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STRONGLY SPLITTING WEIGHTED SHIFT OPERATORS
ON BANACH SPACES AND UNICELLULARITY

M. T. KARAEV AND M. GURDAL

(Communicated by D. Hadwin)

Abstract. We introduce the notion of strong splitting operator on a separable Banach space,
and prove a structure theorem for this operator. We consider the weighted shift operator T,
Tey = Aneny1, n =0, acting in the Banach space X with basis {e,}, . We give some sufficient
conditions for X and for the weight sequence {4, }n20 under which the operator is unicellular,
that is, every nontrivial invariant subspace E of T has the form E = X; := Span {ey : k > i} for
some i > 1; and prove that the restricted operators T|X; (i > 1) are strong splitting. Moreover,
we describe in terms of so-called discrete Duhamel operator and diagonal operator all extended
eigenvectors of the operators T'|X; (i >1).

1. Introduction

Let X be a separable Banach space. If (x,),~; C X, we denote by Span (x, :n > 1)
the closure of the linear hull generated by (x),,~ . The sequence (xy),-; is called (see

[1D:
e complete if Span (x,:n>1)=X;
e minimal if forall n > 1, x, ¢ Span (x,, : m #n);
o uniformly minimal if gt;dist (Hﬁ—:WSpan (o :m # n)) > 0;

e abasisin X if every element x € X can be uniquely decomposed in a convergent
series X = Y,,~| anXy.

Let L(X) be the Banach algebra of all bounded linear operators on X and A €
L(X). Following [2], we recall that an operator A is called a splitting operatorin X if,
for every x € X there exists a linear densely defined operator B, (generally unbounded)
such that

A"x = Byyn ey

foreach n, n=0,1,2,..., and for some complete system {y,},- of the space X.
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An operator A is called well splitting if for every x € X the corresponding oper-
ators B, in (1) are bounded in X. We say that the well splitting operator A is strong
splitting if, for some xy € X, the corresponding operator By, in (1) is invertible. It is
immediate from these definitions that a well splitting operator A is cyclic (i.e., there
exists x € X such that Span {A"x :n > 0} = X) if for some xp € X an operator B,, has
dense range in X, and hence strong splitting operator is always cyclic.

It is easy to see that the concept of splitting operator is a generalization of the
so-called basis operator introduced by Nikolski [3]:

Let A be a linear bounded operator acting in the space (P, 1 < p < eo. An oper-
ator A is called basis operator if it is cyclic and for every x € (P, x # 0, there exists
(linear) isomorphism V of the space £P into itself, an integer i, i > 0, and a sequence
{tn}p_y (ta =1,(x)) of complex numbers such that

Vori=1,A"x, n>0,

where {8,},_ is the natural basis of the space (P : §, = {5,!7;(}::0, On  is the Kro-
necker symbol.

Here, in the short Section 2 of the present article, we give a structure theorem for
the strong splitting operators on a Banach space X. Its proof uses the method of the
paper [3]. In Section 3, we consider the weighted shift operator T, Te, = A,e,11, n >
0, on the Banach space X with basis {e,},-,. We give some sufficient conditions for
X and for the weights sequence {)Ln}@o under which the operator is unicellular, that
is every nontrivial invariant subspace E of T has the form E = X; := Span {e; : k > i}
for some i > 1. We prove that the restricted operators T'|X; (i > 1) are strong splitting.
In Section 4, we describe all so-called extended eigenvectors of the operators T|E,
E € Lat (T) . These results improve some results of the papers [2, 4, 5].

2. A structure theorem

Recall that operators A; € L (X)) and Ay € L(X3) are called similar if there exists
a linear isomorphism Q, Q: X; — X5, such that A, = QA;0~ L.

THEOREM 1. Let X be a separable Banach space. An operator A € L(X) is a
strong splitting operator if and only if it is similar to some strong splitting shift operator
on X.

Proof. First we note that an operator that is similar to a strong splitting operator is
itself strong splitting. Indeed, let A, be a strong splitting operator on X . Then

Agx = B2,xyn

for every x € X and n > 0, where an operator B ,, is invertible in X for some x, € X.
Therefore, if A; is similar to A,, that is

Ay = 04,07
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for some invertible operator Q € L(X), then it is clear that
Tx = QAnglx = QB27Q*IXYH = BLx.Vna n=0,

where Bj x := 0B, o-1,. Hence, A; is a splitting operator in X. On the other hand, if
we denote x| := Qx,, then we have

By =Biox, = QBZ.,Q*IQ)Q =082,

and therefore By , is invertible in X. Hence, A; is a strong splitting operator in X.

Let now A be a strong splitting operator on the space X. Denote by xo an element
for which the operator By, is invertible. Since A"xo = By y, (n>0), where {ya},-o
is some complete system in X, by setting Ag := B;OIABX0 we obtain

Aoyn = B;OIAonyn — B;OIAA"XO — B;OlAnJrle — B;OleO)’n+l = Vn+1

foreach n >0, and thus Agy, = y,+1 (n > 0), thatis Ay is a shift operatorin X, and by
virtue of above proved, this is a strong splitting operator. The theorem is proved. [

3. Weighted shift operators on Banach spaces

In the following theorem, by using the discrete analog of the Duhamel product

(Fog)w =2 [ Fla—nga,
0

we characterize the strong splitting property and unicellularity of some weighted shift
operators on Banach space with basis {en}@O. This improves some results of the pa-
pers [2, 4, 5]; see also [6, 7, 8]. But, as will be seen from its proof, the condition of
basisity of {ej, }n>0 can be actually changed with M — basisity (Markushevich basis).
Recall that (see, for instance [9]) a complete minimal system {e; },~, C X with totally
biorthogonal system {e;},-, C X* is called M—basis.

THEOREM 2. Let T be a weighted shift operator, continuously acting in the Ba-
nach space X with basis {es},, by the formula
Te, = Aneni1, An#0,n>0.

We put X; := Span {e : k> i} (i=0,1,2,...) and wy := AgAy...u—1, wo:=1. Sup-
pose that:
(a) For every integer i > 0 there exists a number N := N; > i such that

Wntm—i
| < oo

nm=N WnWm

(b) |lentm—illx < cillenllx llemllx for all nym =i (i = 0) and for some c; > 0.
Then we have:

(i) The operators T; :=T|X; (i=0,1,2,...) are strong splitting in X;.

(ii) Lat (T) ={X; : i =1,2,...}, i.e,, T is a unicellular operator on X.



160 M. T. KARAEV AND M. GURDAL

Proof. (i) For arbitrary two elements x = Y x,e, and y =Y yue, in X; (i 20),
n>i n>i
let us define the generalized Duhamel product & by the formula (see, for instance [ 10,

p.189] and [4]):

D
X®Yi= Y T Ymen - )
1

n,m=i WnWm
(Since Xy = X, instead ® we will write simple ®). By virtue of conditions of theorem,

0
the formula (2) is correctly defined. For every fixed n > i, let us denote

X):= 2 Xl

k>n

Then we have:

1Ry (x

2 Xk€k

k>n

= ||xoeo +x1€1 + ... + Xp_1€0-1

+ 2 xeer — (xoeo +x1e1+ ...+ xXp—1€n-1)
k>n

< |l + llxoeoll + beren]| + .. + [P —1€n-1l-

By considering that every basis is uniformly minimal, we have that
1
[Fsel] < = Il

forall j >0, where d := 11>1(f)dist (H%H*Lin (xj:j# z)) is the constant of uniform min-
1> i

imality of {e,},-, which implies that

IRu 0l < 3]+ Glisd = (o-+1) ®

On the other hand, it is easy to verify that

HTkH <sup [ Apdng 1 Apgrot] < oo 4)
n>1

Then, by using inequalities (3), (4) and conditions of theorem, we have:

Wntm—i Xn Wn+m—i
X@y = 2 XnYm€n+m—i|| = - Ym€n+m—i
t n,m=i WnWm n=>i Wn m>=i m
Xit1 Wmt1
Z Ym€m - Ym€m+-1
Wi =i Witl =i Wm
XitN—1 Wm+N—i Xn Wntm—i
+...+ i Ym€n4N—-1 Z 2 Ym€n+m—i
WitN-1 m>=i Win n=N Wn m>i
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XitN-1 HTN 1 H
Yit+1 Yi+N—1 N—1
N () ||+ | —— IRV (Tx)|| + ...+ |—— | ||[RN (T "x
(N o] R (T |22 Ry (77|
Whnt+m—i
+ 2 Z el [y lensm—il S Cinvallx[ |Iyl-
n>=Nm>=N ntvm
Thus
x@yH < Cima ¥l Il 5)
i X;

for every x,y € X; (i >20). It is clear from (2) and (5) that X,-,@_) is a Banach
algebra with the property that w;e; ® f = f ® wie; = f for all f € X;. Every x € X;

defines the following ”generalized Duhamel operator”:

Dy =x®y (yEXi).

It follows from this and (2) that
Tiny =Witn€itn ®Yy = -@y,i (Wi+nei+n) (6)

for all y € X; and n > 0. Indeed, for every y € X; and n > 0 we have

Y}ny = Tny = Tn (2 ymem> = 2 yanem

m>=i m>=i
= 2 ym/’{'m/’{'m+1~~~/1m+nflem+n
mzi
Wm+n Witn+m—i
= 2 Ym—€min = 2 WitnYm €itmtn—i
m>i Wm mi WitnWm
- 2 Wl+nym <el+n @em) — W1+nel+n @ 2 ymem
m=i i m=i

= Witn€itn ®Y = @y,i (Wi+nei+n) »
i

which implies (6). Hence, T|X; is a well splitting operator.
To prove that T|X; is a strong splitting operator, it suffices to show that the operator
Py is invertible in X; if and only if x; # 0.
Indeed, if Z,; is invertible in X;, then there exists y € X; such that x®y = we;.
1

By considering (2), from this we obtain that

Xi
X®y | =—yi=w,
i i Wi

that is x;y; = w? # 0, and therefore x; # 0.
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Now we prove the inverse assertion. Since

-@xﬂ' = ‘@Xiei"‘(x_xiei)’i

and wie; ®y =y for all y € X;, we have
1

Xi
@x,i = ;IX,- + @x—x,-e,-,b
1

Therefore, to prove invertibility of 2, ; it suffices to show that some power of Zx_.; ;
is compact and ker Z;; = {0}; from which by a classical theorem of S.M. Nikolski

(see [11]) we will obtain invertibility of %, ;. For this purpose we set X :=x—xe; and
@N+1
=K1  =xX®..®x (N+1time). Simple calculus show that
1 1

Therefore for each y € X; we have:

®N+1 _
Jily=WK]" ey=xey

2 Xn 2 Wntm—i Vmenim_i

n=i Wn m=i

xn Wn+m—i
2 — 2 Ym€n+m—i
nZitN+1Wnm>i  Wm

_ & 2 .’fnen‘F Yi+1

Ripn41 (TX)+ ...

Wi n>itN+1 i+1
Yi+N Wntm—i ~

=+ ] H_NJ,-I ( ;Cl) + 2 2 ——XnYmCn+m—i
Wit+N nEiAN+1mzitN+1 WnWm

1+N

= 2 Riint1 (TJ JAC)) + 2 2 an}’m@ﬂrm*i

n=itN-+1m=itN+1 WnWm

Wn+m i~
+ 2 2 XnYm€n+m—i
n=itN+1m=M+1 WnWm

Whntm—i ~
+ 2 2 — XnYm€n+m—i
n=M+1m=i+N+1 WnWm

Let us define the following finite-rank operator:
i+N S, M M

@, . Yj ji—i Whntm—i ~
%/1 Y= 2 _'Ri+N+l (Tj 56) + 2 Z — XnYm€n+m—i-
j=i Wi n=itN+1m=itN+1 "WnWm
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Considering the conditions (a), (b) of the theorem, we obtain

8 -, = o o8-
L(X~) Xt
i [[¥llx, <1
M o
Whntm—i~
= sup 2 XnYmen+m—i
Iyllx, <1 |{n=itN+1m=i+N+1 WnWm

Wntm—i ~
+ 2 2 XnYm€n+m—i
n=M+1m=i+N+1 WnWm

<o 3

n=i+N+1m=M+1
— 0 (as M — Ho0),

Xi

oo oo

>

n=M+1m=i+N+1

Wnt+m—i
WnWm

Wntm—i
Wy W

which means that 9}?’ ;rl is a compact operator on X;.
We now prove that ker Z; = {0}. In fact, if y € X;Nker %, ;, thatis x®y =0,
l

then simple calculations show that

=0
wi
Xi X,
v ’“y- =0

Xi Wit2 +2
—Vit2 T 5 Xit1Vit1 + 22y = 0
Wi Wit Wi

Since x; # 0, from this infinite system we obtain that

Vi =Yit1 =Yip2=...=0,

thatis y = 0. Thus, we deduce that %, ; is invertible operator on X;, and consequently
T|X; (i > 0) is a strong splitting operator on X;, as desired.
(ii) Obviously, all subspaces X; (i = 1,2,...) are nontrival T -invariant subspaces
and
XDX; DX, D...>{0}.

Therefore, since Span {T"x:n >0}, x € X, is T -invariant subspace, the operator T
is unicellular in X if and only if for all x € X, x # 0,

Span {T"x:n >0} =X;

for some i =i(x), i=0,1,2,.... On the other hand, it follows easily from the splitting
property of operators T'|X; (i > 0) that

Span {T"x:n >0} =X; & x€ X;and x; # 0.
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In fact, by considering formula (6), we have

Span {T"x:n > 0} = Span {Z,; Witneitn) :n >0}
= clos Zy;Span {wjtneitn :n >0}
= clos %, X;,

and therefore
Span {T"x:n > 0} =X; < clos 2, ; X; = X;.

It remains only to show that

clos -@XJXI' =X, x; 75 0.

Indeed, if clos Z,;X; = X;, then there exists a sequence {x(”)} C X; such that x®
1. (n)

W[_)Cix-

PUNN wie; as n — oo, Or ;

Xi 75 0.

Conversely, if x € X; and x; # 0, then as we proved already in item (i), an oper-
ator Zy; is invertible in X;, in particular, clos %y ;X; = X;, as desired. The theorem is
proved. O

— w; # 0 as n — oo, from which we deduce that

Let £ € L(Y) be an operator on the Banach space Y such that for every x € X
there exists x(2) := ¥ x,. 2" and ||x ()| = |lx||, i.e., there exist the constants
n=0

c1,c2 > 0 satisfying
cr |l < [lx ()] < ez 1] Q)

for all x € X. Then, the map ['x := x(¢") defines the continuous homomorphism from
the algebra (X,®) to the algebra L(Y), where ® is the usual Duhamel product. In-
deed, let us define X (#) := {x(%):x€ X}, thatis X () =TX. In X (%) we
define the following product:

A~ —

~

x (A )@y (X)) = (x@y)(A).
Then
T(x®y) = (x@y)(H) = x(H) @y (H) = Tx@ly.

Clearly, I'ep =1 and " (wie;) = 7.

On the other hand, it follows from (7) that " is continuous. Thus, T is a continu-
ous homomorphism (i.e., T" is a representation of algebra (X,®) in L(Y)).

In the following theorem we describe all closed ideals of the algebra (X (), @) .

THEOREM 3. Every closed nontrivial ideal E of the algebra (X (), @)) has the
form E =X; () for some i > 1.

Proof. Let us define in X (") the following operator:
Ax(H) = (Tx) (X)),



STRONGLY SPLITTING WEIGHTED SHIFT OPERATORS 165

where T is the weighted shift operator, as in Theorem 2. It is clear from (7) that A is
a linear bounded operator in X (7). It is also clear that

Ax () = (Tx) (H) = (wiey ®x) (K ) = H &x (X))

forallx () e X (X)) . Ifx(#) € X; (A'), where X; € Lat (T), X; =Span {e; : k > i}
= {xEX:x: E_xnen}, then Ax (%) = #™@x (), where ® is the Duhamel

product in X; (see formula (2)). Now, it is clear that in order to describe the closed
nontrivial ideals of the algebra (X () ,@) , it suffices to describe the closed nontrivial
A-invariant subspaces in (X (#"),®). For this purpose, note that X; (%) € Lat (A),
i > 1 (this follows, for example, from the relation AT =T'T and inclusion X; € Lar (T),
i > 1). Therefore, it suffices to show that

Span {A"x(#) :n>20} =X; (H) < x(H#) € X; and x; # 0.

The implication = is obvious. Let us prove the reverse implication <=. In fact,

Span {A"x(#") :n >0} = Span {%”"@x(%) n> O}

= clos_@x(%)@Span {%”" :n>0}

= clos Dy ) 5 Xi () = Xi (H),

because the operator @x(%) with x; # 0 is invertible in X; ("), which completes

®
the proof of theorem. [

Now we give some applications of formula (6).

THEOREM 4. Suppose that all conditions of Theorem 2 are satisfied. Then we
have:

() {T|X:} ={Pi:x€ X}, i=0,1,2,..., i.e., the commutant of operator T|X;
consists from the Duhamel operators Dy ;, x € X;.

(ii) If |leil| = ﬁ, then ||p(T|Xi)|| x,) = Cinallally, for all polynomials p =

Y. Pnen, where q:= Y wyppe, and Ciyq > 0 is the constant, as in the inequality
n=i n=i

(5)-

Proof. 1t follows from the formula (6) that

Tx=x®wiy1€i11, X €X;.
1

Then, by virtue of commutativity and associativity of the Duhamel product ® (i > 0),
4

we have
{-@x,i X € X,'} C {T‘X,'}/.
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Conversely, let A € {T|X;}’ be an arbitrary operator, that is
(T1X)A =A(T]X;),
or
TA = AT,

where T; = T|X;. Then
TFA = AT} (Vk>0),

which implies that
leAw,-ei = Alewie,-.

From this, by considering formula (6), we obtain

Wikeirk ® Awie; = A (Wi+k€i+k ® Wi€i>
1 1
= AWitk€itk,

and hence
Aeiyp =Awie;® ey (Yk>0),

therefore
Ap =Awie;® p
1

for all polynomials p = Y, ppe, € X;. Since (Xi, @) is a Banach algebra, we have
n=i i
Ax = Awie; ®x

forall x € X;. By setting y := Aw;e;, we have A = 9,;, where y € X;, which completes

the proof of (i).
(ii) It is easy to see from the formula (6) that p(7;)x = g ®x for all x € X; and
1

polynomials p = Y, ppe, € X;, where g is the vector polynomial of the form ¢ :=

n=i
> wppnen. Then we have that (see inequality (5))
n=i
I (@)l = |aws]| < Covalaly Iy, (e x),
that is

1P (1)) < Civa Iy,
and since g ® wie; = g, we have
1
p(T:) Cinawiei = q®Ciy awie; = Cin g (6] @Wi€i> =CinNdaq-
1 1
From this, by considering that ||w;e;|| = 1, we obtain that

Ip(T) HL(X,—) =Cina ||‘1||X,— J

which completes the proof of theorem. [
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4. Extended eigenvalues and extended eigenvectors for T'|X;

Following Biswas, Lambert and Petrovic [12], we say that a complex number A
is an extended eigenvalue of A if there exists a nonzero operator B € L(X) such that

AB = ABA;

such an operator B is called extended eigenvector corresponding to A. The set of all ex-
tended eigenvalues of A will be called the extended point spectrum, and will be denoted
as 0';"’ (A). It is easy to see that if A, #0, n=0,1,2,..., then for the corresponding
weighted shift operator T, Te, = Ape,11, n >0, we have that ker7 = {0}. There-
fore, A = 0 is not an extended eigenvalue of T, and hence o, (T) C C\{0}. Thus,
0, (T1X;) C C\{0} forall i > 0. The basic facts about the extended eigenvalues and
extended eigenvectors of operators can be found in [12]-[18].

The following result describes the set of all extended eigenvectors of all operators
T|X; (i = 0), which essentially improves Theorem 3 in [2] and Theorem 1 in [5].

THEOREM 5. Let X, T and T; be the same as in Theorem 2. Suppose that A €
C\ {0} is an extended eigenvalue for T; and A € L(X;) is a nonzero operator. Then:
(i) if |A| < 1, then AAT; = T:A if and only if AD) = A'Daye,i» where D, Dj e, =
A"e, (n>0), is a diagonal operator. .
(ii) if |A| > 1, then AAT; = T,A if and only if A = )L’@Awieh,-D%.
Proof. (i) If AAT; = T:A, then A"AT" =T"A, n > 0. In particular,
AA"T wie; = T"Aw;e;, n = 0.

Using formula (6), from this we obtain that

A <)ani+nei+n ® Wiei) = Aw;e; ® Wineitn,
1 1

or
A ()Li+"€i+n) = A'Awie; ® €jtn,
1
that is, _
AD)ejip = AlAw;e; ® €itn (n > 0) .
1
From this

AD3 P = A'Dprye; iP

for all polynomials P = Y, P,e, € X;. Since (Xi,@)) is a Banach algebra, from this
n>i i
we have that

AD;x = )L"@Awieh,-x (Vx € X;),

that is '
AD)L = Al-gAW,'e,',i (8)
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where Zay,e;i is the Duhamel operator on X;.
Conversely, let us prove that every nonzero operator A satisfying (8), is an ex-
degP
tended eigenvector for the operator T; = T'|X;. In fact, for all polynomials P = Y, Ppem,
m=i
let us denote P; := Y, /%umem. Then we have
A m>i

TAP = TAD; D1 p = TAD; Py = A'T;Dpvie, iP1
A A T2

=A' (Wi+1€i+1 ® @Awiei‘ip%)
; :

= Ai-@AW,'e,',i-@

Wit1€it+1,i

Py
A

= A Dawies,i (Wi+1€i+1 ®Pi>
1

i it [ Witl1€it1
= A. @Awiei,l/l (W @P%

= All <Ai@AW,‘€,‘,i <% ®Pl)>

degP
: Wit1€;
— A (ADA ( jllﬂ“ ® 2 T m))
i m=i

degP

w; 1
):rl 2 Pm)Lm (el+l ®em)

R Wit
Pn— Cit1+m—i

o Wit
_/IAD;L< 2 P o

= AAD;,

m=i

ldegP 1 Wm+1
= AAD; Z P L

degP 1
= AAD; 2 P, Amﬂflmemﬂ

degP
= AAD;D T 3, Puey = LATP.

m=i
Thus

T:Ax = AATix
for all x € X;, thatis, T;A = AAT;, as desired.

(i) If |A| > 1 and AAT; = T;A, then AT; = %TiA. From this
1 n
AT = ﬁT A,

which implies that

1
—T;"Awie;,

ATl-"w,-ei = )L"
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that is (see formula (6)),

1
A (Wi+nei+n ® Wi€i> = <Wi+n€i+n @_Awiei)

1
= (WiJrn ﬁeiJrn @Awiei) ;

or
i

Aeitn =Awie; ®

1
: We,urn AiAwie; ® /ll+ne,+n (n>0),

which implies that
AP = /I’QAW,.JP% = )L’_@AwiehiD%P

169

for all polynomials p € X;, and hence Ax = )Li-@Aw,-e,-,iD L for all x € X;, which means

that
A=A"Dpye;iD1 .

A

©))

Conversely, let us prove that every nonzero operator A € L(X;), with representa-
tion (9), is the extended eigenvector for the operator T;. Indeed, for all polynomials

degP
P= Y P,e, wehave

m=i

EAP - T; <Ai-@AW,‘e,‘,iD/1TP>

= <wi+1€i+1 @ﬂl <AW,'€,‘®'DLP>)

= llAWtet @ WHrleerl ®D 1 p)

) deg P
= AlAWiez Wt+1ez+1® 2 /’{,m €m
degP P
[ m
= /1’Aw,-e, Witl T (eir1®ep)
m=i
degP
o liA £ Py Wit l4+m—i
= Wiez Wit1 /’{,_m Cit1+m—i
m=i Wit 1Wm

degP P, w |
1 m+
= A'Awie; ® 2 em+1
! m=i Wm

degP P
[ m
= ”Awiei@ 2 A_m)‘mem'*'l
m=i

) deg P P
= llAW,'e,'@‘)L 2

m
) mtl Amem+1
1



170

thus
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degP
=AM AW,E; @Dl 2 Polmemi1
i

m=i

m= l
degP
A lAw,e,@Dl T; 2 P.en

m=i

degP
A (/1 Aw,e,@Dl T 2 P.en

A AlAwie;® D1 T,-P)
i A

— 2 /l D ZTP)

T,AP = AAT;P

for all polynomials p € X;, and therefore T,A = AAT;, which completes the proof.
Theorem 5 is proved. [J
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