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Abstract. Let A ∈ Mn be a normal matrix and let k ∈ N . In this note we introduce the notion
”Polynomial inverse image of order k”. The polynomial numerical hull of order k , denoted by
Vk(A) are characterized by the intersection of polynomial inverse images of order k. Also, the
locus of Vn−1(A) in the complex plane are determined.

1. Introduction

Let Mn be the set of n× n complex matrices. Motivated by the study of conver-
gence of iterative methods in solving linear systems (e.g., see [4, 5, 7]), researchers
studied the polynomial numerical hull of order k of a matrix A ∈ Mn , which is defined
and denoted by

Vk(A) = {ξ ∈ C : |p(ξ )| � ‖p(A)‖ for all p(z) ∈ Pk[C]},

where Pk[C] is the set of complex polynomials with degree at most k . The joint
numerical range of (A1,A2, . . . ,Am) ∈ Mn ×·· ·×Mn is denoted by

W (A1,A2, . . . ,Am) = {(x∗A1x,x
∗A2x, . . . ,x

∗Amx) : x ∈ C
n,x∗x = 1}.

By the result in [4] (see also [5])

Vk(A) = {ζ ∈ C : (0, . . . ,0) ∈ convW ((A− ζ I),(A− ζ I)2, . . . ,(A− ζ I)k)},

where convX denotes the convex hull of X ⊆ Ck .
In Section 2, we introduce a new concept ”polynomial inverse image of order

k”. Also, we study the relationship between polynomial inverse image of order k and
polynomial numerical hull of order k for a normal matrices. In section 3, by using the
polynomial inverse images of [0,∞) , the locus of the polynomial numerical hulls of
order n−1 are characterized. Additional results are given in Section 4.
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2. Polynomial inverse image of order k

In this section we are introducing the notion polynomial inverse image of order k
to study the polynomial numerical hulls of order k . We are using Re(w) and Im(w) to
denote the real and the imaginary parts of w ∈ C , respectively.

It was shown in [3, Theorem 3.1] that if A∈Mn(C) is normal with σ(A) lying on
a rectangular hyperbola R in the complex plane, then V 2(A) is a subset of R as well.
It is readily seen that, if L is a straight line in the complex plane then the set L1/2 =
{z : z2 ∈ L} is a rectangular hyperbola. In [1, Theorem 4.3], we obtained that, if A is a

normal matrix and S is an arbitrary convex set with σ (A)⊂ S
1
k , then Vk (A) ⊂ S

1
k . By

using the following definition, we are going to extend the above results.

DEFINITION 2.1. Let q be a polynomial of degree k and let S ⊆ C . The set
{z ∈ C : Im(q(z)) ∈ S} is called a polynomial inverse image of order k of S and is ab-
breviated by PIIk (S) .

PROPOSITION 2.2. Every rectangular hyperbola is a PII2 ({0}) and vice versa.

Proof. Let R =
{
(x,y) ∈ R

2 : r1
(
x2 − y2

)
+ r2xy+ r3x+ r4y+ r5 = 0

}
be a rect-

angular hyperbola, where r1, · · · ,r5 ∈R , (r1,r2) �= (0,0) . Define p(z) =
(

1
2 r2 + ir1

)
z2

+(r4 + ir3)z+ ir5 . It is readily seen that R = {z ∈ C : Im(p(z)) = 0} is a PII2 ({0}) .
By the same method the converse is trivial. �

We know that Im(ip(z)) = Re(p(z)) , then {z ∈ C : Re(p(z)) = 0} is also a
PIIk ({0}) .

[
Im(z3)

]−1 ({0}) [
Im(5iz5 − (1+ i)z4 −3iz2 −3+2i)

]−1 ({0})

THEOREM 2.3. Suppose p is a complex polynomial of degree k and A ∈ Mn

is a normal matrix. Let S ⊂ C be a convex set and let � : C → C be a real linear
transformation such that σ (A) ⊂ (�◦ p)−1(S) . Then Vk (A) ⊂ (�◦ p)−1(S) .
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Proof. Without loss of generality we assume that A = diag(a1,a2, . . . ,an) . Let
μ ∈ Vk(A) . By [4], we know that, the joint numerical range W (A,A2, . . . ,Ak) is
convex. So there exists a unit vector X = (x1,x2, . . . ,xn)t such that μ i = X∗AiX =
Σn

j=1|x j|2ai
j, i = 1, . . . ,n. Hence p(μ) = X∗p(A)X = Σn

j=1|x j|2p(a j). Therefore, � ◦
p(μ) = Σn

j=1|x j|2�(p(a j)). Since �(p(a j)) ∈ S, j = 1, . . . ,n and S is convex, we obtain

that �◦ p(μ) ∈ S and hence μ ∈ (�◦ p)−1(S) . �

In Theorem 2.3, we consider the linear transformation � : C → C by �(z) =
Im(z), ∀z ∈ C and S = {0} . Hence, the following holds.

COROLLARY 2.4. Let A ∈ Mn be a normal matrix. If σ(A) is a subset of a
PIIk ({0}) , then Vk(A) ⊆ PIIk ({0}) .

Also, if we consider the linear transformation � : C→C in Theorem 2.3 by �(z) =
z, ∀z ∈ C and p(z) = zk , we obtain the following:

COROLLARY 2.5. [1, Theorem 4.3] Let A∈Mn be a normal matrix and let S⊂C

be a convex set. If σ(A) ⊆ (S)
1
k , then Vk(A) ⊆ (S)

1
k .

If we have 4 points in the complex plane, then there exists a rectangular hyperbola
(PII2 ({0}) ) passing through these four points. Now, we attempt to extend this result to
PIIk ({0}) .

THEOREM 2.6. Let {a1, . . . ,a2k} be a set of complex numbers. Then there exists
a PII� ({0}) , (1 � � � k) , passing through these 2k points in the complex plane C.

Proof. We are looking to find a non-constant complex polynomial p(z) = αkzk +
· · ·+α1z+α0 , where Imp(ai) = 0, i = 1, . . . ,2k . We consider the 2k×(2k+1) matrix
A such that it’s ith row Ai =

(
1,Re(ai), Im(ai), . . . ,Re(ak

i ), Im(ak
i )
)
. We know that the

homogeneous system AX = 0 has a nontrivial solution X = (x0,x1, . . . ,x2k)t ∈ R2k+1 .
Define α0 = ix0 and α j = x2 j + ix2 j−1, j = 1, . . . ,k. Hence p(z) = (x2k + ix2k−1)zk +
· · ·+(x2 + ix1)z+x0i. Let � := deg(p). Then 1 � � � k. Direct computation shows that
Imp((ai)) = 0, i = 1, . . . ,2k . Therefore, {a1, · · · ,a2k} ⊆ [Imp]−1 ({0}) . �

The following example shows that in general it is not possible to find a PIIk ({0})
passing through any 2k points in the complex plane.

EXAMPLE 2.7. Let R = PII2 ({0}) =
{
z : Im

(
z2
)

= 2
}

and suppose that zk =
k + i

k , k = 1,2, . . . ,6 be complex numbers. It is easy to see that R passing through
these 6 points. We will show that there is no PII3 ({0}) passing through these 6 points.
Assume, if possible that, there exists a polynomial q(z) = (a1 + ia2)z3 +(b1 + ib2)z2 +
(c1 + ic2)z+(d1 + id2) such that Imq(zk) = 0,k = 1, . . . ,6 and (a1,a2) �= (0,0). There-
fore,

a2k
6+b2k

5+(3a1 + c2)k4+(2b1 +d2)k3+(c1−3a2)k2−b2k−a1 = 0, k = 1,2, . . . ,6.
(1)
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Define h(z) := a2z6 +b2z5 +(3a1 + c2)z4 +(2b1 +d2) z3 +(c1−3a2)z2−b2z−a1. By
(1) , we know that h(1) = h(2) = · · · = h(6) = 0. Then a2 �= 0. Since, the coefficients
of z5 and −z in the polynomial h(z) are the same, we obtain that 1+ 2+ · · ·+ 6 =
b2
a2

= −(1×2×·· ·×6)
(
1+ 1

2 + · · ·+ 1
6

)
, a contradiction.

3. Polynomial inverse image of [0,∞)

Let A ∈ Mn be a normal matrix. By Corollary 2.4, if σ(A) is a subset of a
PIIk ({0}) , then so does Vk(A) . But exactly which part of PIIk ({0}) belongs to Vk(A)
was not determined. In the following we characterize these parts. First, we need the
following (see [3, Section 3]).

[
Im(z3)

]−1 [0,∞)
[
Im(5iz5− (1+ i)z4 −3iz2 −3+2i)

]−1 [0,∞)

LEMMA 3.1. Let A ∈ Mn be a normal matrix such that σ (A) is a subset of a
polynomial inverse image of {0} ,

PIIk({0}) =
{

z : r2kRe
(
zk
)

+ r2k−1Im
(
zk
)

+ · · ·+ r2Re (z)+ r1Im(z)+ r0 = 0
}

,

(2)
where r0, . . . ,r2k are real numbers and (r2k−1,r2k) �= (0,0) . Then

(a) If r2k−1 �= 0 , then

Vk (A) = PIIk({0})∩
{

z ∈ C :
(
Re(z), Im(z), · · · ,Re

(
zk−1
)
, Im
(
zk−1
)
,Re
(
zk
))

∈W
(
Re(A), Im(A), · · · ,Re

(
Ak−1

)
, Im
(
Ak−1

)
,Re
(
Ak
))}

(b) if r2k �= 0 , then

Vk (A) = PIIk({0})∩
{

z ∈ C :
(
Re(z), Im(z), · · · ,Re

(
zk−1
)
, Im
(
zk−1
)
, Im
(
zk
))

∈W
(
Re(A), Im(A), · · · ,Re

(
Ak−1

)
, Im
(
Ak−1

)
, Im
(
Ak
))}

Let A = diag(a1, . . . ,a4) . By [2, Theorem 2.2] we can write V 2(A) as the inter-
section of 4 PII2 ([0,∞)) sets and the rectangular hyperbola passing through σ(A) . In
the following theorem we extend this result.
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THEOREM 3.2. Let A = diag(a1, . . . ,a2k) ∈ M2k(C) . Let PIIk({0}) as in (2) be
the unique polynomial inverse image of order k of {0} passing through σ(A) . Then
for any 1 � i � 2k , there exist a polynomial inverse image of [0,∞) of order 1 � �i � k
such that V k (A) =

⋂2k
i=1 PII�i ([0,∞))∩PIIk ({0}) .

Proof. By Lemma 3.1, without loss of generality we assume that

Vk (A) = PIIk({0})∩
{
μ ∈ C :

(
Re(μ), Im(μ), · · · ,Re

(
μk−1

)
, Im
(
μk−1

)
,Re
(
μk
))

∈W
(
Re(A), Im(A), · · · ,Re

(
Ak−1

)
, Im
(
Ak−1

)
,Re
(
Ak
)) }

(3)
By [4, Theorem 2.11], we know that W

(
Re(A), Im(A), · · · ,Re

(
Ak−1

)
, Im
(
Ak−1

)
,

Re
(
Ak
))

is convex. Then by (3), μ ∈ Vk (A) if and only if μ ∈ PIIk({0}) and there
exist λ1, . . . ,λ2k � 0 such that⎡

⎢⎢⎢⎢⎢⎣

1 1 · · · 1
Re(a1) Re(a2) · · · Re(a2k)
Im(a1) Im(a2) · · · Im(a2k)
...

...
. . .

...
Re(ak

1) Re(ak
2) · · · Re(ak

2k)

⎤
⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
B

⎡
⎢⎢⎢⎣
λ1

λ2
...
λ2k

⎤
⎥⎥⎥⎦=

⎡
⎢⎢⎢⎢⎢⎣

1
Re(μ)
Im(μ)
...
Re(μk)

⎤
⎥⎥⎥⎥⎥⎦ .

Since PIIk ({0}) is the unique polynomial inverse image of order k of {0} passing
through σ(A) , we obtain that B is invertible. Let B1, . . . ,B2k be the rows of the matrix
B−1. Thus μ ∈ Vk (A) if and only if μ ∈ PIIk ({0}) and Bi [1,Re(μ), Im(μ), . . . ,
Re(μk)

]t � 0, 1 � i � 2k. Define polynomial inverse image of order 1 � �i � k as
follows:

PII�i ([0,∞)) =
{
μ ∈ C : Bi

[
1,Re(μ), Im(μ), . . . ,Re(μk)

]t
� 0

}
, i = 1, . . . ,2k.

Therefore, Vk (A) =
⋂2k

i=1 PII�i ([0,∞))∩PIIk ({0}) . �

REMARK 3.3. Let A = diag(a1, · · · ,an) ∈ Mn . We know that if there exist 1 �
i < j � n such that ai = a j , then Vn−1(A) = σ(A) [3, Lemma 1.2]. Thus, without loss
of generality, we assume that a1, . . . ,an are distinct complex numbers. We are looking
to find the locus of the set Vn−1 (A)\σ(A) . Note that by [2, Theorem 5.1] and its proof,
for a normal matrix A with distinct eigenvalues a1, . . . ,an , we have μ ∈Vn−1(A)\σ(A)
if and only if μ is the unique element not in σ(A) such that the system⎛

⎜⎜⎜⎝
1 1 · · · 1
a1 a2 · · · an
...

...
. . .

...
an−1

1 an−1
2 · · · an−1

n

⎞
⎟⎟⎟⎠X =

⎛
⎜⎜⎜⎝

1
μ
...

μn−1

⎞
⎟⎟⎟⎠ (4)

has a nonnegative solution X = (x1, . . . ,xn)t . By Cramer’s rule, xk = pk(μ) � 0, where

pk (z) = ∏i �=k(z−ai)
∏i �=k(ak−ai)

, k = 1, . . . ,n are the Lagrange polynomials for a1, . . . ,an , respec-

tively.
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By Remark 3.3, we have the following:

THEOREM 3.4. Let A ∈ Mn, n � 3 be a normal matrix with distinct eigenvalues
and let the Lagrange polynomials pk, k = 1, . . . ,n be as above. Then Vn−1 (A) =⋂n

j=1 p−1
j ([0,∞)).

Theorem 3.4 characterize the locus of the set Vn−1(A) as the intersection of some
PIIk ([0,∞)) . In the following examples we are using the Matlab programs to draw the
figures (see [1, Theorem 2.5]).

EXAMPLE 3.5. Let A = diag (1,−1, i,−i) . The Lagrange polynomials for {1,−1, i,

−i} are p1(z)= z3+z2+z+1
4 , p2(z)= −z3+z2−z+1

4 , p3(z)= iz3−z2−iz+1
4 , p4(z)= −iz3−z2+iz+1

4
respectively. Then V 3 (A) =

⋂4
j=1 p−1

j ([0,∞)) = {1,−1,0, i,−i}, (see Figure (i)).

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

Figure (i) Figure (ii)

EXAMPLE 3.6. Let B = diag (1,−1,2i,−i) . The Lagrange polynomials for {1,−1,

2i,−i} are q1(z) = z3+(1−i)z2+(2−i)z+2
6−2i , q2(z) = z3−(1+i)z2+(2+i)z−2

−6−2i , q3(z) = z3+iz2−z−i
−15i ,

q4(z) = z3−2iz2−z+2i
6i , respectively. Then V 3 (B) =

⋂4
j=1 q−1

j ([0,∞)) = {1,−1,−i/3,2i,
−i}, (see Figure (ii)).

REMARK 3.7. Let A ∈ Mn be a normal matrix. By [4, Theorem 2.11] we know
that
P = W

(
Re(A), Im(A), · · · ,Re

(
Ak
)
, Im
(
Ak
))

is a polytope and by Minkowski-Weyl
theorem [6], every polytope is a bounded polyhedron. Then there exists an m× 2k
real matrix D and b ∈ R2k such that P = {X ∈ R2k : DX � b} . Also, we know that
μ ∈ Vk (A) if and only if

(
Re(μ), Im(μ), · · · ,Re(μk), Im(μk)

)t ∈ P. Therefore, Vk (A)
is the intersection of at most m sets PII�i ([0,∞)) (1 � �i � k ).

QUESTION. Let A ∈ Mn be a normal matrix. It would be nice to find the smallest
integer m such that Vk(A) is the intersection of m polynomial inverse images of [0,∞)
of orders �i , (1 � �i � k ).



POLYNOMIAL INVERSE IMAGES AND POLYNOMIAL NUMERICAL HULLS 95

4. Additional Results

In this section, we shall characterize the polynomial numerical hulls of order 2k
for normal matrices such that their spectrum belong to a PIIk ({0}) .

THEOREM 4.1. Suppose that A ∈ Mn is a normal matrix and σ (A) is contained
in a PIIk ({0}) . Then V 2k (A) = σ (A) .

Proof. Assume, if possible that, μ ∈ V 2k (A) \σ(A). Without loss of generality,
we assume that σ(A) contains n distinct complex numbers and 2k < n . Let p be a
complex polynomial of degree k such that

Rk = PIIk ({0}) = {z ∈ C : Im(p(z)) = 0}.
Whereas σ (A) ⊆ Rk , then p(λ ) ∈ R, for all λ ∈ σ(A). This means that p(A) is
Hermitian. Since μ ∈ V 2k (A) , and deg(p) = k, we obtain that p(μ) ∈ V 2 (p(A)) =
σ(p(A)) = p(σ(A)). Therefore, there exists λ1 ∈ σ(A) such that p(μ) = p(λ1). With-
out loss of generality we assume that A = [λ1]⊕A1, λ1 /∈ σ (A1) . Therefore, there exist
x = (x1,x2)t ∈ Cn such that x1 ∈ C and μ i = λ i

1|x1|2 + x∗2A
i
1x2, i = 1,2, . . . ,2k. Thus,

p(μ)i = p(λ1)i|x1|2 + x∗2p(A1)ix2, i = 1,2. Since μ �= λ1, we obtain that x2 �= 0 and

hence p(μ)i = x∗2
‖x2‖ p(A1)i x2

‖x2‖ , i = 1,2. Therefore, p(μ) ∈ V 2(p(A1)) = σ(p(A1)) =
p(σ(A1)). Thus, there exists λ2 ∈ σ(A1) such that p(μ) = p(λ2). After k+1steps we
obtain that A = diag(λ1, . . . ,λk+1)⊕Ak+1, where {λ1, . . . ,λk+1}∩σ(Ak+1) = /0 . De-
fine q(z) = p(z)− p(μ). Then q(λ1) = · · · = q(λk+1) = 0. Therefore, the polynomial
q(z) of degree k has k+1 roots, a contradiction. �

COROLLARY 4.2. Suppose that A ∈ Mn be a normal matrix such that Ak is Her-
mitian. Then V 2k (A) = σ (A) .
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