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ALGEBRAS OF TRUNCATED TOEPLITZ OPERATORS

N. A. SEDLOCK

(Communicated by I. M. Spitkovsky)

Abstract. We find necessary and sufficient conditions for the product of two truncated Toeplitz
operators on a model space to itself be a truncated Toeplitz operator, and as a result find a
characterization for the maximal algebras of bounded truncated Toeplitz operators.

1. Introduction

Let C denote the complex plane, C* the Riemann sphere, D denote the unit
disc, and let T denote the unit circle. H? is the usual Hardy space, the subspace of
L?*(T) of normalized Lebesgue measure m on T whose harmonic extensions to I
are holomorphic (or, whose negative indexed Fourier coefficients are all zero). H>
will interchangably refer to both the boundary functions and the functions on . Let
P denote the projection from L?(T) to H?, which is given explicitly by the Cauchy
integral:

(€)
(@2) = [ =55 an(©). €D.
The reproducing kernel at A € D for the Hardy space is the the Szego kernel K) :=
(1—Az)~!. S denotes the shift operator f — zf on H?. Its adjoint (the backward
shift) is the operator
f—10)
P

S*f =

A Toeplitz operator is the compression of a multiplication operator on L*(T) to
H?. In other words, given ® € L*(T) (called the symbol of the operator), T = PMg
is the operator that sends f to P(®f) for all f € H>. This operator is bounded if
and only if ® € L*(T), and the mapping ® — Ty from L™ to the space of bounded
operators on H? is linear and one-to-one. In the case that ® € H*, the Toeplitz operator
Ty is just the multiplication operator Mg . In [2], Brown and Halmos describe the
algebraic properties of Toeplitz operators. Among other things, they found necessary
and sufficient conditions for the product of two Toeplitz operators to itself be a Toeplitz
operator, namely that either the first operator’s symbol is antiholomorphic or the second

Mathematics subject classification (2010): Primary 47L80; Secondary 47A05, 47B35.

Keywords and phrases: Toeplitz operator, truncated Toeplitz operator, model space, reproducing ker-
nel, complex symmetric operator, operator algebra, maximal algebra, conjugation, bounded operator interpo-
lation.

© &1€P€N’ Zagreb 309
Paper OaM-05-22



310 N. A. SEDLOCK

operator’s symbol is holomorphic. In either case, the symbol of the product is the
product of the symbols (i.e. ToTy = Toy).

More recently, Sarason [11] found analogues to several of Brown and Halmos’s
results for truncated Toeplitz operators on the model spaces H> © uH?, where u is
some non-constant inner function. The model spaces are the backward-shift invariant
subspaces of H? (that they are backward shift invariant follows easily from the fact that
uH? is clearly shift invariant). Let K2 denote the space H> ©uH? from here forward.
Let P, = P — M, PM5; denote the projection from 1% to Kf .

Given ® € L?(T) we then define the truncated Toeplitz operator (TTO) Ag to be
the operator that sends f to P,(®f) for all f € K2. Ag is well-defined on the set of
bounded functions in K2, which is dense in K> and which we denote K. We let .7,
denote the set of truncated Toeplitz operators which extend to be bounded on all of K>.

Truncated Toeplitz operators have many of the same properties as ordinary Toeplitz
operators (for example, Ag, = Ag) but there are also striking differences. For example,
there are bounded truncated Toeplitz operators with unbounded symbols [1] (though
any truncated Toeplitz operator with a bounded symbol is itself bounded). Addition-
ally, symbols are not unique: the same operator can be generated from more than one
symbol, and we say that ¥ is a symbol for Ag if Ap = Ay. Given two functions ¥

and ®, we write ¥ % ® to mean that Ay = Agp.

The truncated Toeplitz operators in .7, do not form an algebra. There are, how-
ever, weakly closed algebras contained in .7;,. The goal of this paper is to describe the
maximal algebras contained in .7},, where by maximal we mean that any weakly closed
algebra in .7}, is contained within one of these maximal algebras.

In what follows, for functions f,g in L*(T), (f,g) = Jrfg dm, |f|| = /{f,f)
and f® g is the rank one operator that maps & to f (h,g). Further, if A is an operator
on a Hilbert space, [A]" denotes the commutant of A.

2. Background

In this section we lay out basic facts about operators in .7, and model spaces. Let
u be a non-trivial inner function. K? is then a reproducing kernel Hilbert space with

reproducing kernels K} := F,K; = @ for A € D. Note that K} is bounded for all

A, and hence in K. e

The function u is said to have an angular derivative in the sense of Caratheodory
(ADC) at the point { € T if u has a nontangential limit #({) of unit modulus at §
and «' has a nontangential limit (&) at £. It is known that u has an ADC at { if
and only if every function in K> has a nontangential limit at ¢ [10]. Thus there exists

a reproducing kernel function Ky such that < /s Kg> = f(§). Specifically, K¢ is the

limit of K} as A approaches { nontangentially in the disc and so K} = % Ifuis
a finite Blaschke product, both u and u’ are holomorphic in a domain which compactly

contains D and so these boundary reproducing kernels are defined for every unimodular

c.



ALGEBRAS OF TRUNCATED TOEPLITZ OPERATORS 311

Truncated Toeplitz operators have a symmetry property called C-symmetry. This
concept is due to Garcia and Putinar [6, 7, 8]. Given a C-Hilbert space # and an
antilinear isometric involution C on ¢, we say that a bounded operator T is a C-
symmetric operator (CSO) if T* = CTC. Here by isometric we mean that (Cf,Cg) =

(&,f)-

In L*(T), the operator Cf = uzf is a conjugation which bijectively maps uH>

to zH? and K2 to itself. By restricting ourselves to K>, C can be thought of as a
conjugation on K> . From here on, C always refers to this operator. We will sometimes
write f for Cf for sake of readability. The conjugate reproducing kernel is K (z) =

MZ’LW for z#A and If(\jf()t) = /(1) and has the property that for f € K2, f(A) =

z7—

(KLt
Consider the operator CAgC, where ® € L*(T) and Ag € 7. If f,g € K2, then
(CAoCf,8) = (Cg,A0Cf)
= <u@7 (I)u3>
= (®f.¢)
=((Ao)" f.8)

and so we see that operators in .7, are C-symmetric.
Two CSOs commute if and only if their product is C-symmetric.

PROPOSITION 2.1. Let A; and Ay be C-symmetric. Then A1A; is C-symmetric
if and only if A1 and A, commute.

Proof. Say A1A; is C-symmetric. Then
A1A; = CASATC = CA5CCAIC = AyA,.
On the other hand, if A; and A, commute, then so do their adjoints, and so

CA1ALC = ATAS = A3A%. O

The operator S, = P,S = A, is critical to what follows. Since K,f is invariant
under S* we see that S; = S*. Let f € K> such that f(0) =0, i.e. f L K4. Then

S*f = f/z. On the other hand, S*KY = (1 —u(0)u — 1 + |u(0)[?)/z = —mf{v’g. Su
is C-symmetric, and so S, is characterized by the following equations: S, f = zf for
fLK{,and S,K§ = —u(0)Kj.

The symbols of TTOs are a more complex issue than the symbols of Toeplitz
operators. Sarason proved the following results in [11] as Theorem 3.1 and Theorem
4.1 respecitively.

PROPOSITION 2.2. If ® € L*(T) then Ag =0 if and only if ® € uH*+ uH? .
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PROPOSITION 2.3. A isin 7, iff A—S,AS; = PR K} +Kj @V for some @, €
K,f, in which case A = A¢+¢.

Thus we have a way of finding a symbol for a TTO, but TTOs do not have unique
symbols.

The following is a necessary and sufficient condition for a TTO with symbol in

K2+ K2 to equal zero.

PROPOSITION 2.4. Let @1, € K2. Then Ay, +g; = 0 if and only if ¢ = cK
and @ = —cKjj for some c € C.

Proof. Let @1 = cKjj and @ = —cKjj. Then

A(PIJF@ = ACK(‘)‘—CKT‘)‘ = Acu(z)u(O)fcmu(O)

$0 Ag,+5; =0.
Now suppose Ay 15 =0. Then A —S,AS; =0= @ @K{+K;® @2, 50 @1 =K}
for some ¢ € C. Hence cKj ® Kjj + Kjf ® ¢ = 0 and so ¢, = —cK{j as required. [J

Since [ = AK(L; we can compute the identities

I-S,S, =K @K} 2.1
and o
I-S8;S,= Ky @ Ky (2.2)
from which it follows that
SuSu® = SuS, ¢ = @ — p(0)Ky (2.3)

forall ¢ € K2.
The following identities are Lemma 2.2 of [11].

PROPOSITION 2.5.

() If A €D, L
SiKY = AKY —u(A)KY

and . .
SuK5 = )LKK —u(A)Kg.

(2) If A € D is nonzero,
1
SuKj = = (Ki — K&)

and |
SiK; =+ (Ki —Kg).

(3) These equalities all hold for A € T such that u has an ADC at A.
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3. Generalized Shifts

We now define the generalized compressed shift operator. Our definition follows
Sarason’s definition in Section 14 of [11].

DEFINITION 3.1. Let o € D. Then S% = §,, + 1 P )K“®K“

Again, we can think about the generalized shift as follows. If f € K> and f L IF‘,
then S%f = zf. On the other hand,

o U O(<KOM,K6'> u
S, Kg = Squ + ——K

1 — au(0)
(0
— —u(0)KY + 7“(11_ a% e
— O(—I/L(O) K
l—am 0

The corollary to Theorem 10.1 in [11] states that if a bounded operator A on K2

isin [SY]" then A is in .J},. The following proof gives us the symbol of any operator in
(S

PROPOSITION 3.2. Let a € D. If A is a bounded operator that commutes with
S% then A is in F, and has a symbol @ + oS, where ¢ = AKY(1—au(0)) 1.

Proof. First note that

AS® = AS,+ —%— (AKY) @ K 3.1)
1 — au(0)

and

SEA=S A+ ——Kj o (4K

1 — au(0)
o —_—
=S A+ —=—=K AKY ) 32
+1—au(0)0®< ;) G2

If A and S¢ commute then we can use Equations (3.1) and (3.2) to see that

SuA = SUA — IL_K()‘ ® (AKY)

—au(0)
a —_—
=AY —— K/® (AK!
“1—au(0) " ( °>
o e (04
=AS,+ ——— (AK{) K — ————K{ ® (AK!
T R A A ppr (4K5).
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It follows that

(04
A—S,AS: =A—AS,Si — ——— AK! @ S,K! +
e 1 —au(0) T

0
1O ki 4 — %kt @ S, AR
1 — au(0) 1 — au(0)

AKj AKj
1— au(0) 1 —au(0)

07
— L _K!®S.AKY
1 —au(0)

= AKY @ K +

The conclusion then follows from Proposition 2.3. [

COROLLARY 1. Let A be a bounded opeator that commutes with S®*, for o € D.
Then A is in J, and has a symbol of the form @y + S,y + ¢ for w € K? and c € C.

Proof. A* commutes with S and therefore has symbol ¢ + a% where ¢ =
A*KG(1 — (xm) by the previous proposition. Therefore A has symbol &S,p + @.
Define ¥ = S, . Then by Equation 2.3 S, = 5,8,¢ = ¢ — ¢(0)KY and &y + S, +
(0) is a symbol for A. [

Suppose Ag and Ay are in .7, and both commute with S for some o € D. Then
their product ApAy also commutes with S%, and is therefore also in .7;,. So we know
of two cases when the product of two operators in .7, is itself in .7, — when both
operators commute with some S% or S*, or when one of the operators is A, = ¢l for
some ¢ € C. We will show in Section 5 that these are the only cases where the product
of two operators in .7, is itself in .7,.

4. TTOs of type o

If Ag is in 9, and commutes with S, then A, also commutes with S for all
ceC.If a €D\ {0}, then @ ' € C\D, and by the corollary to Proposition 3.2 any
operator in .7}, which commutes with S%* has a symbol of the form y +a& 'S,y + ¢
with v € K2 and ¢ € C. We therefore make the following definition.

DEFINITION 4.1. An operator A € .7, is said to be a TTO of type « for @ € C
if A has a symbol of the form ¢ + aS,@ + ¢, where ¢ € K,f and ¢ € C. Note that
an operator in .7, is of type 0 if and only if it has a holomorphic symbol. We say an
operator in .7, is of type oo if it has an antiholomorphic symbol.

PROPOSITION 4.2. Let A := Ay, 4q; be in ), where @; € K,f
(1) If a € C, then A is of type o if and only if ®S, @1 — ¢» € CK}.
(2) A is of type = if and only if @ € CK}j if and only if S, € CK}.
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Proof.

(1) Let Ay, 15 beof type o. Then by Proposition 3.2 and its corollary there is some

2 o o .
¢ €K and ¢ € C such that Ay 157 = A orekitaSeg® O equivalently

A(Pl_(P_CK8+@—OCm =0

By Proposition 2.4 we have that ¢; — ¢ € CK} and that ¢, — @S¢ € CK{. So
then by Proposition 2.5 we have that S,¢; — S, € CK} and so 0S,¢; — ¢ =
TS, @1 — TSy — @2+ XS, P € CKY.

Now suppose that @S, @1 — @2 € CK{. Then @, = oS, @1 + cKj for some ¢ € C
and thus Ay, 15 = A(p1+aﬁ+ﬂ is of type «.

(2) A isof type oo if and only if ¢ + @, 4 W for some y € K2, which is true if and

only if ¢ = P,(W—=2) 2 y(0) — ¢2(0) which is true if and only if ¢, € CKY.
If @ = cK{ then S,¢; = —cu(0)K{ by Proposition 2.5. On the other hand, if
Su@1 = cKY then
O1 = (SuS, — Ko @ K5) 1

= SuSu/(l\)-l/ — ¢ (O)KOM

= SucKG — p1 (00K

= —cu(0)KY — @ (0)KE

eCky O

PROPOSITION 4.3. Any TTO of type o € C has a symbol of the form Qo+ oS, @0+
cKy where @(0) =0 and ¢ € C, and any TTO of antiholomorphic type has a symbol
of the form @g + cK§ where @o(0) = 0.

Proof. To prove the first statement, let A be of type o € C and let ¢+ oS, @ +cK{

be a symbol of A, where ¢ € K> and ¢ € C. Define ¢y = ¢ — <<K(€,’I§§u>> Ky . Then
070

@o L K, or in other words, ¢(0) = 0. Then since by Proposition 2.5 S, K = —u(0)K}

we have that

= A (9.K5) = (O
+ oS, 0+ cKy = 9o + ——5Kj + aSupo + oo -—— Kl + cKj
R O I T O
A ——
= @0+ oSupo + 1Ky
where ¢; € C.
To prove the second statement, consider A = Az and let ¢p = ¢ — <<I?u’l§?u>> Ky .
070

_A__ 5>
Then @ = @y + é?’%é Ky. O
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Let a € C\ {0}. Then if A=Ay, g, is of type a, its adjoint is A* = Ay, 1y
where y; = @, and Y, = ¢ . By Proposition 4.2 it follows that

asS,y, —y; € CKj.
It follows by Proposition 2.5 that

Suc(asu% - WI) = aSuSZ Yy — Sui/}I
= oy — S,y + o (v, K§) Kiy
€ CKj.

The second equation follows from Equation 2.3. Hence we have that o~ 1S, y/] — v, €
CK}} and so it follows that A* is of type a~!. In the case that A is of type 0, A has
a holomorphic symbol, and so its adjoint A* has an antiholomorphic symbol, and is
therefore of type . Thus we can state the following duality relationship.

PROPOSITION 4.4. An operator in 7, is of type a. € C* if and only if its adjoint
is of type o~ using the convention that 0~' = co and ! = 0.

The operator ¢l = Acgx = Acng is, by the above definition, of type «a for every

o € C*. This is the only way that an operator in 7, can be of more than one type.
Specifically, this means that any A € .7, is either of no type, one type, or every type.

PROPOSITION 4.5. Let A € ., be of type o and of type B, where o # . Then
A = cl for some ¢ € C.

Proof. If ot =0 and B = oo, then there are @,y € K> such that A = Ay = Ay
and so Ay —S,A¢S; = @ ®Kj and Ay — S,AwS;, = K§ @ y by Proposition 2.3. Thus
ORKy=Ki®y and ¢ = cKj forsome c € C,andso A =cl.

Now suppose that at least one of o and f isin C\ {0}. By looking at A* if needed
we can assume without loss of generality that neither o or 8 is eo. By Proposition 4.3
there are @,y € K2 and ¢,d € C such that ¢(0) = y(0) = 0 and both ¢ + &S, + ¢
and y + 3S,¥ +d are symbols for A. It follows that

A—S,AS; = 0RK{ + cKi @ K + K ® S,@
=YKy +dKy @Ky + PKy @ S, y.
By rearranging terms we see that ¢ —y € CKj. Since ¢,y L K{ it follows that ¢ =y

and
(c—d)KE @KL = (B — 0)KY © 5,
c—d

Therefore S, ¢ = o K( butsince

(5.0, K8) = (K§.510) = (S.K8,0) = (~u(0)Kg, ) =0

we get that c =d and S,¢ =0.
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Finally we calculate ¢ = (I — K{ @ K})¢ = S,S,¢ =0 and get that A = A, =
c. O

For the rest of this section fix o € D. By Proposition 3.2 if an operator A € .7, is
in [S%] then it is of type . We spend the remainder of this section proving that every
TTO of type « is in [S?]". Specifically, we will show that the product of two TTOs of
type o isitself in 7,. Therefore any two TTOs of type o@ commute and so any TTO
of type o commutes with S%. Therefore for oz € D, [S¥]’ is precisely the TTOs of
type o, and therefore [S¢*]’ is precisely the TTOs of type o ! with the convention
that § = oo.

First we prove a lemma that will prove useful here and later.

LEMMA 4.6. Let ® = @1 + @ and Y = y| + W, where @;,y; € Ku2 such that
Ap,Ay € F,. Then ApAwy is in 7, if and only if

01 2 Y2 — (Su@2) @ (Suy1) = Po @ K + K @ Vo

for some ®y,¥y € Kf

Proof. In what follows, ®y and ¥y represent functions in Kf that can be different
from use to use. By Proposition 2.3, ApAy € 7, if and only if ApAy — S,ApAwS;, =
@) R Ky + K¢ @y . It suffices to show that ApAy — S,AeAwS: = @1 @ Y2 — (Su2) ®@
(Suyn) + P ® K + Ky © Wo. Recall Equation 2.2, which states that I = S;.S, + I?E; ®
kg. Therefore

SeADAWS; = SAa (SESu+ Ki @ KY)AwS),

— SuApS:SuAwS: + (SMAq,kvg) ® (Squkfg) . 4.1)
Since Aq)i(v’(; =P, [(¢1 +P2) (zZ(u—u(0)))] we have

SidoKy = S, (@2 + 91(0)K) —u(0)S; 1)

= Sup2 — u(0)p1(0)Kg — u(0)S.S, o1

= Sup2 — u(0)p1(0)Ky — u(0)1 +u(0) (K @ Ki) o1
= Sup2 — u(0)91(0)Kg — u(0) @1 +u(0) @1 (0)K
=S¢ —u(0)g

so the second term of (4.1) is

(5:40K5 ) @ (SuAws ) = (Su —u(0)p1) @ (St —u(0)yn)
= 8,02 ® Suy1 — u(0) [@1 ® S, Y1 |
—u(0) [Su @2 ® 2] + [u(0)* [g1 ® w2 .
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By Proposition 2.3 we have that S,A¢S; = Ap — @1 ® Kj — Kj ® @2, and so the first
term of (4.1) is

Sud@S,SulwS, = (Ao — 01 © Kf — Ki @ @) (Aw — v1 @ K — Kg @ y)
= AvAw — Dy @ KY — (AaK) @ v
— 01 @ (AgKE) + (1— [u(0)]*) @1 ® v — K @ o
= AoAy + @@ Kj — Kg @ o — (14 [u(0) ") 1 @ v
+u(0) (Su@2 @ w2) +u(0) (91 @ S, ) -
By combining the expanded terms together, we get
SiAwAWS; = SuP2 © Sy Y1 — 1 @ Y + Py @ K + K @ Wo + ApAw

and the result follows. [

THEOREM 4.7. Let o0 € D, and let A be a bounded operator on Kf. Then A is
a TTO of type o if and only if A is in [S¥]'.

Proof. Proposition 3.2 proves that everything in [SY]" is of type «, so assume
A is of type . We will prove that ASY is in .7, and hence C-symmetic, and so
AS% = S%A by Proposition 2.1.

S commutes with itself, and therefore is of type o . By Definition 3.1

o' (0)
SaKu == S Ku + 7_1(14.
RO w(0)
So by Proposition 3.2
N — ou' (0 —
(1—au(0))! (SuKy + oSy S Kf + LL(K()‘ +aS,KY))
1 —au(0)
is a symbol for S¥. By Proposition 2.5
u ou A AN
o+ oS,KY = (1 —ow(0))
and so it follows that
(1 — 0u(0)) " (SuKY + oS, S.KY + ol (0)KY) (4.2)

is also a symbol for S¢.

Suppose A is of type «. Then we may without loss of generality assume that
@ + oS, is a symbol for A where @ isin K2. Applying Lemma 4.6 we see that AS%
isin .7, if and only if there exist ®,¥ € K? such that

0@ (TSSKE) — (S.75.9) © S.5.K§ = D@ Ky + K @ W
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Factoring o out of the left-hand side, we get

0® (S5.KY) — (SuSu®) @ SuSKE = ((1 = 5.57) 9) © S.S.Ky

The conclusion follows. [

5. Algebras of TTOs

The results of the previous section show that the TTOs of type « form a weakly
closed commutative algebra for any o € C*, which we denote %% . In this section we
will show that these algebras are maximal — any algebra in .7, is a subalgebra of at
least one Z*.

We begin by showing that if Ag is of type o, Ay € 7, and their product is in
., then either Ag is a multiple of I, or Ay is of type o as well.

LEMMA 5.1. Let Ap,Ap € J, such that ApAy € F, and let o € C*. If one of
the operators in the product is of type «, then either it is a constant multiple of the
identity operator, or the other is of type & as well.

Proof. Since ApAw is in .7, it is a CSO, and so ApAy = AyAg by Proposi-
tion 2.1. Thus we assume without loss of generality that Ag is of type o . Addition-
ally ApAw is in .7, if and only if its adjoint CApAwC = AgAy is as well, where Ag
is of type @ !, so we assume without loss of generality that Ag is of type a € D.
So @ é ®o + aSufpvo+cK6‘ and ¥ é v + y, for some @y, Wi,y € Kf, where by
Proposition 4.3 we may assume that @o(0) =0, ¢ € C. By Lemma 4.6, there exists
@, ¥y € K> such that

Dy @ Ky + K @ o = (@0 + cKf) @ yp — (SM (as,%)) @ (Suyn)

= Qo @ Y2+ cKi @y — o ® (TS, Y1)
= Qo @ (Y2 —US, Y1) + cKi @y

So @@ (y2 — S, Y1) = Po @ KY + Ki @ for some W) € K. So either @y and K
are linearly dependent or ¥ and Kjj are. If ®p and K are linearly dependent, then
®y = ¢ K} which means @y = c2K{, but this and ¢y(0) = 0 then imply that ¢; =0,
andso @p =0 and Ap = cl. Otherwise, ¥'| = 3Ky and so y» — as,y = c4Kjy , which
means Ay is of type o by Proposition4.2. [

We now prove the main theorem of this section.
THEOREM 5.2. Let ®,¥ € L*(T) such that Ae,Ay € ,. Then ApAy € 7, if

and only if one of two (not mutually exclusive) cases holds:
Trivial case: Either Agp or Ay is equal to cl for some ¢ € C.
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Non-trivial case: Ap and Ay are both of type a for some o € C*, in which case
their product is of type o as well.

Proof. The sufficiency of either case follows from earlier discussion, so we prove
their necessity. In what follows we will use the fact that if ® and ¥ are functions such
that ApAw € .7, then for any complex constants ¢i,¢2 Adtc;Avic, € T

Suppose ApAy € 7,. By Lemma 5.1 it suffices to show that one of A and Ay
is of type o for some o € C*.

There exists @;, y; € K> such that we may assume without loss of generality that
® = ¢ + @, and that ¥ = y; + . Then it follows by Lemma 4.6 that

01 QY — (Sug2) @ (Suyn) = Po @ Kf + Kj @ ¥o

holds for some ®g,¥y in Kf. If at least one of ®y and ¥, is non-zero, but one of
them is in CK{, then the right-hand side of this equation is a rank one operator f ® g.
Thus we consider the following three cases.

(D §01®1//2_(Sua2/)®(suﬁ/\1) =0
2) ¢rOY— (Sup2) @ (Suy1) =f®g: f.8 €K?
3) 1 Ryy— (S,fqo?)@(SuﬁH) = <I>0®K5‘+Kg®‘{’o; Dy, Yy # ch

In what follows, ¢ and ¢; represent complex constants that may change from para-
graph to paragraph.

Case 1: We have @1 ® v = (S,02) ® (S,y1), which means that y, and S,y are
linearly dependent. Both y» and S,y are non-zero, so W, = &S,y for @ # 0 and it
follows from Proposition 4.2 that Ay is of type o.

Case 2: We have @1 @y — (S,02) @ (Suy1) = f®g; f,g € K>. So either ¢; and
S.@, are linearly dependent or S,y and y» are. In the latter case, we again get that
Ay is of type o for some o # 0. Assume instead that ¢ = ¢S, @, for ¢; # 0. Then

by Equation 2.3 ¢28,¢1 = S.S.92 = ¢ — (92, K§) K, and s0 ¢ — 28,1 € CKY and
therefore by Proposition 4.2 Ag is of type ot =¢;.

Case 3: We have @1 @ Y2 — (Su@2) @ (Su 1) = Po @ K + K @ Wo; Do, Wo # Kl .
There exists f € K> such that £(0) =0 and (f,®g) = 1. Then we have

Ky = (Yo®Ky+ Ky @D) f
= (2@ 01) f — (Su¥1 @ 8u02) f
=y <f7(Pl> _Suﬁ <f7Sua2/>
If (f,@1) =0, then ¢K} = S,y1, and so by Proposition 4.2 Ay is of type eo.

Similarly, if {f,S,¢;) =0, then cK = v, and Ay is of type 0. So we can assume
that y, = @S, y1 + cKy forsome o # 0. Thus Ay is of type o by Proposition4.2. [J

EXAMPLE 5.3. Theorem 5.1 of [11] classifies all the rank one operators in .7,
and finds symbols for them. Specifically, for A € D Kz ® Ki‘ is in .7, and has with
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symbol u/(z—A), and if u has an ADC at { € T then K¢ ©K? is in J, and has
symbol Kg +K§[¢]— 1. We will show that all of them are of type o for some o € C*,

and compute . . .
Let A € D and consider A = K} ® K} , with symbol u/(z—A). Since K} (A) =

— 2 . N
u'(A), <K)Lf ®KK> =u'(A)K} @ K} so it follows that K} ® K} is of type a for some
o € C*. Since

w/(z—A) 2K +u(d)/(z— )
2 K+ u(A)K,
2 K+ u(A)S,KT

A is of type u(1).

Now instead suppose that { € T such that # has an ADC at {, and consider
A= Kg ® Kg which has symbol KE‘ +K_g — 1. Again it is clear that A” is a scalar
multiple of A and hence A is of type « for some o . Since A is self-adjoint, it follows
that o is unimodular. We compute

o uZ —M(CC )
u(f) 1-@@
- ¢ (1 -z
= Cu(O)KY
SO
SKE = CKE —u(Q)Ky = (L) (K¢ —K)
Thus KY — 4 @Suf{g and so K +u(§)suf<vg is a symbol for A, which is therefore

1
of type u({).

Theorem 5.2 has the following consequence which is an analogue of Corollary 2
in [2].

THEOREM 5.4. Let A € 7, be invertible. Then A~' € .7, if and only if A is of
type o for some oo € C*. If A=' € .}, then A and A~ are of the same type

Proof. If A= € ., then both A and A~! are of type « for some a € C* by
Theorem 5.2 since their product is 7 = Agx. If A is of type o, either || <1 or A
is of type B = 1/& < 1. In the first case, we have that AS* = S%A, so A~18% =
ATIS%AATT = A7TAS?A" = S%A~! and A~ is a TTO of type «. In the second case,
we have that A* is an invertible TTO of type 8 where |B| < 1, so its inverse is a TTO
of type B as well. By taking adjoints again, the result follows. [
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CI is a subalgebra of #% for every a, and the intersection of 2% and %P is
either % or CI depending on whether @ = 8 or not. We now consider an arbitrary
algebra &7 contained in .7, and its relationship to %% .

THEOREM 5.5. Let </ be an algebra contained in J,,. Then there exists an o €
C* such that < is a subalgebra of %B*.

Proof. Suppose every A in «f is of the form cI, for ¢ € C. Then I € & and so
&/ = CI which is a subalgebra of every 2*.

Suppose then that there is A € .o/ not of the form cI. A € .7, so by Theorem 5.2
A is of type o for some unique . If B € &7 then AB € 7, and so since A # cl it
follows from Theorem 5.2 that B is of type o as well, and therefore every operator in
o/ is of type o, and so it is a subalgebra of Z* [

6. Properties of %

Due to the duality between Z* and 2@ via taking adjoints, in order to study
these algebras we can look at the cases where o € D. These algebras can then be
divided into two different groups, oo € D and o € T. Different techniques are needed
to deal with each of these cases. We discuss what the product of two TTOs of type o
is, and expand on Theorem 5.4 by finding necessary and sufficient conditions for a TTO
of type « to be invertible, based on its symbol.

6.1. €D

In this subsection, assume o € D.

Sarason’s Commutant Lifting Theorem [9] states that if A is a bounded operator
that commutes with S, then there exists a function ¢ € H* such that ||A]| = ||¢||~ and
A =Ay. The goal of this subsection is to find a Commutant Lifting Theorem for [SY]’.

Let uq = =, for a € D. In what follows, we will be dealing with operators in
both 7, and .7, . Let Al refer to an operator in .7, and Ag* an operator in .7, .

To = My _|qp)-1/2(1 ) 1 an unitary map from K2, onto KZ called a Crofoot
transform [5]. Note that Ta_l = M(l—\oc|2)'/2(1—au)*1 . Sarason [11] showed that S% =
A?/(p o) and that T, 'S%T, = AZ*, the compressed shift on Kfa. Thus there is a
unitary equivalence between %% on K2 and %" on K,fa. The following propositions
describe the operators of the form Ai‘p / for ¢ € H?, which are in fact the operators
in B%.

1—om)

PROPOSITION 6.1.

2 _ _
(1) For ¢ €K, and ot €D, A’;’/(l_w) _A?p(1+om) _A?p—asufﬁ'

(2) If ¢ € H?, then A%

?/(1—am) :Aua- Specifically, A} =1.

(1—om)~!
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() Si= A?/u—om)-

Proof.
(1) Since
1 oo
= (04 n
1—om Z‘O( )
we can compute
¢ < n

— = ¢(am)

. _ 7 - oo —\n é — u
But since ug € zH? it follows that ¥, @ ()" = @(1+ o) and so A/ (1—am)

A’:o (1+am) - The second equality then holds because

— — 0
Pk U W

S p=Sp=1u
z
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2) 9o/(1—om) 2 o+ aup/(l —an) 2 @ by Proposition 2.2, since u@ /(1 — o) €

uH?.
(3) Equation (4.2) and part (1) of this proof imply that S¢ has symbol

1_;W<1Silfu+“m>

so it suffices to show that
z(1 — au(0)) A S.Ky

1—ou 1—au

+au'(0

~—

Since z = S,K{ + uP(uiz),

z SuKy uP(7z)

— —+ -
l—au 1—oau 1—au
S.Kj oP(uiz)

1—aﬁ+ 1—ou’

(1>

(1>

Since Kif = (u—u(0))z, P(iiz) = K%(0) +u(0)z = ' (0) + u(0)z,

Z(1-ou(0) a2 =z  ou(0)z
l—-ou ~ l—au 1-—ou
A SKy o/ (0) au(0)z  ou(0)z
" l—ou l—au l—au l1-ou
SuK§
2 200 4o (0). O

1—ou
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LEMMA 6.2. Let ¢ € H? and a €D. Then ToAy' Ty ' =
= A%/(lfau) Therefore Ay and A(p/ 1—om)
the same norm, and if y € H?, then A" 0/(1-am)
AL (1)) if and only if ug|(@ — w).

and ToAg Ty !
) have

A/ (1-am)
(respectlvely AJ" and A(p/(

= Ay /(1-om)

1—au)

(respecnvely A<0/(1 ) =

Proof. It suffices to show that the equalities hold on K, so let f € K. Then

fo \ fo ufo
(p/(l (Xuf PM(] au>_P<l——aﬁ)_uP<l—OCﬁ>

On the other hand,

Since Ty, is unitary, it follows that A* o/(1—om) = A’J/ /(1—om) if and only if Ay* =

Ay, but by Proposition 2.2 the latter is true if and only if ug|@ — .
Since Ty, is unitary, we have

o/(1-au) = (A”é/(lfom))
= (T Al T, ")
= Tu AP T, !

proving the result for the adjoints. [

THEOREM 6.3. Let A be an bounded operator on K2 and let o € D. Then A is

of type o if and only if there is a function @ € H* such that A = A(”ﬂ/(l au CIfA s
of type o then there is a function y € H” such that | W]l = ||A]| and A = u//(l—om)

and therefore every operator of type o has a bounded symbol. Further, if @,y are in

H™ then Ay _amyAy /(- am) = Aoy /(1-am)-

Proof. Let B= T, 'AT,. Then

ALY (1-am) = A%/ (1-amA

1—om)
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if and only if
o 71 —_7-1 — Alla
BAY* =T, AA;‘/(I_W)TO, =T, A;‘/(I_QE)AT(X =A!B

But this is true if and only if B = Ay for some ¢ € H 2 which is true if and only if

A= A’:o J(1-am) for some ¢ € H?, hence the first claim holds. By the Commutant Lifting
Theorem, there is a function y € H* such that Ag* = Ay* and ||Ag*|| = ||y|-. By
Lemma 6.2 it follows that A =AY, _ .. Since Ty is unitary, Al = [l
To prove the last claim, we compute
u u _ =1 qug ptagr _ =1 gugq 7 __ AU
A(p/(lfaﬁ)Aw/(lfaﬂ) — TOC A(P AW Ta — TOC A(pra _A(PW/(I*O(E) I:l
Justas Aj = @(S,) for ¢ € H”, we get that AG/(1—am) = @ (S%) for ¢ € H*.

Note that A is in the spectrum of Af, if and only if infcp(|u(z)| + |@(z) — 4]) =
0 [3].

PROPOSITION 6.4. Let oo € D and let ¢ € H”. Then Ag/(
and only if infcp(Jug(2)| + |@(z)]) >0

1—om) 18 invertible if

Proof. A?o o 18 invertible if and only if Ay” is invertible, which is true if and

only if inf,ep (|ug(z)|+]0(2)]) >0. O

62. v eT

The case of |ot| =1 is indirectly dealt with in [11, 1] and we collect those results
here. There are TTOs of unimodular type without a bounded symbol under certain
conditions. Specifically, in [1] it is shown that there exists # an inner function with an
ADC at { € T such that Kg ® Kg € 9, does not have a bounded symbol.

Example 5.3 shows that Kg ® Kg is of type u({), and hence it is an example of a
TTO of unimodular type without a bounded symbol.

If, however, we weaken what we mean by “bounded symbol” we can find a bounded
symbol for any TTO of unimodular type. Specifically, we change the measure with re-
spect to which we take the sup norm of a function.

Let o be unimodular, and fixed for the rest of this section. An operator is of type
o if and only if it commutes with S¥, which is in this case a unitary operator known as
a Clark unitary operator, and is unitarily equivalent to M, on the space L*(T, ) where
Ug is the Clark measure associated with S* [4]. [M.]’ is the space of multiplication
operators induced by L () and so by using the unitary equivalence, every operator
of type o is equal to ®(SY) where ® € L”(ly). In this sense we can think about
@ as a “bounded symbol” for the operator. This gives us a symbol calculus of sorts
for operators of type o : given @, bounded L, -almost everywhere, the product of
Mg and My is Mey where @Y is itself bounded L, -almost everywhere. Hence
D(ST)F(S%) = PY(SY). It follows that a TTO of type « is invertible if and only if it
is of the form ®(SY), where |®| > 6 > 0 Uy -almost everywhere.
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We can use this symbol calculus to precisely describe the unitary operators in .7,
on a given model space.

PROPOSITION 6.5. Let A € 9,. Then A is unitary if and only if it is equal to
D(S%) for some a € T and some ® € L=(T, uy) such that |®| =1 g -almost every-
where. Specifically, any unitary operator in ., is of unimodular type, and commutes
with the Clark unitary operator of the same type.

Proof. If A is unitary then AA* = I, which means that A and A* must both be of
the same type o € C*. Thus o =@ ' which implies that ¢ is of unimodular type. So
A =®(S%) forsome ® € L(T, Uy ). Then [ = AA* = O(S*)D(S¥) = |@|*>(S%) which
implies that |®| =1 uy—almost everywhere. The other direction is obvious. [J
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