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STRONGLY SPLITTING WEIGHTED SHIFT OPERATORS

ON BANACH SPACES AND UNICELLULARITY

M. T. KARAEV AND M. GÜRDAL

(Communicated by D. Hadwin)

Abstract. We introduce the notion of strong splitting operator on a separable Banach space,
and prove a structure theorem for this operator. We consider the weighted shift operator T,
Ten = λnen+1, n � 0, acting in the Banach space X with basis {en}n�0 . We give some sufficient
conditions for X and for the weight sequence {λn}n�0 under which the operator is unicellular,
that is, every nontrivial invariant subspace E of T has the form E = Xi := Span {ek : k � i} for
some i � 1; and prove that the restricted operators T |Xi (i � 1) are strong splitting. Moreover,
we describe in terms of so-called discrete Duhamel operator and diagonal operator all extended
eigenvectors of the operators T |Xi (i � 1) .

1. Introduction

Let X be a separable Banach space. If (xn)n�1 ⊂X , we denote by Span (xn : n � 1)
the closure of the linear hull generated by (xn)n�1 . The sequence (xn)n�1 is called (see
[1]):

• complete if Span (xn : n � 1) = X ;

• minimal if for all n � 1, xn /∈ Span (xm : m �= n) ;

• uniformly minimal if inf
n�1

dist
(

xn
‖xn‖ ,Span (xm : m �= n)

)
> 0;

• a basis in X if every element x ∈ X can be uniquely decomposed in a convergent
series x = ∑n�1 anxn.

Let L(X) be the Banach algebra of all bounded linear operators on X and A ∈
L(X) . Following [2], we recall that an operator A is called a splitting operator in X if,
for every x∈ X there exists a linear densely defined operator Bx (generally unbounded)
such that

Anx = Bxyn (1)

for each n, n = 0,1,2, ..., and for some complete system {yn}n�0 of the space X .
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An operator A is called well splitting if for every x ∈ X the corresponding oper-
ators Bx in (1) are bounded in X . We say that the well splitting operator A is strong
splitting if, for some x0 ∈ X , the corresponding operator Bx0 in (1) is invertible. It is
immediate from these definitions that a well splitting operator A is cyclic (i.e., there
exists x ∈ X such that Span {Anx : n � 0}= X ) if for some x0 ∈ X an operator Bx0 has
dense range in X , and hence strong splitting operator is always cyclic.

It is easy to see that the concept of splitting operator is a generalization of the
so-called basis operator introduced by Nikolski [3]:

Let A be a linear bounded operator acting in the space �p, 1 � p < ∞. An oper-
ator A is called basis operator if it is cyclic and for every x ∈ �p, x �= 0, there exists
(linear) isomorphism V of the space �p into itself, an integer i, i � 0, and a sequence
{tn}∞n=0 (tn = tn (x)) of complex numbers such that

Vδn+i = tnA
nx, n � 0,

where {δn}∞n=0 is the natural basis of the space �p : δn =
{
δn,k
}∞

k=0 , δn,k is the Kro-
necker symbol.

Here, in the short Section 2 of the present article, we give a structure theorem for
the strong splitting operators on a Banach space X . Its proof uses the method of the
paper [3]. In Section 3, we consider the weighted shift operator T, Ten = λnen+1, n �
0, on the Banach space X with basis {en}n�0 . We give some sufficient conditions for
X and for the weights sequence {λn}n�0 under which the operator is unicellular, that
is every nontrivial invariant subspace E of T has the form E = Xi := Span {ek : k � i}
for some i � 1. We prove that the restricted operators T |Xi (i � 1) are strong splitting.
In Section 4, we describe all so-called extended eigenvectors of the operators T |E,
E ∈ Lat (T ) . These results improve some results of the papers [2, 4, 5].

2. A structure theorem

Recall that operators A1 ∈ L(X1) and A2 ∈ L(X2) are called similar if there exists
a linear isomorphism Q, Q : X1 → X2, such that A2 = QA1Q−1.

THEOREM 1. Let X be a separable Banach space. An operator A ∈ L(X) is a
strong splitting operator if and only if it is similar to some strong splitting shift operator
on X .

Proof. First we note that an operator that is similar to a strong splitting operator is
itself strong splitting. Indeed, let A2 be a strong splitting operator on X . Then

An
2x = B2,xyn

for every x ∈ X and n � 0, where an operator B2,x2 is invertible in X for some x2 ∈ X .
Therefore, if A1 is similar to A2, that is

A1 = QA2Q
−1
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for some invertible operator Q ∈ L(X) , then it is clear that

An
1x = QAn

2Q
−1x = QB2,Q−1xyn = B1,xyn, n � 0,

where B1,x := QB2,Q−1x. Hence, A1 is a splitting operator in X . On the other hand, if
we denote x1 := Qx2, then we have

B1,x1 = B1,Qx2 = QB2,Q−1Qx2
= QB2,x2 ,

and therefore B1,x1 is invertible in X . Hence, A1 is a strong splitting operator in X .
Let now A be a strong splitting operator on the space X . Denote by x0 an element

for which the operator Bx0 is invertible. Since Anx0 = Bx0yn (n � 0) , where {yn}n�0

is some complete system in X , by setting A0 := B−1
x0

ABx0 we obtain

A0yn = B−1
x0

ABx0yn = B−1
x0

AAnx0 = B−1
x0

An+1x0 = B−1
x0

Bx0yn+1 = yn+1

for each n � 0, and thus A0yn = yn+1 (n � 0) , that is A0 is a shift operator in X , and by
virtue of above proved, this is a strong splitting operator. The theorem is proved. �

3. Weighted shift operators on Banach spaces

In the following theorem, by using the discrete analog of the Duhamel product

( f �g)(x) =
d
dx

x∫
0

f (x− t)g(t)dt,

we characterize the strong splitting property and unicellularity of some weighted shift
operators on Banach space with basis {en}n�0 . This improves some results of the pa-
pers [2, 4, 5]; see also [6, 7, 8]. But, as will be seen from its proof, the condition of
basisity of {en}n�0 can be actually changed with M−basisity (Markushevich basis).
Recall that (see, for instance [9]) a complete minimal system {en}n�0 ⊂ X with totally
biorthogonal system {e∗n}n�0 ⊂ X∗ is called M−basis.

THEOREM 2. Let T be a weighted shift operator, continuously acting in the Ba-
nach space X with basis {en}n�0 , by the formula

Ten = λnen+1, λn �= 0, n � 0.

We put Xi := Span {ek : k � i} (i = 0,1,2, ...) and wn := λ0λ1...λn−1, w0 := 1. Sup-
pose that:

(a) For every integer i � 0 there exists a number N := Ni � i such that

∑
n,m�N

∣∣∣∣wn+m−i

wnwm

∣∣∣∣< ∞;

(b) ‖en+m−i‖X � ci ‖en‖X ‖em‖X for all n,m � i (i � 0) and for some ci > 0.
Then we have:
(i) The operators Ti := T |Xi (i = 0,1,2, ...) are strong splitting in Xi.
(ii) Lat (T ) = {Xi : i = 1,2, ...} , i.e., T is a unicellular operator on X .
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Proof. (i) For arbitrary two elements x = ∑
n�i

xnen and y = ∑
n�i

ynen in Xi (i � 0) ,

let us define the generalized Duhamel product �
i

by the formula (see, for instance [10,

p.189] and [4]):

x�
i
y := ∑

n,m�i

wn+m−i

wnwm
xnymen+m−i. (2)

(Since X0 = X , instead �
0

we will write simple � ). By virtue of conditions of theorem,

the formula (2) is correctly defined. For every fixed n � i, let us denote

Rn (x) := ∑
k�n

xkek.

Then we have:

‖Rn (x)‖ =

∥∥∥∥∥∑k�n

xkek

∥∥∥∥∥= ‖x0e0 + x1e1 + ...+ xn−1en−1

+ ∑
k�n

xkek − (x0e0 + x1e1 + ...+ xn−1en−1)

∥∥∥∥∥
� ‖x‖+‖x0e0‖+‖x1e1‖+ ...+‖xn−1en−1‖ .

By considering that every basis is uniformly minimal, we have that∥∥x je j
∥∥� 1

d
‖x‖ ,

for all j � 0, where d := inf
i�0

dist
(

xi
‖xi‖ ,Lin(x j : j �= i)

)
is the constant of uniform min-

imality of {en}n�0 , which implies that

‖Rn (x)‖ � ‖x‖+
1
d

n‖x‖ =
(

1
d

n+1

)
‖x‖ (3)

On the other hand, it is easy to verify that∥∥∥Tk
∥∥∥� sup

n�1
|λnλn+1...λn+k−1| < +∞ (4)

Then, by using inequalities (3) , (4) and conditions of theorem, we have:∥∥∥∥x�
i
y

∥∥∥∥ =

∥∥∥∥∥ ∑n,m�i

wn+m−i

wnwm
xnymen+m−i

∥∥∥∥∥=

∥∥∥∥∥∑n�i

xn

wn
∑
m�i

wn+m−i

wm
ymen+m−i

∥∥∥∥∥
�
∥∥∥∥∥ xi

wi
∑
m�i

ymem

∥∥∥∥∥+

∥∥∥∥∥ xi+1

wi+1
∑
m�i

wm+1

wm
ymem+1

∥∥∥∥∥
+...+

∥∥∥∥∥ xi+N−1

wi+N−1
∑
m�i

wm+N−i

wm
ymen+N−1

∥∥∥∥∥+

∥∥∥∥∥∑n�N

xn

wn
∑
m�i

wn+m−i

wm
ymen+m−i

∥∥∥∥∥
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=
∣∣∣∣ xi

wi

∣∣∣∣‖y‖+
∣∣∣∣ xi+1

wi+1

∣∣∣∣‖Ty‖+ ...+
∣∣∣∣ xi+N−1

wi+N−1

∣∣∣∣∥∥TN−1y
∥∥

+
∣∣∣∣ yi

wi

∣∣∣∣‖RN (x)‖+
∣∣∣∣ yi+1

wi+1

∣∣∣∣‖RN (Tx)‖+ ...+
∣∣∣∣ yi+N−1

wi+N−1

∣∣∣∣∥∥RN
(
TN−1x

)∥∥
+ ∑

n�N
∑

m�N

∣∣∣∣wn+m−i

wnwm

∣∣∣∣ . |xn| |ym| ‖en+m−i‖ � Ci,N,d ‖x‖‖y‖ .

Thus ∥∥∥∥x�
i
y

∥∥∥∥
Xi

� Ci,N,d ‖x‖Xi
‖y‖Xi

(5)

for every x,y ∈ Xi (i � 0) . It is clear from (2) and (5) that

(
Xi,�

i

)
is a Banach

algebra with the property that wiei �
i

f = f �
i

wiei = f for all f ∈ Xi. Every x ∈ Xi

defines the following ”generalized Duhamel operator”:

Dx,iy := x�
i
y (y ∈ Xi) .

It follows from this and (2) that

Tn
i y = wi+nei+n �

i
y = Dy,i (wi+nei+n) (6)

for all y ∈ Xi and n � 0. Indeed, for every y ∈ Xi and n � 0 we have

Tn
i y = Tny = Tn

(
∑
m�i

ymem

)
= ∑

m�i
ymT nem

= ∑
m�i

ymλmλm+1...λm+n−1em+n

= ∑
m�i

ym
wm+n

wm
em+n = ∑

m�i
wi+nym

wi+n+m−i

wi+nwm
ei+m+n−i

= ∑
m�i

wi+nym

(
ei+n �

i
em

)
= wi+nei+n �

i
∑
m�i

ymem

= wi+nei+n �
i
y = Dy,i (wi+nei+n) ,

which implies (6) . Hence, T |Xi is a well splitting operator.
To prove that T |Xi is a strong splitting operator, it suffices to show that the operator

Dx,i is invertible in Xi if and only if xi �= 0.
Indeed, if Dx,i is invertible in Xi, then there exists y ∈ Xi such that x�

i
y = wiei.

By considering (2) , from this we obtain that(
x�

i
y

)
i
=

xi

wi
yi = wi,

that is xiyi = w2
i �= 0, and therefore xi �= 0.



162 M. T. KARAEV AND M. GÜRDAL

Now we prove the inverse assertion. Since

Dx,i = Dxiei+(x−xiei),i

and wiei �
i
y = y for all y ∈ Xi, we have

Dx,i =
xi

wi
IXi +Dx−xiei,i.

Therefore, to prove invertibility of Dx,i it suffices to show that some power of Dx−xiei ,i

is compact and kerDx,i = {0} ; from which by a classical theorem of S.M. Nikolski
(see [11]) we will obtain invertibility of Dx,i. For this purpose we set x′ := x− xiei and

x̃ := [x′]
�
i
N+1

= x′ �
i
...�

i
x′ (N +1 time) . Simple calculus show that

x̃i = x̃i+1 = ... = x̃i+N = 0.

Therefore for each y ∈ Xi we have:

DN+1
x′,i y =

[
x′
]�

i
N+1

�
i
y = x̃�

i
y

= ∑
n�i

x̃n

wn
∑
m�i

wn+m−i

wm
ymen+m−i

= ∑
n�i+N+1

x̃n

wn
∑
m�i

wn+m−i

wm
ymen+m−i

=
yi

wi
∑

n�i+N+1

x̃nen +
yi+1

wi+1
Ri+N+1 (T x̃)+ ...

+
yi+N

wi+N
Ri+N+1

(
TNx̃

)
+ ∑

n�i+N+1
∑

m�i+N+1

wn+m−i

wnwm
x̃nymen+m−i

=
i+N

∑
j=i

y j

w j
Ri+N+1

(
T j−ix̃

)
+

M

∑
n=i+N+1

M

∑
m=i+N+1

wn+m−i

wnwm
x̃nymen+m−i

+
M

∑
n=i+N+1

∞

∑
m=M+1

wn+m−i

wnwm
x̃nymen+m−i

+
∞

∑
n=M+1

M

∑
m=i+N+1

wn+m−i

wnwm
x̃nymen+m−i

Let us define the following finite-rank operator:

K
(i)

M y :=
i+N

∑
j=i

y j

w j
Ri+N+1

(
T j−ix̃

)
+

M

∑
n=i+N+1

M

∑
m=i+N+1

wn+m−i

wnwm
x̃nymen+m−i.



STRONGLY SPLITTING WEIGHTED SHIFT OPERATORS 163

Considering the conditions (a), (b) of the theorem, we obtain∥∥∥DN+1
x′ ,i −K

(i)
M

∥∥∥
L(Xi)

= sup
‖y‖Xi

�1

∥∥∥DN+1
x′,i y−K

(i)
M y
∥∥∥

Xi

= sup
‖y‖Xi

�1

∥∥∥∥∥ M

∑
n=i+N+1

∞

∑
m=i+N+1

wn+m−i

wnwm
x̃nymen+m−i

+
∞

∑
n=M+1

∞

∑
m=i+N+1

wn+m−i

wnwm
x̃nymen+m−i

∥∥∥∥∥
Xi

� Ci

(
M

∑
n=i+N+1

∞

∑
m=M+1

∣∣∣∣wn+m−i

wnwm

∣∣∣∣+ ∞

∑
n=M+1

∞

∑
m=i+N+1

∣∣∣∣wn+m−i

wnwm

∣∣∣∣
)

→ 0 (as M → +∞) ,

which means that DN+1
x′,i is a compact operator on Xi.

We now prove that kerDx,i = {0} . In fact, if y ∈ Xi ∩ kerDx,i, that is x�
i
y = 0,

then simple calculations show that

xi

wi
yi = 0

xi

wi
yi+1 +

xi+1

wi
yi = 0

xi

wi
yi+2 +

wi+2

w2
i+1

xi+1yi+1 +
xi+2

wi
yi = 0

........................................

Since xi �= 0, from this infinite system we obtain that

yi = yi+1 = yi+2 = ... = 0,

that is y = 0. Thus, we deduce that Dx,i is invertible operator on Xi, and consequently
T |Xi (i � 0) is a strong splitting operator on Xi, as desired.

(ii) Obviously, all subspaces Xi (i = 1,2, ...) are nontrival T -invariant subspaces
and

X ⊃ X1 ⊃ X2 ⊃ ... ⊃ {0} .

Therefore, since Span {Tnx : n � 0} , x ∈ X , is T -invariant subspace, the operator T
is unicellular in X if and only if for all x ∈ X , x �= 0,

Span {Tnx : n � 0} = Xi

for some i = i(x) , i = 0,1,2, ... . On the other hand, it follows easily from the splitting
property of operators T |Xi (i � 0) that

Span {Tnx : n � 0} = Xi ⇔ x ∈ Xi and xi �= 0.
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In fact, by considering formula (6) , we have

Span {Tnx : n � 0} = Span {Dx,i (wi+nei+n) : n � 0}
= closDx,iSpan {wi+nei+n : n � 0}
= closDx,iXi,

and therefore
Span {Tnx : n � 0} = Xi ⇔ closDx,iXi = Xi.

It remains only to show that

closDx,iXi = Xi ⇔ xi �= 0.

Indeed, if closDx,iXi = Xi, then there exists a sequence
{

x(n)
}
⊂ Xi such that x �

i

x(n) → wiei as n → ∞, or 1
wi

xix
(n)
i → wi �= 0 as n → ∞, from which we deduce that

xi �= 0.
Conversely, if x ∈ Xi and xi �= 0, then as we proved already in item (i), an oper-

ator Dx,i is invertible in Xi, in particular, closDx,iXi = Xi, as desired. The theorem is
proved. �

Let K ∈ L(Y ) be an operator on the Banach space Y such that for every x ∈ X
there exists x(K ) := ∑

n�0
xnK

n and ‖x(K )‖ � ‖x‖ , i.e., there exist the constants

c1,c2 > 0 satisfying
c1 ‖x‖ � ‖x(K )‖ � c2 ‖x‖ (7)

for all x ∈ X . Then, the map Γx := x(K ) defines the continuous homomorphism from
the algebra (X ,�) to the algebra L(Y ) , where � is the usual Duhamel product. In-
deed, let us define X (K ) := {x(K ) : x ∈ X} , that is X (K ) = ΓX . In X (K ) we
define the following product:

x(K )�̂y(K ) := (x� y)(K ) .

Then
Γ(x� y) = (x� y)(K ) = x(K ) �̂y(K ) = Γx�̂Γy.

Clearly, Γe0 = I and Γ(w1e1) = K .
On the other hand, it follows from (7) that Γ is continuous. Thus, Γ is a continu-

ous homomorphism (i.e., Γ is a representation of algebra (X ,�) in L(Y ) ).
In the following theorem we describe all closed ideals of the algebra

(
X (K ) ,�̂

)
.

THEOREM 3. Every closed nontrivial ideal E of the algebra
(
X (K ) ,�̂

)
has the

form E = Xi (K ) for some i � 1.

Proof. Let us define in X (K ) the following operator:

Ax(K ) := (Tx)(K ) ,
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where T is the weighted shift operator, as in Theorem 2. It is clear from (7) that A is
a linear bounded operator in X (K ) . It is also clear that

Ax(K ) = (Tx) (K ) = (w1e1 � x)(K ) = K �̂x(K )

for all x(K )∈X (K ) . If x(K )∈Xi (K ) , where Xi ∈Lat (T ) , Xi = Span {ek : k � i}
=
{

x ∈ X : x =
∞
∑
n=i

xnen

}
, then Ax(K ) = K i+1�̂

i
x(K ) , where �

i
is the Duhamel

product in Xi (see formula (2)). Now, it is clear that in order to describe the closed
nontrivial ideals of the algebra

(
X (K ) ,�̂

)
, it suffices to describe the closed nontrivial

A-invariant subspaces in
(
X (K ) ,�̂

)
. For this purpose, note that Xi (K ) ∈ Lat (A) ,

i � 1 (this follows, for example, from the relation AΓ= ΓT and inclusion Xi ∈ Lat (T ) ,
i � 1). Therefore, it suffices to show that

Span {Anx(K ) : n � 0} = Xi (K ) ⇔ x(K ) ∈ Xi and xi �= 0.

The implication =⇒ is obvious. Let us prove the reverse implication ⇐= . In fact,

Span {Anx(K ) : n � 0} = Span

{
K i+n�̂

i
x(K ) : n � 0

}
= closDx(K ),�̂

i

Span
{
K i+n : n � 0

}
= closDx(K ),�̂

i

Xi (K ) = Xi (K ) ,

because the operator Dx(K ),�̂
i

with xi �= 0 is invertible in Xi (K ) , which completes

the proof of theorem. �
Now we give some applications of formula (6) .

THEOREM 4. Suppose that all conditions of Theorem 2 are satisfied. Then we
have:

(i) {T |Xi}′ = {Dx,i : x ∈ Xi} , i = 0,1,2, ..., i.e., the commutant of operator T |Xi

consists from the Duhamel operators Dx,i, x ∈ Xi.
(ii) If ‖ei‖ = 1

|wi| , then ‖p(T |Xi)‖L(Xi) = Ci,N,d ‖q‖Xi
for all polynomials p =

∑
n�i

pnen, where q := ∑
n�i

wnpnen and Ci,N,d > 0 is the constant, as in the inequality

(5) .

Proof. It follows from the formula (6) that

Tx = x�
i
wi+1ei+1, x ∈ Xi.

Then, by virtue of commutativity and associativity of the Duhamel product �
i

(i � 0) ,

we have
{Dx,i : x ∈ Xi} ⊂ {T |Xi}′ .



166 M. T. KARAEV AND M. GÜRDAL

Conversely, let A ∈ {T |Xi}′ be an arbitrary operator, that is

(T |Xi)A = A(T |Xi) ,

or
TiA = ATi,

where Ti = T |Xi. Then
Tk
1 A = ATk

1 (∀k � 0) ,

which implies that
Tk
1 Awiei = ATk

1 wiei.

From this, by considering formula (6) , we obtain

wi+kei+k �
i
Awiei = A

(
wi+kei+k �

i
wiei

)
= Awi+kei+k,

and hence
Aei+k = Awiei � ei+k (∀k � 0) ,

therefore
Ap = Awiei �

i
p

for all polynomials p = ∑
n�i

pnen ∈ Xi. Since

(
Xi,�

i

)
is a Banach algebra, we have

Ax = Awiei �
i
x

for all x ∈ Xi. By setting y := Awiei, we have A = Dy,i, where y∈ Xi, which completes
the proof of (i).

(ii) It is easy to see from the formula (6) that p(Ti)x = q�
i
x for all x ∈ Xi and

polynomials p = ∑
n�i

pnen ∈ Xi, where q is the vector polynomial of the form q :=

∑
n�i

wnpnen. Then we have that (see inequality (5))

‖p(Ti)x‖Xi
=
∥∥∥∥q�

i
x

∥∥∥∥
Xi

� Ci,N,d ‖q‖Xi
‖x‖Xi

(∀x ∈ Xi) ,

that is
‖p(Ti)‖L(Xi) � Ci,N,d ‖q‖Xi

,

and since q�
i
wiei = q, we have

p(Ti)Ci,N,dwiei = q�
i
Ci,N,dwiei = Ci,N,d

(
q�

i
wiei

)
= Ci,N,dq.

From this, by considering that ‖wiei‖ = 1, we obtain that

‖p(Ti)‖L(Xi) = Ci,N,d ‖q‖Xi
,

which completes the proof of theorem. �
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4. Extended eigenvalues and extended eigenvectors for T |Xi

Following Biswas, Lambert and Petrovic [12], we say that a complex number λ
is an extended eigenvalue of A if there exists a nonzero operator B ∈ L(X) such that

AB = λBA;

such an operator B is called extended eigenvector corresponding to λ . The set of all ex-
tended eigenvalues of A will be called the extended point spectrum, and will be denoted
as σ ext

p (A) . It is easy to see that if λn �= 0, n = 0,1,2, ..., then for the corresponding
weighted shift operator T, Ten = λnen+1, n � 0, we have that kerT = {0} . There-
fore, λ = 0 is not an extended eigenvalue of T, and hence σ ext

p (T ) ⊂ C\{0} . Thus,
σ ext

p (T |Xi) ⊂ C\{0} for all i � 0. The basic facts about the extended eigenvalues and
extended eigenvectors of operators can be found in [12]–[18].

The following result describes the set of all extended eigenvectors of all operators
T |Xi (i � 0) , which essentially improves Theorem 3 in [2] and Theorem 1 in [5].

THEOREM 5. Let X ,T and Ti be the same as in Theorem 2. Suppose that λ ∈
C\{0} is an extended eigenvalue for Ti and A ∈ L(Xi) is a nonzero operator. Then:

(i) if |λ |� 1, then λATi = TiA if and only if ADλ = λ iDAwiei,i, where Dλ , Dλ en =
λ nen (n � 0) , is a diagonal operator.

(ii) if |λ | > 1, then λATi = TiA if and only if A = λ iDAwiei,iD 1
λ
.

Proof. (i) If λATi = TiA, then λ nATn
i = Tn

i A, n � 0. In particular,

Aλ nT n
i wiei = Tn

i Awiei, n � 0.

Using formula (6) , from this we obtain that

A

(
λ nwi+nei+n �

i
wiei

)
= Awiei �

i
wi+nei+n,

or
A
(
λ i+nei+n

)
= λ iAwiei �

i
ei+n,

that is,
ADλ ei+n = λ iAwiei �

i
ei+n (n � 0) .

From this
ADλP = λ iDAwiei,iP

for all polynomials P = ∑
n�i

Pnen ∈ Xi. Since

(
Xi,�

i

)
is a Banach algebra, from this

we have that
ADλ x = λ iDAwiei,ix (∀x ∈ Xi) ,

that is
ADλ = λ iDAwiei,i (8)
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where DAwiei,i is the Duhamel operator on Xi.
Conversely, let us prove that every nonzero operator A satisfying (8) , is an ex-

tended eigenvector for the operator Ti = T |Xi. In fact, for all polynomials P =
degP

∑
m=i

Pmem,

let us denote P1
λ

:= ∑
m�i

1
λm Pmem. Then we have

TiAP = TiADλD 1
λ
p = TiADλP1

λ
= λ iTiDAwiei,iP1

λ

= λ i
(

wi+1ei+1 �
i
DAwiei, iP1

λ

)
= λ iDAwiei,iDwi+1ei+1,iP1

λ

= λ iDAwiei,i

(
wi+1ei+1 �

i
P1
λ

)
= λ iDAwiei,iλ

i+1
(

wi+1ei+1

λ i+1 �
i
P1
λ

)
= λλ i

(
λ iDAwiei,i

(
wi+1ei+1

λ i+1 �
i
P1
λ

))
= λλ i

(
ADλ

(
wi+1ei+1

λ i+1 �
i

degP

∑
m=i

Pm
1
λm em

))

= λADλ

[
wi+1

λ

degP

∑
m=i

Pm
1
λm

(
ei+1 �

i
em

)]

= λADλ

(
wi+1

λ

degP

∑
m=i

Pm
1
λm

wi+1+m−i

wi+1wm
ei+1+m−i

)

= λADλ

(
1
λ

degP

∑
m=i

Pm
1
λm

wm+1

wm
em+1

)

= λADλ

degP

∑
m=i

Pm
1

λm+1 λmem+1

= λADλD 1
λ
T

degP

∑
m=i

Pmem = λATiP.

Thus
TiAx = λATix

for all x ∈ Xi, that is, TiA = λATi, as desired.
(ii) If |λ | > 1 and λATi = TiA, then ATi = 1

λ TiA. From this

ATn
i =

1
λ n T n

i A,

which implies that

ATn
i wiei =

1
λ n T n

i Awiei,
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that is (see formula (6)),

A

(
wi+nei+n �

i
wiei

)
=

1
λ n

(
wi+nei+n �

i
Awiei

)
=
(

wi+n
1
λ n ei+n �

i
Awiei

)
,

or

Aei+n = Awiei �
i

λ i

λ i+n ei+n = λ iAwiei �
i

1
λ i+n ei+n (n � 0) ,

which implies that
AP = λ iDAwiei,iP1

λ
= λ iDAwiei ,iD 1

λ
P

for all polynomials p ∈ Xi, and hence Ax = λ iDAwiei,iD 1
λ
x for all x ∈ Xi, which means

that
A = λ iDAwiei,iD 1

λ
. (9)

Conversely, let us prove that every nonzero operator A ∈ L(Xi) , with representa-
tion (9) , is the extended eigenvector for the operator Ti. Indeed, for all polynomials

P =
degP

∑
m=i

Pmem we have

TiAP = Ti

(
λ iDAwiei,iD 1

λ
P
)

=
(

wi+1ei+1 �
i
λ i
(

Awiei �
i
D 1

λ
p

))
= λ iAwiei �

i

(
wi+1ei+1 �

i
D 1

λ
p

)
= λ iAwiei �

i

(
wi+1ei+1 �

i

degP

∑
m=i

Pm

λm em

)

= λ iAwiei �
i

(
wi+1

degP

∑
m=i

Pm

λm (ei+1 � em)

)

= λ iAwiei �
i

(
wi+1

degP

∑
m=i

Pm

λm

wi+1+m−i

wi+1wm
ei+1+m−i

)

= λ iAwiei �
i

(
degP

∑
m=i

Pm

λm

wm+1

wm
em+1

)

= λ iAwiei �
i

degP

∑
m=i

Pm

λmλmem+1

= λ iAwiei �
i
λ

degP

∑
m=i

Pm

λm+1λmem+1
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= λ

(
λ iAwiei �

i
D 1

λ

degP

∑
m=i

Pmλmem+1

)

= λ

(
λ iAwiei �

i
D 1

λ
T

degP

∑
m=i

Pmem

)

= λ

(
λ iAwiei �

i
D 1

λ
Ti

degP

∑
m=i

Pmem

)

= λ
(
λ iAwiei �

i
D 1

λ
TiP

)
= λ

(
λ iDAwiei,iD 1

λ
TiP
)

= λATiP,

thus
TiAP = λATiP

for all polynomials p ∈ Xi, and therefore TiA = λATi, which completes the proof.
Theorem 5 is proved. �
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