. The sequence {Gn(a)}n is a Stieltjes moment sequence and

mn(δa �q δ1) = Gn(a).

Proof. For the proof, let us consider μ = δa (a > 0) and ν = δ1 and calculate the
nth moment of δa �q δ1 . For this, we use Eq. (7) and obtain

mn(δa �q δ1) =
n

∑
k=0

[
n
k

]
q
q−k(n−k)ak = Gn(a).
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Thus the moments of δa �q δ1 are exactly {Gn(a)}n .
On the other hand, δa and δ1 are measures on [0,+∞) (we assumed a > 0) and

so the sequence {Gn(a)}n is in M +
1 .

REMARKS. 1. Unfortunately, the q -convolution gives no informations on the
measure which corresponds to the moment sequence {Gn(a)}n . It can be found in [1]
or [4] that the two measures

ma = (aq;q)∞
+∞

∑
k=0

akqk2

(aq;q)k(q;q)k
δq−k , 0 < a <

1
q
,

σa = (a−1q;q)∞
+∞

∑
k=0

a−kqk2

(a−1q;q)k(q;q)k
δaq−k , q < a

have the moment sequence {Gn(a)}n and one should choose ma or σa depending on
the relation between a and q .

2. In this paper, the q -convolution is treated as operation on q -moment sequences,
but it would be interesting to generalize them to operations on measures1. A way to
make it would be firstly generalize the definition to measures with compact support.
The example of δa �q δ1 shows that such a direct generalization is hardly possible,
since the q -convolution of two compactly supported measures need not be compactly
supported (the support can be unbounded as 0 < q < 1). The situation is even worse,
since the sequence {Gn(a)}n is well known as an example of indeterminate moment se-
quence (for q < a < 1

q both measures ma and σa correspond to it). This means that the
q -convolution of two compactly supported measures (which are necessarily uniquely
determined by their moments) may no longer be uniquely determined by moments.

2.2. Positive definiteness of the sequence
(
q−(n

2)(−a;q)n

)
n

This sequence is another example of the q -convolution and so is a moment se-
quence of a measure on [0,+∞) .

PROPOSITION 2.2. For a > 0 the sequence
(
q−(n

2)(−a;q)n

)
n

is a Stieltjes mo-

ment sequence. In particular, it is positive definite.

Proof. Let us fix a > 0 and consider the q -moment sequence (μn)n corresponding

to the measure δa , i.e. μn = q(n
2)an and the constant sequence νn = 1 = q(n

2)q−(n
2) for

n ∈ N . First we show that (νn)n is in M +
q .

For this purpose, let us consider the log-normal distribution λσ with parameter
σ > 0, which is the measure with the density on [0,+∞) given by

dσ (x) =
1√

2πσ2
x−1 exp

(
− (lnx)2

2σ2

)
.

1Some partial results can be found in [5].
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By a change of variable, one can show that2

mn(λσ ) =
1√

2πσ2

∫ +∞

0
xn−1 exp

(
− (lnx)2

2σ2

)
dx =

1√
2πσ2

∫ +∞

0
e
nu+ u2

2σ2 dx = e
1
2 n2σ2

.

So if q∈ (0,1) and we choose σ2 = ln 1
q > 0, then q

1
2 = e−

1
2σ

2
and mn(λln1/q) = q−

n2
2 .

Then, by the formula (1), we have

q−(n
2) = q−

n2
2 ·q n

2 = mn(λln1/q,s) ·mn(δ√q) = mn(λln1/q ◦ δ√q) = mn(T√qλln1/q).

This way we have showed that mn(ν) = q−(n
2) , where ν := T√qλln1/q . Since ν is

supported on [0,+∞) , hence the constant sequence (1)n = (νn)n is in M +
q .

Now, we need the formula from the q -calculus

(a;q)n =
n

∑
k=0

[
n
k

]
q
q

k(k−1)
2 (−a)k, a ∈ C,

(see [7] for the proof), from which we get for a > 0

(−a;q)n =
n

∑
k=0

[
n
k

]
q
μkνn−k = (δa �q ν)n,

According to Proposition 1.2, the sequence ((−a;q)n)n belongs to M +
q and so, by

Proposition 1.1,
(
q−(n

2)(−a;q)n

)
n

is in M +
1 .

REMARKS. 1. We do not need to know the measure λ√q to check that the sequence

(q−(n
2))n is a Stieltjes moment sequence. By the classical Stieltjes Theorem, it is enough

to verify that the sequence itself and the shifted sequence (q−(n+1
2 ))n are positive defi-

nite. But this follows from the fact that for q ∈ (0,1) the matrix [q−i j]+∞
i, j=0 is positive

definite (see Lemma 15 in [10]).
2. It seems unclear to the author whether the sequence ((−a;q)n)n is also positive

definite. Instead, we can prove directly that
(

1
(−a;q)n

)
n

belongs to M +
1 . For this

purpose, given q ∈ (0,1) and a > 0, let us define

Iq,a =
1

(−a;q)∞

+∞

∑
k=0

q(k
2)ak

(q;q)k
δqk .

This is a positive Borel measure on [0,+∞) and, by Eq. (2), its moments are

mn(Iq,a) =
1

(−a;q)∞

+∞

∑
k=0

q(k
2)(aqn)k

(q;q)k
=

(−aqn;q)∞
(−a;q)∞

=
1

(−a;q)n
.

2In fact, Stieltjes [11] showed that for all s ∈ [−1,1] the distributions λσ ,s with densities

dσ ,s(x) =
(

1+ ssin(
2π
σ2 lnx)

)
dσ (x)

have the same moments mn(λσ ,s) = e
1
2 n2σ2

(see also [2]).
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2.3. Example of the (1,1)-convolution

A basic tool in hypergeometric series’ calculus is the q -binomial theorem (Eq.
2). In case of the (p,q)-convolution we lack this tool because of the second power
of the q -binomial coefficient appearing in the formula. This makes the calulations of
examples almost hopeless. The limit case as p,q → 1 is a nice exception, which shows
however that even the (1,1)-convolution is a complicated operation.

The (1,1)-convolution is the limit case of the (p,q)-convolution as p,q → 1 and
so it is defined as an operation on moment sequences via the formula

mn(μ �1,1 ν) =
n

∑
k=0

(
n
k

)2

mk(μ)mn−k(ν).

PROPOSITION 2.3. For a > 0 the measure δa �1,1 δa has the density function

f (x) =
1
π

1√
x(4a− x)

χ[0,4a](x).

Proof. Let us recall that the following equality holds for central binomial coeffi-
cients: (

2n
n

)
=

n

∑
k=0

(
n
k

)2

.

For a > 0 we have

mn(δa �1,1 δa) = an
n

∑
k=0

(
n
k

)2

= an
(

2n
n

)
.

We know however that
(2n

n

)
is the (2n)th moment of the dilated arcsine law, which has

the density

g(x) =
1
π

1√
4− x2

χ[−2,2].

This means that

an
(

2n
n

)
=

an

π

∫ 2

−2

x2n
√

4− x2
dx =

2
π

∫ 2

0

(ax2)n
√

4− x2
dx

=
1
π

∫ 4a

0

tn√
t(4a− t)

dt.

Thus an
(2n

n

)
is the nth moment of the measure with the density

f (x) =
1
π

1√
x(4a− x)

χ[0,4a](x).

REMARK. Since this measure is supported on the compact interval, the moment prob-
lem is determinate and the measure is unique. So, in contrast to the case of the q -
convolution, this example does not exclude the possibility of generalizing the definition
of the (1,1)-convolution to an operation on compactly supported measures.
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2.4. Limit measure for the (p,q)-convolution

In [9] the following result was proved.

THEOREM 2.4. (Limit Theorem for the (p,q)-convolution) Let (μn)n be a q-moment
sequence corresponding to a measure on [0,+∞) such that μ1 = 1 . Then for every
n ∈ N we have

lim
K→∞

(T 1√
K

(μ �p,q μ �p,q . . . �p,q μ)︸ ︷︷ ︸
K−times

)n = q
n(n−1)

2
[n]p![n]p−1!

n!
.

Untill now, the measure related to this q -moments was not known. In this paper,
we shall use the results of Berg from [3] to describe it as a multiplicative convolution
of two measures. We briefly recall them. As in Berg’s paper, we assume that 0 < q < 1
and 0 < p < 1.

We consider the measure

Rq = (q;q)∞
∞

∑
k=0

qk

(q;q)k
δqk ,

which, by Eq.(2) and Eq.(3), has moments

mn(Rq) = (q;q)∞
∞

∑
k=0

q(n+1)k

(q;q)k
=

(qn+1;q)∞
(q;q)∞

= (q;q)n.

We denote by Iq the measure with the (non-negative) density function on (0,+∞)

iq(x) =
1

(q;q)∞

∞

∑
k=0

exp(−xq−k)
(−1)kq

k(k−1)
2

(q;q)k
χ(0,+∞)(x).

Then, by the q -binomial theorem (Eq. 2), the moments of Iq are

mn(Iq) =
1

(q;q)∞

∞

∑
k=0

(−1)kq
k(k−1)

2

(q;q)k

∫ +∞

0
xne−xq−k

dx

=
1

(q;q)∞

∞

∑
k=0

(−1)kq
k(k−1)

2

(q;q)k

∫ +∞

0
q−k(n+1)tne−t dt

=
(qn+1;q)∞

(q;q)∞
·n! =

n!
(q;q)n

.

Berg showed that Jq := 1
x log 1

q
dIq(x) is also a probability measure. If by J̌q we

denote the image of Jq under the reflection x → 1
x , then we have

J̌q =
iq( 1

x )dx

x log 1
q
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and the moments of J̌q are

mn(J̌q) =
1

ln 1
q · (q;q)∞

∞

∑
k=0

(−1)kq
k(k−1)

2

(q;q)k

∫ +∞

0
xn−1e−x−1q−k

dx

=
1

ln 1
q · (q;q)∞

∞

∑
k=0

(−1)kq
k(k−1)

2 q−kn

(q;q)k

∫ +∞

0
t−(n+1)e−t dx

=
Γ(−n)(q−n,q)∞

ln 1
q · (q;q)∞

=
(q,q)n

n!
q−

(n+1)n
2 .

Above, Γ(z) is the Gamma function and the last equality follows from the formula

Γ(−n)(q−n,q)∞ =
(q,q)n(q;q)∞

n!
q−

(n+1)n
2 ln(

1
q
),

which can be proved by induction (see [3] for an analytic proof).

We are interested in finding a measure λ corresponding to the q -moment se-

quence λn = q
n(n−1)

2
[n]p![n]p−1 !

n! or, equivalently by Proposition 1.1, to the moment se-

quence mn(λ ) =
[n]p![n]p−1 !

n! . For this, let us observe that

[n]p![n]p−1!

n!
= p−

n(n−1)
2 [n]p!

[n]p!
n!

=
p−

n(n−1)
2

(1− p)2n (p; p)n
(p; p)n

n!

=
pn

(1− p)2n mn(Rp)mn(J̌p)

= mn(δp) ·mn(δ 1
(1−p)2

) ·mn(Rp) ·mn(J̌p). (8)

As stated in Eq. (1), the multiplication of moment sequences reflects the multi-
plicative convolution of measures, so the moment sequence in question corresponds to
the measure

λ m= δp ◦ δ 1
(1−p)2

◦Rp ◦ J̌p = δ p
(1−p)2

◦Rp ◦ J̌p.

If we denote by

R̃p = δ p
(1−p)2

◦Rp = (p; p)∞
∞

∑
n=0

pn

(p; p)n
δ pn+1

(1−p)2
,

then
λ m= R̃p ◦ J̌p, (9)

which means that
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PROPOSITION 2.5. The measure corresponding to the limit moment sequence( [n]p![n]p−1 !

n!

)
n is the multiplicative convolution of the measures R̃q and J̌q .

REMARKS. 1. The fact that the sequence
( [n]p![n]p−1 !

n!

)
n is a Stieltjes moment

sequence was proved in [9] (Collorary 6.3). It is worth noting that the formula (9)
provides an alternative proof of this fact, since multiplicative convolution preserves
measures on [0,+∞) .

2. The determinancy of J̌q is not known (cf. [3]). In particular, the Carleman
criterion gives no information about it, because the series

∑
n

1

2n
√

mn(J̌q)

is convergent. Thus it is unknown if λ is uniquely determined by its moments.
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