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(Communicated by L. Rodman)

Abstract. The so-called Ambarzumyan theorem states that if the Neumann eigenvalues of the

Sturm-Liouville operator − d2

dx2 +q with an integrable real-valued potential q on [0,π] are {n2 :
n � 0} , then q = 0 for almost all x ∈ [0,π] . In this work, the classical Ambarzumyan theorem is
extended to star graphs with Dirac operators on its edges. We prove that if the spectrum of Dirac
operator on star graphs coincides with for the unperturbed case, then the potential is identically
zero.

1. Introduction

Quantum graphs have proved an important model in the study of semiclassical sys-
tems whose classical analogues are chaotic [16, 17]. Recently, there has been increasing
interest in spectral theory of differential operator on graphs [2, 5, 10, 13, 15, 16, 17, 18,
20, 27]. The Dirac operator on a graph was considered previously, e.g., by Bulla and
Trenkler [5] as an alternative model of a simple scattering system. Self-adjoint realiza-
tions of the Dirac operator on graphs were considered by Bulla and Trenkler [5], and
Bolte and Harrison [2].

Ambarzumyan [1] in 1929 proved that for an integrable real-valued potential q on
[0,π ] if the eigenvalues of a Sturm-Liouville differential expression

−y′′(x)+q(x)y(x) = λy(x) on [0,π ]

subject to the Neumann boundary conditions y′(0) = y′(π) = 0 are equal to n2 for
n = 0,1,2, · · · , then q(x) = 0 for almost all x ∈ [0,π ] . This is an exceptional situation
since in general additional information is needed in order to reconstruct the potential
q(x) uniquely [3, 4, 21]. Since then there have appeared many generalizations of the
result of Ambarzumyan in various directions [1, 6, 7, 8, 9, 11, 12, 14, 19, 23, 24, 25,
26]. The main aim of this work is to prove several generalizations of the well-known
Ambarzumyan theorem for Dirac operators on star graphs. New Ambarzumyan-type
results for Dirac operators on star graphs are obtained by applying the method of [25].
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2. Main Results

In this work, we consider Dirac systems on star-shaped graphs consisting of d
segments of equal length π , d � 2:

Ljy j
de f
=
{

B0
d
dx

+Vj(x)+
(

m 0
0 −m

)}
y j = λy j, y j =

(
y j,1

y j,2

)
, j = 1,d. (2.1)

Here λ is a spectral parameter, m > 0 is the mass of the described particle and

B0 =
(

0 1
−1 0

)
, Vj(x) =

(
p j(x) q j(x)
q j(x) −p j(x)

)
,

and p j(x) and q j(x) belong to AC([0,π ]) (absolutely continuous functions on [0,π ]).
Systems (2.1) are subject to the boundary conditions

y j,1(0) = 0, j = 1,d (2.2)

or

y j,2(0) = 0, j = 1,d (2.3)

at the pendant vertices 0, and

y1,1(π) = y2,1(π) = · · · = yd,1(π), (2.4)

d

∑
j=1

y j,2(π) = 0 (2.5)

at the central vertex π .
Equations (2.1), (2.2), (2.4) and (2.5) or (2.1), (2.3), (2.4) and (2.5) can be rewrit-

ten in the following form

LY
de f
=
{

B
d
dx

+V(x)+m

(
Id 0
0 −Id

)}
Y = λY, Y =

(
Y1

Y2

)
, (2.6)

subject to the boundary conditions

Y1(0) = 0, A1Y1(π)+A2Y2(π) = 0 (2.7)

or

Y2(0) = 0, A1Y1(π)+A2Y2(π) = 0, (2.8)

where the values of Y1 = (y1,1, · · · ,yd,1)t and Y2 = (y1,2, · · · ,yd,2)t are vectors of length
d , and At denotes the transpose of a matrix A , B and V (x) are given by

B =
(

0 Id
−Id 0

)
, V (x) =

(
P(x) Q(x)
Q(x) −P(x)

)
,
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where

P(x) = diag[p1(x), p2(x), · · · , pd(x)], Q(x) = diag[q1(x),q2(x), · · · ,qd(x)]

are matrix-valued functions, and, finally, A1 and A2 are the following d×d matrices:

A1 =

⎛⎜⎜⎜⎜⎜⎝
1 −1 0 · · · 0 0
0 1 −1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 1 −1
0 0 0 · · · 0 0

⎞⎟⎟⎟⎟⎟⎠ , A2 =

⎛⎜⎜⎜⎝
0 · · · 0
...

. . .
...

0 · · · 0
1 · · · 1

⎞⎟⎟⎟⎠ . (2.9)

For convenience, we denote by T1(V ),T2(V ) the operators acting in Hilbert space

H =
d⊕
1

L2(0,π) for the problem (2.6), (2.7) or (2.6), (2.8), respectively. We notice that

the domain of an operator Tj(V ) , j = 1,2, is

D(Tj(V )) =
{(

Y1

Y2

)
| Yj(0) = 0, A1Y1(π)+A2Y2(π) = 0, Y1,Y2 ∈W 1

2 [0,π ]
}

.

We denote by W 1
2 [0,π ] the space of vector-valued functions F(x),x ∈ [0,π ] , such that

the vector-valued function F(x) is absolutely continuous and F ′(x) ∈ d⊕
1

L2(0,π) . It is

easy to verify that the operators T1(V ) and T2(V ) are both self-adjoint, and have real
discrete spectra [2]. Denote by σ(Ti(V )) the spectrum of self-adjoint operator Ti(V ) ,
i = 1,2, respectively.

In the case V (x) = 0 in (2.6), we can calculate the eigenvalues of the operators
T1(0) and T2(0) . The spectrum σ(T1(0)) of the operator T1(0) consists of

λn =
√

m2 +(n+(1/2))2,
√

m2 +n2,

λ−n = −√m2 +(n+(1/2))2, −√
m2 +n2, n ∈ N

⋃{0}. (2.10)

Each of the eigenvalues ±√m2 +(n+(1/2))2 is simple, and ±√
m2 +n2 is of multi-

plicity d−1.
The spectrum σ(T2(0)) of the operator T2(0) consists of

λn =
√

m2 +(n+(1/2))2,
√

m2 +n2,

λ−n = −√m2 +(n+(1/2))2, −√
m2 +n2, n ∈ N

⋃{0}. (2.11)

Each of the eigenvalues ±√
m2 +n2 is simple, and each of the eigenvalues

±
√

m2 +(n+(1/2))2 is of multiplicity d−1.
In this work we obtain the following results.

THEOREM 2.1. Let tr
∫ π
0 P(x)dx = 0 , and Q(0) = Q(π) = 0 . If σ(T1(V )) =

σ(T1(0)) (including multiplicities), then V (x) = 0 on [0,π ] .

THEOREM 2.2. Let tr
∫ π
0 P(x)dx = 0 , and Q(0) = Q(π) = 0 . If σ(T2(V )) =

σ(T2(0)) (including multiplicities), then V (x) = 0 on [0,π ] .
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3. Proofs

In the proofs of the main results, we shall use the second power L2 of the Dirac
operator L , which is a 2d -dimensional vectorial Sturm-Liouville operator generated by
the differential expression

−Y ′′ +Ω(x)Y, x ∈ (0,π). (3.1)

Here Ω(x) is a 2d×2d self-adjoint matrix of the form

Ω(x) =
(

(P(x)+m)2 +Q2(x)+Q′(x) −P′(x)
−P′(x) (P(x)+m)2 +Q2(x)−Q′(x)

)
. (3.2)

Let Φ1(x,λ ) satisfy the matrix differential equation{−Y ′′ +Ω(x)Y = λY
Y (0) = I2d, Y ′(0) = 0,

(3.3)

then, by [9, 22], the solution Φ1(x,λ ) can be expressed as

Φ1(x,λ ) = cos(
√
λx)I2d +

∫ x

0
K(x, t)cos(

√
λ t)dt, (3.4)

where K(x, t) is a symmetric matrix-valued function whose entries are continuously
differentiable in both of its variables.

Similarly, let Φ2(x,λ ) satisfy the matrix differential equation{−Y ′′ +Ω(x)Y = λY
Y (0) = 0, Y ′(0) = I2d,

(3.5)

then the solution Φ2(x,λ ) can be expressed as

Φ2(x,λ ) =
sin(

√
λx)√
λ

I2d +
∫ x

0
L(x, t)

sin(
√
λ t)√
λ

dt, (3.6)

where L(x, t) is a symmetric matrix-valued function whose entries are continuously
differentiable in both of its variables. Furthermore, the kernels K(x,t) , L(x, t) satisfy
[9, 22]

K(x,x) = 1
2

∫ x
0 Ω(x)dx, K′

t (x,0) = 0;

L(x,x) = 1
2

∫ x
0 Ω(x)dx, L(x,0) = 0.

(3.7)

Thus (Φ1(x,λ ),Φ2(x,λ )) is the fundamental matrix of solutions of the equation
−Y ′′ +Ω(x)Y = λY [25] and

Φ1(π ,λ ) = cos(
√
λπ)I2d +K(π ,π)

sin(
√
λπ)√
λ

− 1√
λ

∫ π

0
K′

t (π ,t)sin(
√
λ t)dt, (3.8)
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and

Φ′
1(π ,λ ) =−

√
λ sin(

√
λπ)I2d +K(π ,π)cos(

√
λπ)+

∫ π

0
K′

x(π ,t)cos(
√
λ t)dt. (3.9)

Similarly,

Φ2(π ,λ ) =
sin(

√
λπ)√
λ

I2d − cos(
√
λπ)

λ
L(π ,π)+

1
λ

∫ π

0
L′

t(π ,t)cos(
√
λ t)dt, (3.10)

and

Φ′
2(π ,λ ) = cos(

√
λπ)I2d +

sin(
√
λπ)√
λ

L(π ,π)+
∫ π

0
L′

x(π ,t)
sin(

√
λ t)√
λ

dt. (3.11)

Here

K(π ,π) = L(π ,π) =
1
2

∫ π

0
Ω(x)dx

de f
=
(

K1 P(0)−P(π)
P(0)−P(π) K1

)
, (3.12)

where the d×d matrix K1 satisfies

K1 = 1
2

∫ π
0 [(P(x)+m)2 +Q2(x)]dx

= 1
2diag[

∫ π
0 ((p1(x)+m)2 +q2

1(x))dx, · · · ,∫ π0 ((pd(x)+m)2 +q2
d(x))dx]

de f
= diag [k1, · · · ,kd ].

(3.13)

Denote the 2d×2d matrices

Φi(x,λ )
de f
=
(
Φi1(x,λ ) Φi2(x,λ )
Φi3(x,λ ) Φi4(x,λ )

)
, i = 1,2

and
Ci = (c(i−1)d+1, · · · ,c(i−1)d+d)

t , i = 1,2,3,4.

Therefore, general solutions of the equation −Y ′′ +Ω(x)Y = λY have the form

Y (x,λ ) = (Φ1(x,λ ),Φ2(x,λ ))C

=

⎛⎝Φ11(x,λ )C1 +Φ12(x,λ )C2 +Φ21(x,λ )C3 +Φ22(x,λ )C4

Φ13(x,λ )C1 +Φ14(x,λ )C2 +Φ23(x,λ )C3 +Φ24(x,λ )C4

⎞⎠ ,
(3.14)

where C = (c1,c2, · · · ,c4d)t , ck ∈ C, k = 1,4d .
Now we can prove theorems in this work.

The proof of Theorem 2.1. First, we study the second power operator T 2
1 (V ) of

Dirac operator T1(V ) defined by (2.6) and (2.7), where the domain

D(T 2
1 (V )) = {Y | Y ∈ D(T1(V )), T1(V )(Y ) ∈ D(T1(V ))}.
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By the assumption Q(0) = Q(π) = 0 and a direct calculation, the operator T 2
1 (V ) can

be rewritten as

T 2
1 (V )Y = −Y ′′ +Ω(x)Y = λY, Y =

(
Y1

Y2

)
, λ ∈ C, (3.15)

subject to the boundary conditions (i.e., the domain D(T 2
1 (V ))){

Y1(0) = Y ′
2(0) = 0

A1Y1(π)+A2Y2(π) = 0, A1Y ′
2(π)−A2Y ′

1(π) = 0.
(3.16)

Substituting (3.14) into (3.16), we have⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

C1 = 0

C4 = 0

(A1Φ11(π ,λ )+A2Φ13(π ,λ ))C1 +(A1Φ12(π ,λ )+A2Φ14(π ,λ ))C2

+(A1Φ21(π ,λ )+A2Φ23(π ,λ ))C3 +(A1Φ22(π ,λ )+A2Φ24(π ,λ ))C4 = 0

(A1Φ′
13(π ,λ )−A2Φ′

11(π ,λ ))C1 +(A1Φ′
14(π ,λ )−A2Φ′

12(π ,λ ))C2

+(A1Φ′
23(π ,λ )−A2Φ′

21(π ,λ ))C3 +(A1Φ′
24(π ,λ )−A2Φ′

22(π ,λ ))C4 = 0.
(3.17)

Denote the matrix

W1(λ ) =

⎛⎜⎜⎜⎝
Id 0 0 0

0 Id 0 0

S1(λ ) S2(λ ) S3(λ ) S4(λ )
S5(λ ) S6(λ ) S7(λ ) S8(λ )

⎞⎟⎟⎟⎠ , (3.18)

where

S1(λ ) = A1Φ11(π ,λ )+A2Φ13(π ,λ ), S2(λ ) = A1Φ22(π ,λ )+A2Φ24(π ,λ ),
S3(λ ) = A1Φ12(π ,λ )+A2Φ14(π ,λ ), S4(λ ) = A1Φ21(π ,λ )+A2Φ23(π ,λ ),
S5(λ ) = A1Φ′

13(π ,λ )−A2Φ′
11(π ,λ ), S6(λ ) = A1Φ′

24(π ,λ )−A2Φ′
22(π ,λ ),

S7(λ ) = A1Φ′
14(π ,λ )−A2Φ′

12(π ,λ ), S8(λ ) = A1Φ′
23(π ,λ )−A2Φ′

21(π ,λ ).

From (3.17), we see that if Y (x,λ ) = (Φ1(x,λ ),Φ2(x,λ ))C is a nontrivial solution of
the problem (3.15) and (3.16), then there exists a non-vanishing vector C satisfying the
matrix equation

W1(λ )C = 0.

Therefore, λ is an eigenvalue of the operator T 2
1 (V ) (the problem (3.15) and

(3.16)) if and only if the matrix W1(λ ) is singular. Furthermore, the multiplicity of λ
is equal to 4d− rank W1(λ ) .

For d × d matrix A , denote by (A)d the last row vector in A and (A)1:d−1 the
(d−1)×d matrix consisting of the first (d−1) rows of A .
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The spectral mapping theorem for self-adjoint operators implies that the point
spectrum σ(T 2

1 (V )) of the operator T 2
1 (V ) is the square (σ(T1(V )))2 of the point spec-

trum of an operator T1(V ) ; moreover, the multiplicity of an eigenvalue λ 2 of T 2
1 (V )

equals the sum of multiplicities of λ and −λ as eigenvalues of T1(V ) .
Since by assumption {±√

m2 +n2 : n = 0,1,2, · · ·} ⊂ σ(T1(V )) , and each of the
eigenvalues is of multiplicity d − 1, by the spectral mapping theorem for self-adjoint
operators we know that the sequence {m2 + n2 : n = 0,1,2, · · ·} consists of the eigen-
values for the problem (3.15) and (3.16), and each of the eigenvalues is of multiplicity
2d−2.

From (3.18) it follows that (for brevity we set λn =
√

m2 +n2 )

rank W1(λ 2
n ) = 2d +2.

Using Riemann-Lebesgue Lemma, from (3.8)–(3.11), we obtain

cos(λnπ) = (−1)n cos m2π
λn+n = (−1)n +o(1/n),

sin(λnπ) = (−1)n sin m2π
λn+n = (−1)n m2π

λn+n +o(1/n2),

Φ14(π ,λ 2
n ) = cos(λnπ)Id +K4(π ,π) sin(λnπ)

λn
+o(1/n),

Φ21(π ,λ 2
n ) = sin(λnπ)

λn
Id − cos(λnπ)

λ 2
n

K1 +o(1/n2)

= (−1)n m2π
λn(λn+n) Id + (−1)n+1

λ 2
n

K1 +o(1/n2),

(3.19)

which yield, together with (2.9) and (3.18),

(S3(λ 2
n ))d = (A1Φ12(π ,λ 2

n )+A2Φ14(π ,λ 2
n ))d = (A2Φ14(π ,λ 2

n ))d

= ((−1)n +o(1/n), · · · ,(−1)n +o(1/n)︸ ︷︷ ︸
d

),

(S3(λ 2
n ))1:d−1 = O(1/n2),

(S4(λ 2
n ))1:d−1 = (A1Φ21(π ,λ 2

n )+A2Φ23(π ,λ 2
n ))1:d−1 = (A1Φ21(π ,λ 2

n ))1:d−1

=
(
(−1)n m2π

λn(λn+n)A1 + (−1)n+1

λ 2
n

A1K1 +o(1/n2)
)

1:d−1
,

(S4(λ 2
n ))d = o(1/n),

S7(λ 2
n ) = A1Φ′

14(π ,λ 2
n )−A2Φ′

12(π ,λ 2
n ) = O(1),

(S8(λ 2
n ))d = (A1Φ′

23(π ,λ 2
n )−A2Φ′

21(π ,λ 2
n ))d = (−A2Φ′

21(π ,λ 2
n ))d

= ((−1)n+1 +o(1/n), · · ·,(−1)n+1 +o(1/n)︸ ︷︷ ︸
d

),

(S8(λ 2
n ))1:d−1 = o(1/n).
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Denote

S
de f
=

(
S3(λ 2

n ) S4(λ 2
n )

S7(λ 2
n ) S8(λ 2

n )

)
=

⎛⎜⎜⎜⎝
(S3(λ 2

n ))1:d−1 (S4(λ 2
n ))1:d−1

(S3(λ 2
n ))d (S4(λ 2

n ))d

(S7(λ 2
n ))1:d−1 (S8(λ 2

n ))1:d−1

(S7(λ 2
n ))d (S8(λ 2

n ))d

⎞⎟⎟⎟⎠ ,

then

S =

⎛⎜⎜⎜⎜⎝
O(1/n2)

(
(−1)nm2π
λn(λn+n) A1 + (−1)n+1

λ 2
n

A1K1 +o( 1
n2 )
)

1:d−1

(−1)nI1×d +o(1/n) o(1/n)
O(1) o(1/n)
O(1) (−1)n+1I1×d +o(1/n)

⎞⎟⎟⎟⎟⎠ ,

where I1×d = (1, · · · ,1︸ ︷︷ ︸
d

) .

The fact that rank W1(λ 2
n ) = 2d +2 yields

rank S = 2,

which implies that

rank

⎛⎜⎜⎜⎜⎝
O(1)

(
−m2π

2 A1 +A1K1 +o(1)
)

1:d−1

I1×d +o(1/n) o(1/n)
O(1) o(1/n)
O(1) I1×d +o(1/n)

⎞⎟⎟⎟⎟⎠= 2,

i.e.,

rank

⎛⎜⎜⎜⎜⎝
(
−m2π

2 A1 +A1K1 +o(1)
)

1:d−1
O(1)

I1×d +o(1/n) O(1)
o(1/n) I1×d +o(1/n)
o(1/n) O(1)

⎞⎟⎟⎟⎟⎠= 2.

From (3.13) and (2.9), we see that⎛⎝(−m2π
2 A1 +A1K1 +o(1)

)
1:d−1

I1×d +o(1/n)

⎞⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

k1− m2π
2 −k2 + m2π

2 0 · · · 0 0

0 k2− m2π
2 −k3 + m2π

2 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · kd−1− m2π
2 −kd + m2π

2

1 1 1 · · · 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
+o(1).
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Denote

Ŝ
de f
=

⎛⎜⎜⎜⎜⎝
(
−m2π

2 A1 +A1K1 +o(1)
)

1:d−1
O(1)

I1×d +o(1/n) O(1)
o(1/n) I1×d +o(1/n)
o(1/n) O(1)

⎞⎟⎟⎟⎟⎠ .

Then rank Ŝ = 2 implies that for each 3×3 minor of Ŝ vanishes. Thus, for all n ∈ N
we obtain

det

⎛⎜⎝ k1− m2π
2 +o(1) −k2 + m2π

2 +o(1) O(1)
1+o(1) 1+o(1) O(1)
o(1/n) o(1/n) 1+o(1/n)

⎞⎟⎠= 0

and

det

⎛⎜⎝ k1− m2π
2 +o(1) −k2 + m2π

2 +o(1) O(1)
o(1) k2− m2π

2 +o(1) O(1)
o(1/n) o(1/n) 1+o(1/n)

⎞⎟⎠= 0.

By calculation of two determinants above, we have for all n ∈ N

k1 + k2−m2π+o(1) = 0 and

(
k1− m2π

2

)(
k2− m2π

2

)
+o(1) = 0,

letting n → ∞ , it yields that

k1 = k2 =
m2π
2

. (3.20)

Similarly, we obtain

k j =
m2π
2

, j = 1,d, (3.21)

therefore

K1 =
m2π
2

Id .

From (3.13) it follows

diag

[∫ π

0
((p1(x)+m)2 +q2

1(x))dx, · · · ,
∫ π

0
((pd(x)+m)2 +q2

d(x))dx

]
= m2πId,

and from this, we obtain

d

∑
j=1

∫ π

0
[(p j(x)+m)2 +q2

j(x)]dx = m2πd,
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which implies, by the assumption tr
∫ π
0 P(x)dx = 0,

d

∑
j=1

∫ π

0
[p2

j(x)+q2
j(x)]dx = 0,

therefore,
p j(x) = q j(x) = 0, j = 1,d.

The proof is finished. �

The proof of Theorem 2.2. The operator T 2
2 (V ) can be rewritten as

T 2
2 (V )Y = −Y ′′ +Ω(x)Y = λY, λ ∈ C, (3.22)

subject to the boundary conditions{
Y ′

1(0) = Y2(0) = 0

A1Y1(π)+A2Y2(π) = 0, A1Y ′
2(π)−A2Y ′

1(π) = 0.
(3.23)

Substituting (3.14) into (3.23), we have

W2(λ )(C1,C2,C3,C4)
t = 0, (3.24)

where the matrix

W2(λ ) =

⎛⎜⎜⎜⎝
Id 0 0 0

0 Id 0 0

S3(λ ) S4(λ ) S1(λ ) S2(λ )
S7(λ ) S8(λ ) S5(λ ) S6(λ )

⎞⎟⎟⎟⎠ . (3.25)

For brevity we set λn =
√

m2 +(n+(1/2))2 , by assumption

{±
√

m2 +(n+(1/2))2 : n = 0,1,2, · · ·} ⊂ σ(T2(V )),

and each of the eigenvalues is of multiplicity d−1, from (3.25) it follows that

rank W2(λ 2
n ) = 2d +2.

A simple calculation implies

(S1(λ 2
n ))1:d−1 =

(
(−1)n+1 m2π

λn+n+(1/2)A1 + (−1)n
λn

A1K1 +o(1/n2)
)

1:d−1
,

(S1(λ 2
n ))d = O(1/n),

(S2(λ 2
n ))d =

(
(−1)n

λn
A2 +o(1/n)

)
d
,

(S2(λ 2
n ))1:d−1 = ((−1)n+1λnA2 +o(1))d,

(S5(λ 2
n ))1:d−1 = O(1/n), S6(λ 2

n ) = O(1/n).
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Denote

T
de f
=

(
S1(λ 2

n ) S2(λ 2
n )

S5(λ 2
n ) S6(λ 2

n )

)
=

⎛⎜⎜⎜⎝
(S1(λ 2

n ))1:d−1 (S2(λ 2
n ))1:d−1

(S1(λ 2
n ))d (S2(λ 2

n ))d

(S5(λ 2
n ))1:d−1 (S6(λ 2

n ))1:d−1

(S5(λ 2
n ))d (S6(λ 2

n ))d

⎞⎟⎟⎟⎠ ,

then

T =

⎛⎜⎜⎜⎝
(

(−1)n+1m2π
λn+n+(1/2)A1 + (−1)n

λn
A1K1 +o( 1

n2 )
)

1:d−1
o( 1

n2 )

O(1/n) (−1)n
n I1×d +o( 1

n)
O(1/n) O(1/n)

n(−1)n+1I1×d +o(1) O(1/n)

⎞⎟⎟⎟⎠ .

The fact that rank W2(λ 2
n ) = 2d +2 yields

rank T = 2,

which implies that

rank

⎛⎜⎜⎜⎝
(
−m2π

2 A1 +A1K1 +o(1)
)

1:d−1
o(1/n)

O(1) I1×d +o(1)
O(1) O(1)

I1×d +o(1) o(1)

⎞⎟⎟⎟⎠= 2,

i.e.,

rank

⎛⎜⎜⎜⎝
(
−m2π

2 A1 +A1K1 +o(1)
)

1:d−1
o(1/n)

I1×d +o(1) o(1)
O(1) I1×d +o(1)
O(1) O(1)

⎞⎟⎟⎟⎠= 2.

Denote

T̂
de f
=

⎛⎜⎜⎜⎝
(
−m2π

2 A1 +A1K1 +o(1)
)

1:d−1
o(1/n)

I1×d +o(1) o(1)
O(1) I1×d +o(1)
O(1) O(1)

⎞⎟⎟⎟⎠ .

Then rank T̂ = 2 implies that for each 3×3 minor of T̂ vanishes. Thus, for all n ∈ N
we obtain

det

⎛⎝ k1− m2π
2 +o(1) −k2 + m2π

2 +o(1) o(1)
1+o(1) 1+o(1) o(1)

O(1) O(1) 1+o(1)

⎞⎠= 0
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and

det

⎛⎜⎝ k1− m2π
2 +o(1) −k2 + m2π

2 +o(1) o(1)
o(1) k2− m2π

2 +o(1) o(1)
O(1) O(1)) 1+o(1)

⎞⎟⎠= 0.

By calculation of two determinants above, we have

k1 = k2 =
m2π
2

.

Similarly, we obtain

k1 = k2 = · · · = kd =
m2π
2

.

Therefore, the proof is completed. �
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[12] M. HORVÁTH, On a theorem of Ambarzumyan, Proc. Roy. Soc. Edinb. A, 131 (2001), 899–907.
[13] R. KENYON, The Laplacian and Dirac operators on critical planar graphs, Invent. Math., 150 (2002),

409–439.



AMBARZUMYAN-TYPE THEOREMS ON STAR GRAPHS 131

[14] M. KISS, An n-dimensional Ambarzumyan type theorem for Dirac operators, Inverse Problems, 20
(2004), 1593–1597.

[15] V. KOSTRYKIN AND R. SCHRADER, Kirchoff’s rule for quantumn wires, J. Phys. A: Math. Gen., 32
(1999), 595–630.

[16] T. KOTTOS AND U. SMILANSKY,Quantum chaos on graphs, Phys. Rev. Lett. , 79 (1997), 4794–4797.
[17] T. KOTTOS AND U. SMILANSKY, Periodic orbit theory and spectral statistics for quantum graphs,

Ann. Phys., 247 (1999), 76–124.
[18] P. KUCHMENT, Quantum graphs: an introduction and a brief survey, pp. 291–314, in Analysis on

Graphs and its Applications, Proc. Symp. Pure. Math., AMS 2008.
[19] N. V. KUZNETSOV, Generalization of a theorem of V. A. Ambarzumian, Dokl. Akad. Nauk SSSR, 146

(1962), 1259–1262 (in Russian).
[20] C. K. LAW AND V. N. PIVOVARCHIK, Characteristic functions of quantum graphs, J. Phys. A:

Math. Theor., 42 (2009), 035302(11pp).
[21] B. M. LEVITAN AND M. G. GASYMOV,Determination of a differential equation by two of its spectra,

Usp. Mat. Nauk, 19 (1964), 3–63.
[22] B. M. LEVITAN AND I. S. SARGSJAN, Sturm-Liouville and Dirac Operators (Russian), Nauka,

Moscow 1988: English transl., Kluwer, Dordrecht, 1991.
[23] V. N. PIVOVARCHIK, Ambarzumyan’s theorem for a Sturm-Liouville boundary value problem on a

star-shaped graph, Funct. Anal. Appl., 39 (2005), 148–151.
[24] C. L. SHEN, On some inverse spectral problems related to the Ambarzumyan problem and the dual

string of the string equation, Inverse Problems, 23 (2007), 2417–2436.
[25] C. F. YANG AND Z. Y. HUANG, Inverse spectral problems for 2m-dimensional canonical Dirac

operators, Inverse Problems, 23 (2007), 2565–2574.
[26] C. F. YANG AND X. P. YANG, Some Ambarzumyan-type theorems for Dirac operators, Inverse Prob-

lems, 25 (2009), 095012(13pp).
[27] V. A. YURKO, Inverse spectral problems for Sturm-Liouville operators on graphs, Inverse Problems,

21 (2005), 1075–1086.

(Received January 24, 2010) Chuan Fu Yang
Department of Applied Mathematics

Nanjing University of Science and Technology
Nanjing 210094, Jiangsu

People’s Republic of China
e-mail: chuanfuyang@tom.com

Vyacheslav N. Pivovarchik
South-Ukrainian State Pedagogical University

Odessa
Ukraine

e-mail: v.pivovarchik@paco.net

Zhen You Huang
Department of Applied Mathematics

Nanjing University of Science and Technology
Nanjing 210094, Jiangsu

People’s Republic of China
e-mail: zyhuangh@mail.njust.edu.cn

Operators and Matrices
www.ele-math.com
oam@ele-math.com


