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ALGEBRAS OF TRUNCATED TOEPLITZ OPERATORS

N. A. SEDLOCK

(Communicated by I. M. Spitkovsky)

Abstract. We find necessary and sufficient conditions for the product of two truncated Toeplitz
operators on a model space to itself be a truncated Toeplitz operator, and as a result find a
characterization for the maximal algebras of bounded truncated Toeplitz operators.

1. Introduction

Let C denote the complex plane, C∗ the Riemann sphere, D denote the unit
disc, and let T denote the unit circle. H2 is the usual Hardy space, the subspace of
L2(T) of normalized Lebesgue measure m on T whose harmonic extensions to D

are holomorphic (or, whose negative indexed Fourier coefficients are all zero). H2

will interchangably refer to both the boundary functions and the functions on D . Let
P denote the projection from L2(T) to H2 , which is given explicitly by the Cauchy
integral:

(P f )(λ ) =
∫

T

f (ζ )

1−λζ
dm(ζ ),λ ∈ D.

The reproducing kernel at λ ∈ D for the Hardy space is the the Szego kernel Kλ :=
(1− λ z)−1 . S denotes the shift operator f �→ z f on H2 . Its adjoint (the backward
shift) is the operator

S∗ f =
f − f (0)

z
.

A Toeplitz operator is the compression of a multiplication operator on L2(T) to
H2 . In other words, given Φ ∈ L2(T) (called the symbol of the operator), TΦ = PMΦ
is the operator that sends f to P(Φ f ) for all f ∈ H2 . This operator is bounded if
and only if Φ ∈ L∞(T) , and the mapping Φ→ TΦ from L∞ to the space of bounded
operators on H2 is linear and one-to-one. In the case that Φ∈H∞ , the Toeplitz operator
TΦ is just the multiplication operator MΦ . In [2], Brown and Halmos describe the
algebraic properties of Toeplitz operators. Among other things, they found necessary
and sufficient conditions for the product of two Toeplitz operators to itself be a Toeplitz
operator, namely that either the first operator’s symbol is antiholomorphic or the second
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operator’s symbol is holomorphic. In either case, the symbol of the product is the
product of the symbols (i.e. TΦTΨ = TΦΨ ).

More recently, Sarason [11] found analogues to several of Brown and Halmos’s
results for truncated Toeplitz operators on the model spaces H2 � uH2 , where u is
some non-constant inner function. The model spaces are the backward-shift invariant
subspaces of H2 (that they are backward shift invariant follows easily from the fact that
uH2 is clearly shift invariant). Let K2

u denote the space H2�uH2 from here forward.
Let Pu = P−MuPMu denote the projection from L2 to K2

u .
Given Φ ∈ L2(T) we then define the truncated Toeplitz operator (TTO) AΦ to be

the operator that sends f to Pu(Φ f ) for all f ∈ K2
u . AΦ is well-defined on the set of

bounded functions in K2
u , which is dense in K2

u and which we denote K∞
u . We let Tu

denote the set of truncated Toeplitz operators which extend to be bounded on all of K2
u .

Truncated Toeplitz operators have many of the same properties as ordinary Toeplitz
operators (for example, A∗

Φ = AΦ ) but there are also striking differences. For example,
there are bounded truncated Toeplitz operators with unbounded symbols [1] (though
any truncated Toeplitz operator with a bounded symbol is itself bounded). Addition-
ally, symbols are not unique: the same operator can be generated from more than one
symbol, and we say that Ψ is a symbol for AΦ if AΦ = AΨ . Given two functions Ψ
and Φ , we write Ψ

A≡Φ to mean that AΨ = AΦ .
The truncated Toeplitz operators in Tu do not form an algebra. There are, how-

ever, weakly closed algebras contained in Tu . The goal of this paper is to describe the
maximal algebras contained in Tu , where by maximal we mean that any weakly closed
algebra in Tu is contained within one of these maximal algebras.

In what follows, for functions f ,g in L2(T) , 〈 f ,g〉 =
∫
T f g dm , ‖ f‖ =

√〈 f , f 〉
and f ⊗g is the rank one operator that maps h to f 〈h,g〉 . Further, if A is an operator
on a Hilbert space, [A]′ denotes the commutant of A .

2. Background

In this section we lay out basic facts about operators in Tu and model spaces. Let
u be a non-trivial inner function. K2

u is then a reproducing kernel Hilbert space with

reproducing kernels Ku
λ := PuKλ = 1−u(λ )u

1−λ z
for λ ∈ D . Note that Ku

λ is bounded for all

λ , and hence in K∞
u .

The function u is said to have an angular derivative in the sense of Caratheodory
(ADC) at the point ζ ∈ T if u has a nontangential limit u(ζ ) of unit modulus at ζ
and u′ has a nontangential limit u′(ζ ) at ζ . It is known that u has an ADC at ζ if
and only if every function in K2

u has a nontangential limit at ζ [10]. Thus there exists

a reproducing kernel function Ku
ζ such that

〈
f ,Ku

ζ

〉
= f (ζ ) . Specifically, Ku

ζ is the

limit of Ku
λ as λ approaches ζ nontangentially in the disc and so Ku

ζ = 1−u(ζ )u
1−ζz

. If u is

a finite Blaschke product, both u and u′ are holomorphic in a domain which compactly
contains D and so these boundary reproducing kernels are defined for every unimodular
ζ .
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Truncated Toeplitz operators have a symmetry property called C -symmetry. This
concept is due to Garcia and Putinar [6, 7, 8]. Given a C-Hilbert space H and an
antilinear isometric involution C on H , we say that a bounded operator T is a C -
symmetric operator (CSO) if T ∗ = CTC . Here by isometric we mean that 〈C f ,Cg〉 =
〈g, f 〉 .

In L2(T) , the operator C f = uz f is a conjugation which bijectively maps uH2

to zH2 and K2
u to itself. By restricting ourselves to K2

u , C can be thought of as a
conjugation on K2

u . From here on, C always refers to this operator. We will sometimes
write f̃ for C f for sake of readability. The conjugate reproducing kernel is K̃u

λ (z) =
u(z)−u(λ )

z−λ for z 
= λ and K̃u
λ (λ ) = u′(λ ) and has the property that for f ∈ K2

u , f̃ (λ ) =〈
K̃u
λ , f
〉

.

Consider the operator CAΦC , where Φ ∈ L2(T) and AΦ ∈ Tu . If f ,g ∈ K2
u , then

〈CAΦC f ,g〉 = 〈Cg,AΦC f 〉
=
〈
uzg,Φuz f

〉
=
〈
Φ f ,g

〉
=
〈
(AΦ)∗ f ,g

〉
and so we see that operators in Tu are C -symmetric.

Two CSOs commute if and only if their product is C -symmetric.

PROPOSITION 2.1. Let A1 and A2 be C-symmetric. Then A1A2 is C-symmetric
if and only if A1 and A2 commute.

Proof. Say A1A2 is C -symmetric. Then

A1A2 = CA∗
2A

∗
1C = CA∗

2CCA∗
1C = A2A1.

On the other hand, if A1 and A2 commute, then so do their adjoints, and so

CA1A2C = A∗
1A

∗
2 = A∗

2A
∗
1. �

The operator Su = PuS = Az is critical to what follows. Since K2
u is invariant

under S∗ we see that S∗u = S∗ . Let f ∈ K2
u such that f (0) = 0, i.e. f ⊥ Ku

0 . Then

S∗ f = f/z . On the other hand, S∗Ku
0 = (1− u(0)u− 1 + |u(0)|2)/z = −u(0)K̃u

0 . Su

is C -symmetric, and so Su is characterized by the following equations: Su f = z f for
f ⊥ K̃u

0 , and SuK̃u
0 = −u(0)Ku

0 .
The symbols of TTOs are a more complex issue than the symbols of Toeplitz

operators. Sarason proved the following results in [11] as Theorem 3.1 and Theorem
4.1 respecitively.

PROPOSITION 2.2. If Φ ∈ L2(T) then AΦ = 0 if and only if Φ ∈ uH2 +uH2 .
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PROPOSITION 2.3. A is in Tu iff A−SuAS∗u =Φ⊗Ku
0 +Ku

0 ⊗Ψ for some Φ,Ψ∈
K2

u , in which case A = AΦ+Ψ .

Thus we have a way of finding a symbol for a TTO, but TTOs do not have unique
symbols.

The following is a necessary and sufficient condition for a TTO with symbol in
K2

u +K2
u to equal zero.

PROPOSITION 2.4. Let ϕ1,ϕ2 ∈ K2
u . Then Aϕ1+ϕ2 = 0 if and only if ϕ1 = cKu

0
and ϕ2 = −cKu

0 for some c ∈ C .

Proof. Let ϕ1 = cKu
0 and ϕ2 = −cKu

0 . Then

Aϕ1+ϕ2 = AcKu
0−cKu

0
= Acu(z)u(0)−cu(z)u(0)

so Aϕ1+ϕ2 = 0.
Now suppose Aϕ1+ϕ2 = 0. Then A−SuAS∗u = 0 =ϕ1⊗Ku

0 +Ku
0 ⊗ϕ2 , so ϕ1 = cKu

0
for some c ∈ C . Hence cKu

0 ⊗Ku
0 +Ku

0 ⊗ϕ2 = 0 and so ϕ2 = −cKu
0 as required. �

Since I = AKu
0

we can compute the identities

I−SuS
∗
u = Ku

0 ⊗Ku
0 (2.1)

and
I−S∗uSu = K̃u

0 ⊗ K̃u
0 (2.2)

from which it follows that

SuS̃uϕ̃ = SuS
∗
uϕ = ϕ−ϕ(0)Ku

0 (2.3)

for all ϕ ∈ K2
u .

The following identities are Lemma 2.2 of [11].

PROPOSITION 2.5.

(1) If λ ∈ D ,
S∗uK

u
λ = λKu

λ −u(λ )K̃u
0

and
SuK̃u

λ = λ K̃u
λ −u(λ )Ku

0 .

(2) If λ ∈ D is nonzero,

SuK
u
λ =

1

λ
(
Ku
λ −Ku

0

)
and

S∗uK̃u
λ =

1
λ

(
K̃u
λ − K̃u

0

)
.

(3) These equalities all hold for λ ∈ T such that u has an ADC at λ .
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3. Generalized Shifts

We now define the generalized compressed shift operator. Our definition follows
Sarason’s definition in Section 14 of [11].

DEFINITION 3.1. Let α ∈ D . Then Sαu = Su + α
1−αu(0)

Ku
0 ⊗ K̃u

0 .

Again, we can think about the generalized shift as follows. If f ∈ K2
u and f ⊥ K̃u

0 ,
then Sαu f = z f . On the other hand,

Sαu K̃u
0 = SuK̃u

0 +
α
〈
K̃u

0 , K̃u
0

〉
1−αu(0)

Ku
0

= −u(0)Ku
0 +

α(1−|u(0)|2)
1−αu(0)

Ku
0

=
α−u(0)
1−αu(0)

Ku
0 .

The corollary to Theorem 10.1 in [11] states that if a bounded operator A on K2
u

is in [Sαu ]′ then A is in Tu . The following proof gives us the symbol of any operator in
[Sαu ]′ .

PROPOSITION 3.2. Let α ∈ D . If A is a bounded operator that commutes with
Sαu then A is in Tu and has a symbol ϕ +αSuϕ̃ where ϕ = AKu

0 (1−αu(0))−1 .

Proof. First note that

ASαu = ASu +
α

1−αu(0)
(AKu

0 )⊗ K̃u
0 (3.1)

and

Sαu A = SuA+
α

1−αu(0)
Ku

0 ⊗
(
A∗K̃u

0

)
= SuA+

α
1−αu(0)

Ku
0 ⊗
(
ÃKu

0

)
. (3.2)

If A and Sαu commute then we can use Equations (3.1) and (3.2) to see that

SuA = Sαu A− α
1−αu(0)

Ku
0 ⊗
(
ÃKu

0

)
= ASαu − α

1−αu(0)
Ku

0 ⊗
(
ÃKu

0

)
= ASu +

α
1−αu(0)

(AKu
0 )⊗ K̃u

0 −
α

1−αu(0)
Ku

0 ⊗
(
ÃKu

0

)
.
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It follows that

A−SuAS∗u = A−ASuS
∗
u −

α
1−αu(0)

AKu
0 ⊗SuK̃u

0 +
α

1−αu(0)
Ku

0 ⊗SuÃKu
0

= AKu
0 ⊗Ku

0 +
u(0)α

1−αu(0)
AKu

0 ⊗Ku
0 +

α
1−αu(0)

Ku
0 ⊗SuÃKu

0

=
AKu

0

1−αu(0)
⊗Ku

0 +Ku
0 ⊗αSuC

(
AKu

0

1−αu(0)

)
.

The conclusion then follows from Proposition 2.3. �

COROLLARY 1. Let A be a bounded opeator that commutes with Sαu
∗ , for α ∈D .

Then A is in Tu and has a symbol of the form αψ+Suψ̃ + c for ψ ∈ K2
u and c ∈ C .

Proof. A∗ commutes with Sαu and therefore has symbol ϕ +αSuϕ̃ where ϕ =
A∗Ku

0 (1−αu(0)) by the previous proposition. Therefore A has symbol αSuϕ̃ +ϕ .

Define ψ = Suϕ̃ . Then by Equation 2.3 Suψ̃ = SuS̃uϕ̃ = ϕ−ϕ(0)Ku
0 and αψ+Suψ̃+

ϕ(0) is a symbol for A . �
Suppose AΦ and AΨ are in Tu and both commute with Sαu for some α ∈ D . Then

their product AΦAΨ also commutes with Sαu , and is therefore also in Tu . So we know
of two cases when the product of two operators in Tu is itself in Tu — when both
operators commute with some Sαu or Sαu

∗ , or when one of the operators is Ac = cI for
some c ∈ C . We will show in Section 5 that these are the only cases where the product
of two operators in Tu is itself in Tu .

4. TTOs of type α

If AΦ is in Tu and commutes with Sαu , then AΦ+c also commutes with Sαu for all
c ∈ C . If α ∈ D \ {0} , then α−1 ∈ C\D , and by the corollary to Proposition 3.2 any
operator in Tu which commutes with Sαu

∗ has a symbol of the form ψ +α−1Suψ̃ + c
with ψ ∈ K2

u and c ∈ C . We therefore make the following definition.

DEFINITION 4.1. An operator A ∈ Tu is said to be a TTO of type α for α ∈ C

if A has a symbol of the form ϕ +αSuϕ̃ + c , where ϕ ∈ K2
u and c ∈ C . Note that

an operator in Tu is of type 0 if and only if it has a holomorphic symbol. We say an
operator in Tu is of type ∞ if it has an antiholomorphic symbol.

PROPOSITION 4.2. Let A := Aϕ1+ϕ2 be in Tu , where ϕi ∈ K2
u .

(1) If α ∈ C , then A is of type α if and only if αSuϕ̃1 −ϕ2 ∈ CKu
0 .

(2) A is of type ∞ if and only if ϕ1 ∈ CKu
0 if and only if Suϕ̃1 ∈ CKu

0 .
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Proof.

(1) Let Aϕ1+ϕ2 be of type α . Then by Proposition 3.2 and its corollary there is some
ϕ ∈ K2

u and c ∈ C such that Aϕ1+ϕ2 = Aϕ+cKu
0+αSuϕ̃

, or, equivalently

Aϕ1−ϕ−cKu
0+ϕ2−αSuϕ̃

= 0

By Proposition 2.4 we have that ϕ1 −ϕ ∈ CKu
0 and that ϕ2 −αSuϕ̃ ∈ CKu

0 . So
then by Proposition 2.5 we have that Suϕ̃1 − Suϕ̃ ∈ CKu

0 and so αSuϕ̃1 −ϕ2 =
αSuϕ̃1−αSuϕ̃−ϕ2 +αSuϕ̃ ∈ CKu

0 .

Now suppose that αSuϕ̃1−ϕ2 ∈ CKu
0 . Then ϕ2 = αSuϕ̃1 + cKu

0 for some c ∈ C

and thus Aϕ1+ϕ2 = Aϕ1+αSuϕ̃1+cKu
0

is of type α .

(2) A is of type ∞ if and only if ϕ1 +ϕ2
A≡ ψ for some ψ ∈ K2

u , which is true if and

only if ϕ1 = Pu(ψ−ϕ2)
A≡ ψ(0)−ϕ2(0) which is true if and only if ϕ1 ∈ CKu

0 .

If ϕ1 = cKu
0 then Suϕ̃1 = −cu(0)Ku

0 by Proposition 2.5. On the other hand, if
Suϕ̃1 = cKu

0 then

ϕ1 = (SuS
∗
u −Ku

0 ⊗Ku
0 )ϕ1

= SuS̃uϕ̃1 −ϕ1(0)Ku
0

= Suc̃Ku
0 −ϕ1(0)Ku

0

= −cu(0)Ku
0 −ϕ1(0)Ku

0

∈ CKu
0 �

PROPOSITION 4.3. Any TTO of type α ∈C has a symbol of the form ϕ0+αSuϕ̃0+
cKu

0 where ϕ0(0) = 0 and c ∈ C , and any TTO of antiholomorphic type has a symbol
of the form ϕ0 + cKu

0 where ϕ0(0) = 0 .

Proof. To prove the first statement, let A be of type α ∈C and let ϕ+αSuϕ̃+cKu
0

be a symbol of A , where ϕ ∈ K2
u and c ∈ C . Define ϕ0 = ϕ − 〈ϕ,Ku

0〉
〈Ku

0 ,Ku
0〉K

u
0 . Then

ϕ0 ⊥Ku
0 , or in other words, ϕ0(0) = 0. Then since by Proposition 2.5 SuK̃u

0 =−u(0)Ku
0

we have that

ϕ+αSuϕ̃+ cKu
0

A≡ ϕ0 +

〈
ϕ ,Ku

0

〉〈
Ku

0 ,Ku
0

〉Ku
0 +αSuϕ̃0 +α

〈
ϕ ,Ku

0

〉〈
Ku

0 ,Ku
0

〉Ku
0 + cKu

0

A≡ ϕ0 +αSuϕ̃0 + c1K
u
0

where c1 ∈ C .

To prove the second statement, consider A = Aϕ and let ϕ0 = ϕ − 〈ϕ,Ku
0〉

〈Ku
0 ,Ku

0〉K
u
0 .

Then ϕ
A≡ ϕ0 + 〈Ku

0 ,ϕ〉
〈Ku

0 ,Ku
0〉K

u
0 . �
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Let α ∈ C \ {0} . Then if A = Aϕ1+ϕ2 is of type α , its adjoint is A∗ = Aψ1+ψ2

where ψ1 = ϕ2 and ψ2 = ϕ1 . By Proposition 4.2 it follows that

αSuψ2−ψ1 ∈ CKu
0 .

It follows by Proposition 2.5 that

SuC(αSuψ̃2−ψ1) = αSuS
∗
uψ2−Suψ̃1

= αψ2−Suψ̃1 +α 〈ψ2,K
u
0 〉Ku

0

∈ CKu
0 .

The second equation follows from Equation 2.3. Hence we have that α−1Suψ̃1 −ψ2 ∈
CKu

0 and so it follows that A∗ is of type α−1 . In the case that A is of type 0, A has
a holomorphic symbol, and so its adjoint A∗ has an antiholomorphic symbol, and is
therefore of type ∞ . Thus we can state the following duality relationship.

PROPOSITION 4.4. An operator in Tu is of type α ∈ C∗ if and only if its adjoint
is of type α−1 using the convention that 0−1 = ∞ and ∞−1 = 0 .

The operator cI = AcKu
0

= AcKu
0

is, by the above definition, of type α for every

α ∈ C∗ . This is the only way that an operator in Tu can be of more than one type.
Specifically, this means that any A ∈ Tu is either of no type, one type, or every type.

PROPOSITION 4.5. Let A ∈ Tu be of type α and of type β , where α 
= β . Then
A = cI for some c ∈ C .

Proof. If α = 0 and β = ∞ , then there are ϕ ,ψ ∈ K2
u such that A = Aϕ = Aψ

and so Aϕ −SuAϕS∗u = ϕ⊗Ku
0 and Aψ −SuAψS∗u = Ku

0 ⊗ψ by Proposition 2.3. Thus
ϕ⊗Ku

0 = Ku
0 ⊗ψ and ϕ = cKu

0 for some c ∈ C , and so A = cI .
Now suppose that at least one of α and β is in C\{0} . By looking at A∗ if needed

we can assume without loss of generality that neither α or β is ∞ . By Proposition 4.3
there are ϕ ,ψ ∈ K2

u and c,d ∈ C such that ϕ(0) = ψ(0) = 0 and both ϕ +αSuϕ̃ + c
and ψ+βSuψ̃ +d are symbols for A . It follows that

A−SuAS∗u = ϕ⊗Ku
0 + cKu

0 ⊗Ku
0 +αKu

0 ⊗Suϕ̃
= ψ⊗Ku

0 +dKu
0 ⊗Ku

0 +βKu
0 ⊗Suψ̃ .

By rearranging terms we see that ϕ−ψ ∈CKu
0 . Since ϕ ,ψ ⊥Ku

0 it follows that ϕ =ψ
and

(c−d)Ku
0 ⊗Ku

0 = (β −α)Ku
0 ⊗Suϕ̃ .

Therefore Suϕ̃ = c−d
β−αKu

0 but since

〈Suϕ̃ ,Ku
0 〉 =

〈
K̃u

0 ,S∗uϕ
〉

=
〈
SuK̃u

0 ,ϕ
〉

= 〈−u(0)Ku
0 ,ϕ〉 = 0

we get that c = d and Suϕ̃ = 0.
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Finally we calculate ϕ = (I −Ku
0 ⊗Ku

0 )ϕ = SuS̃uϕ̃ = 0 and get that A = Ac =
cI . �

For the rest of this section fix α ∈ D . By Proposition 3.2 if an operator A ∈ Tu is
in [Sαu ]′ then it is of type α . We spend the remainder of this section proving that every
TTO of type α is in [Sαu ]′ . Specifically, we will show that the product of two TTOs of
type α is itself in Tu . Therefore any two TTOs of type α commute and so any TTO
of type α commutes with Sαu . Therefore for α ∈ D , [Sαu ]′ is precisely the TTOs of
type α , and therefore [Sαu

∗]′ is precisely the TTOs of type α−1 with the convention
that 1

0 = ∞ .
First we prove a lemma that will prove useful here and later.

LEMMA 4.6. Let Φ = ϕ1 +ϕ2 and Ψ = ψ1 +ψ2 where ϕi,ψi ∈ K2
u such that

AΦ,AΨ ∈ Tu . Then AΦAΨ is in Tu if and only if

ϕ1⊗ψ2− (Suϕ̃2)⊗ (Suψ̃1) = Φ0 ⊗Ku
0 +Ku

0 ⊗Ψ0

for some Φ0,Ψ0 ∈ K2
u .

Proof. In what follows, Φ0 and Ψ0 represent functions in K2
u that can be different

from use to use. By Proposition 2.3, AΦAΨ ∈ Tu if and only if AΦAΨ−SuAΦAΨS∗u =
Φ0⊗Ku

0 +Ku
0 ⊗Ψ0 . It suffices to show that AΦAΨ−SuAΦAΨS∗u = ϕ1⊗ψ2− (Suϕ̃2)⊗

(Suψ̃1)+Φ0 ⊗Ku
0 +Ku

0 ⊗Ψ0 . Recall Equation 2.2, which states that I = S∗uSu + K̃u
0 ⊗

K̃u
0 . Therefore

SuAΦAΨS∗u = SuAΦ(S∗uSu + K̃u
0 ⊗ K̃u

0 )AΨS∗u

= SuAΦS∗uSuAΨS∗u +
(
SuAΦK̃u

0

)
⊗
(
SuAΨK̃u

0

)
. (4.1)

Since AΦK̃u
0 = Pu [(ϕ1 +ϕ2) (z (u−u(0)))] we have

SuAΦK̃u
0 = Su

(
ϕ̃2 +ϕ1(0)K̃u

0 −u(0)S∗uϕ1

)
= Suϕ̃2 −u(0)ϕ1(0)Ku

0 −u(0)SuS
∗
uϕ1

= Suϕ̃2 −u(0)ϕ1(0)Ku
0 −u(0)ϕ1 +u(0)(Ku

0 ⊗Ku
0 )ϕ1

= Suϕ̃2 −u(0)ϕ1(0)Ku
0 −u(0)ϕ1 +u(0)ϕ1(0)Ku

0

= Suϕ̃2 −u(0)ϕ1

so the second term of (4.1) is(
SuAΦK̃u

0

)
⊗
(
SuAΨK̃u

0

)
=
(
Suϕ̃2 −u(0)ϕ1

)⊗ (Suψ̃1−u(0)ψ2
)

= Suϕ̃2⊗Suψ̃1−u(0)
[
ϕ1 ⊗Suψ̃1

]
−u(0)

[
Suϕ̃2⊗ψ2

]
+ |u(0)|2 [ϕ1⊗ψ2] .
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By Proposition 2.3 we have that SuAΦS∗u = AΦ−ϕ1 ⊗Ku
0 −Ku

0 ⊗ϕ2 , and so the first
term of (4.1) is

SuAΦS∗uSuAΨS∗u = (AΦ−ϕ1⊗Ku
0 −Ku

0 ⊗ϕ2)(AΨ−ψ1⊗Ku
0 −Ku

0 ⊗ψ2)
= AΦAΨ−Φ0⊗Ku

0 − (AΦKu
0 )⊗ψ2

−ϕ1⊗
(
AΨKu

0

)
+
(
1−|u(0)|2)ϕ1⊗ψ2−Ku

0 ⊗Ψ0

= AΦAΨ +Φ0⊗Ku
0 −Ku

0 ⊗Ψ0−
(
1+ |u(0)|2)ϕ1 ⊗ψ2

+u(0)
(
Suϕ̃2 ⊗ψ2

)
+u(0)

(
ϕ1⊗Suψ̃1

)
.

By combining the expanded terms together, we get

SuAΦAΨS∗u = Suϕ̃2⊗Suψ̃1 −ϕ1⊗ψ2 +Φ0⊗Ku
0 +Ku

0 ⊗Ψ0 +AΦAΨ

and the result follows. �

THEOREM 4.7. Let α ∈ D , and let A be a bounded operator on K2
u . Then A is

a TTO of type α if and only if A is in [Sαu ]′ .

Proof. Proposition 3.2 proves that everything in [Sαu ]′ is of type α , so assume
A is of type α . We will prove that ASαu is in Tu , and hence C -symmetic, and so
ASαu = Sαu A by Proposition 2.1.

Sαu commutes with itself, and therefore is of type α . By Definition 3.1

Sαu Ku
0 = SuK

u
0 +

αu′(0)
1−αu(0)

Ku
0 .

So by Proposition 3.2

(1−αu(0))−1(SuK
u
0 +αSuS̃uKu

0 +
αu′(0)

1−αu(0)
(Ku

0 +αSuK̃u
0 ))

is a symbol for Sαu . By Proposition 2.5

Ku
0 +αSuK̃u

0
A≡ (1−αu(0))

and so it follows that

(1−αu(0))−1(SuK
u
0 +αSuS̃uKu

0 +αu′(0)Ku
0 ) (4.2)

is also a symbol for Sαu .
Suppose A is of type α . Then we may without loss of generality assume that

ϕ+αSuϕ̃ is a symbol for A where ϕ is in K2
u . Applying Lemma 4.6 we see that ASαu

is in Tu if and only if there exist Φ,Ψ ∈ K2
u such that

ϕ⊗
(
αSuS̃uKu

0

)
−
(
Suα̃Suϕ̃

)
⊗SuS̃uKu

0 = Φ⊗Ku
0 +Ku

0 ⊗Ψ
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Factoring α out of the left-hand side, we get

ϕ⊗
(
SuS̃uKu

0

)
−
(
SuS̃uϕ̃

)
⊗SuS̃uKu

0 = ((I−SuS
∗
u)ϕ)⊗SuS̃uKu

0

= ϕ(0)Ku
0 ⊗SuS̃uKu

0

The conclusion follows. �

5. Algebras of TTOs

The results of the previous section show that the TTOs of type α form a weakly
closed commutative algebra for any α ∈ C∗ , which we denote Bα . In this section we
will show that these algebras are maximal — any algebra in Tu is a subalgebra of at
least one Bα .

We begin by showing that if AΦ is of type α , AΨ ∈ Tu , and their product is in
Tu , then either AΦ is a multiple of I , or AΨ is of type α as well.

LEMMA 5.1. Let AΦ,AΦ ∈ Tu such that AΦAΨ ∈ Tu and let α ∈ C∗ . If one of
the operators in the product is of type α , then either it is a constant multiple of the
identity operator, or the other is of type α as well.

Proof. Since AΦAΨ is in Tu , it is a CSO, and so AΦAΨ = AΨAΦ by Proposi-
tion 2.1. Thus we assume without loss of generality that AΦ is of type α . Addition-
ally AΦAΨ is in Tu if and only if its adjoint CAΦAΨC = AΦAΨ is as well, where AΦ
is of type α−1 , so we assume without loss of generality that AΦ is of type α ∈ D .

So Φ
A≡ ϕ0 +αSuϕ̃0 + cKu

0 and Ψ
A≡ ψ1 +ψ2 for some ϕ0,ψ1,ψ2 ∈ K2

u , where by
Proposition 4.3 we may assume that ϕ0(0) = 0, c ∈ C . By Lemma 4.6, there exists
Φ0,Ψ0 ∈ K2

u such that

Φ0 ⊗Ku
0 +Ku

0 ⊗Ψ0 = (ϕ0 + cKu
0)⊗ψ2−

(
Su

˜(αSuϕ̃0
))⊗ (Suψ̃1

)
= ϕ0⊗ψ2 + cKu

0 ⊗ψ2−ϕ0⊗
(
αSuψ̃1

)
= ϕ0⊗

(
ψ2−αSuψ̃1

)
+ cKu

0 ⊗ψ2

So ϕ0⊗
(
ψ2 −αSuψ̃1

)
=Φ0⊗Ku

0 +Ku
0 ⊗Ψ1 for some Ψ1 ∈ K2

u . So either Φ0 and Ku
0

are linearly dependent or Ψ1 and Ku
0 are. If Φ0 and Ku

0 are linearly dependent, then
Φ0 = c1Ku

0 which means ϕ0 = c2Ku
0 , but this and ϕ0(0) = 0 then imply that c2 = 0,

and so ϕ0 = 0 and AΦ = cI . Otherwise, Ψ1 = c3Ku
0 and so ψ2−αSuψ̃1 = c4Ku

0 , which
means AΨ is of type α by Proposition 4.2. �

We now prove the main theorem of this section.

THEOREM 5.2. Let Φ,Ψ ∈ L2(T) such that AΦ,AΨ ∈ Tu . Then AΦAΨ ∈ Tu if
and only if one of two (not mutually exclusive) cases holds:

Trivial case: Either AΦ or AΨ is equal to cI for some c ∈ C .
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Non-trivial case: AΦ and AΨ are both of type α for some α ∈ C∗ , in which case
their product is of type α as well.

Proof. The sufficiency of either case follows from earlier discussion, so we prove
their necessity. In what follows we will use the fact that if Φ and Ψ are functions such
that AΦAΨ ∈ Tu , then for any complex constants c1,c2 AΦ+c1AΨ+c2 ∈ Tu .

Suppose AΦAΨ ∈ Tu . By Lemma 5.1 it suffices to show that one of AΦ and AΨ
is of type α for some α ∈ C∗ .

There exists ϕi,ψi ∈ K2
u such that we may assume without loss of generality that

Φ = ϕ1 +ϕ2 and that Ψ = ψ1 +ψ2 . Then it follows by Lemma 4.6 that

ϕ1⊗ψ2− (Suϕ̃2)⊗ (Suψ̃1) = Φ0 ⊗Ku
0 +Ku

0 ⊗Ψ0

holds for some Φ0,Ψ0 in K2
u . If at least one of Φ0 and Ψ0 is non-zero, but one of

them is in CKu
0 , then the right-hand side of this equation is a rank one operator f ⊗g .

Thus we consider the following three cases.

(1) ϕ1⊗ψ2− (Suϕ̃2)⊗ (Suψ̃1) = 0

(2) ϕ1⊗ψ2− (Suϕ̃2)⊗ (Suψ̃1) = f ⊗g; f ,g ∈ K2
u

(3) ϕ1⊗ψ2− (Suϕ̃2)⊗ (Suψ̃1) = Φ0 ⊗Ku
0 +Ku

0 ⊗Ψ0; Φ0,Ψ0 
= cKu
0

In what follows, c and ci represent complex constants that may change from para-
graph to paragraph.

Case 1: We have ϕ1⊗ψ2 = (Suϕ̃2)⊗ (Suψ̃1) , which means that ψ2 and Suψ̃1 are
linearly dependent. Both ψ2 and Suψ̃1 are non-zero, so ψ2 = αSuψ̃1 for α 
= 0 and it
follows from Proposition 4.2 that AΨ is of type α .

Case 2: We have ϕ1⊗ψ2− (Suϕ̃2)⊗ (Suψ̃1) = f ⊗g; f ,g ∈ K2
u . So either ϕ1 and

Suϕ̃2 are linearly dependent or Suψ̃1 and ψ2 are. In the latter case, we again get that
AΨ is of type α for some α 
= 0. Assume instead that ϕ1 = c1Suϕ̃2 for c1 
= 0. Then

by Equation 2.3 c2Suϕ̃1 = SuS̃uϕ̃2 = ϕ2−
〈
ϕ2,Ku

0

〉
Ku

0 , and so ϕ2− c2Suϕ̃1 ∈ CKu
0 and

therefore by Proposition 4.2 AΦ is of type α = c2 .
Case 3: We have ϕ1⊗ψ2−(Suϕ̃2)⊗(Suψ̃1) =Φ0⊗Ku

0 +Ku
0 ⊗Ψ0;Φ0,Ψ0 
= cKu

0 .
There exists f ∈ K2

u such that f (0) = 0 and 〈 f ,Φ0〉 = 1. Then we have

Ku
0 = (Ψ0⊗Ku

0 +Ku
0 ⊗Φ0) f

= (ψ2⊗ϕ1) f − (Suψ̃1⊗Suϕ̃2
)

f

= ψ2 〈 f ,ϕ1〉−Suψ̃1
〈
f ,Suϕ̃2

〉
If 〈 f ,ϕ1〉 = 0, then cKu

0 = Suψ̃1 , and so by Proposition 4.2 AΨ is of type ∞ .
Similarly, if

〈
f ,Suϕ̃2

〉
= 0, then cKu

0 = ψ2 and AΨ is of type 0. So we can assume
that ψ2 =αSuψ̃1+cKu

0 for some α 
= 0. Thus AΨ is of type α by Proposition 4.2. �

EXAMPLE 5.3. Theorem 5.1 of [11] classifies all the rank one operators in Tu

and finds symbols for them. Specifically, for λ ∈ D K̃u
λ ⊗Ku

λ is in Tu and has with
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symbol u/(z− λ ) , and if u has an ADC at ζ ∈ T then Ku
ζ ⊗Ku

ζ is in Tu and has

symbol Ku
ζ +Ku

0 [ζ ]−1. We will show that all of them are of type α for some α ∈ C∗ ,
and compute α .

Let λ ∈ D and consider A = K̃u
λ ⊗Ku

λ , with symbol u/(z−λ ) . Since K̃u
λ (λ ) =

u′(λ ) ,
(
K̃u
λ ⊗Ku

λ

)2
= u′(λ )K̃u

λ ⊗Ku
λ so it follows that K̃u

λ ⊗Ku
λ is of type α for some

α ∈ C∗ . Since

u/(z−λ )
A≡ K̃u

λ +u(λ )/(z−λ )
A≡ K̃u

λ +u(λ )zKλ
A≡ K̃u

λ +u(λ )SuKu
λ

A is of type u(λ ) .
Now instead suppose that ζ ∈ T such that u has an ADC at ζ , and consider

A = Ku
ζ ⊗Ku

ζ which has symbol Ku
ζ + Ku

ζ − 1. Again it is clear that A2 is a scalar
multiple of A and hence A is of type α for some α . Since A is self-adjoint, it follows
that α is unimodular. We compute

K̃u
ζ =

u−u(ζ )
z− ζ

=
u(ζ )

(
1−u(ζ )u

)
ζ
(
1− ζz

)
= ζu(ζ )Ku

ζ

so
SuK̃u

ζ = ζ K̃u
ζ −u(ζ )Ku

0 = u(ζ )
(
Ku
ζ −Ku

0

)
Thus Ku

ζ −1
A≡ u(ζ )SuK̃u

ζ and so Ku
ζ +u(ζ )SuK̃u

ζ is a symbol for A , which is therefore

of type u(ζ ) .

Theorem 5.2 has the following consequence which is an analogue of Corollary 2
in [2].

THEOREM 5.4. Let A ∈ Tu be invertible. Then A−1 ∈ Tu if and only if A is of
type α for some α ∈ C∗ . If A−1 ∈ Tu , then A and A−1 are of the same type

Proof. If A−1 ∈ Tu , then both A and A−1 are of type α for some α ∈ C∗ by
Theorem 5.2 since their product is I = AKu

0
. If A is of type α , either |α| � 1 or A∗

is of type β = 1/α � 1. In the first case, we have that ASαu = Sαu A , so A−1Sαu =
A−1Sαu AA−1 = A−1ASαu A−1 = Sαu A−1 and A−1 is a TTO of type α . In the second case,
we have that A∗ is an invertible TTO of type β where |β | � 1, so its inverse is a TTO
of type β as well. By taking adjoints again, the result follows. �
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CI is a subalgebra of Bα for every α , and the intersection of Bα and Bβ is
either Bα or CI depending on whether α = β or not. We now consider an arbitrary
algebra A contained in Tu and its relationship to Bα .

THEOREM 5.5. Let A be an algebra contained in Tu . Then there exists an α ∈
C∗ such that A is a subalgebra of Bα .

Proof. Suppose every A in A is of the form cI , for c ∈ C . Then I ∈ A and so
A = CI which is a subalgebra of every Bα .

Suppose then that there is A ∈ A not of the form cI . A2 ∈ Tu so by Theorem 5.2
A is of type α for some unique α . If B ∈ A then AB ∈ Tu and so since A 
= cI it
follows from Theorem 5.2 that B is of type α as well, and therefore every operator in
A is of type α , and so it is a subalgebra of Bα �

6. Properties of Bα

Due to the duality between Bα and B(α−1) via taking adjoints, in order to study
these algebras we can look at the cases where α ∈ D . These algebras can then be
divided into two different groups, α ∈ D and α ∈ T . Different techniques are needed
to deal with each of these cases. We discuss what the product of two TTOs of type α
is, and expand on Theorem 5.4 by finding necessary and sufficient conditions for a TTO
of type α to be invertible, based on its symbol.

6.1. α ∈ D

In this subsection, assume α ∈ D .
Sarason’s Commutant Lifting Theorem [9] states that if A is a bounded operator

that commutes with Su , then there exists a function ϕ ∈H∞ such that ‖A‖= ‖ϕ‖∞ and
A = Aϕ . The goal of this subsection is to find a Commutant Lifting Theorem for [Sαu ]′ .

Let uα = u−α
1−αu for α ∈ D . In what follows, we will be dealing with operators in

both Tu and Tuα . Let Au
Φ refer to an operator in Tu and Auα

Φ an operator in Tuα .
Tα = M(1−|α |2)−1/2(1−αu) is an unitary map from K2

uα onto K2
u called a Crofoot

transform [5]. Note that T−1
α = M(1−|α |2)1/2(1−αu)−1 . Sarason [11] showed that Sαu =

Au
z/(1−αu) and that T−1

α Sαu Tα = Auα
z , the compressed shift on K2

uα . Thus there is a

unitary equivalence between Bα on K2
u and B0 on K2

uα . The following propositions
describe the operators of the form Au

ϕ/(1−αu) for ϕ ∈H2 , which are in fact the operators
in Bα .

PROPOSITION 6.1.

(1) For ϕ ∈ K2
u and α ∈ D , Au

ϕ/(1−αu) = Au
ϕ(1+αu) = Au

ϕ−αSuϕ̃
.

(2) If ϕ ∈ H2 , then Au
ϕ/(1−αu) = Au

ϕ . Specifically, Au
(1−αu)−1 = I .



ALGEBRAS OF TRUNCATED TOEPLITZ OPERATORS 323

(3) Sαu = Au
z/(1−αu) .

Proof.

(1) Since
1

1−αu
=

∞

∑
n=0

(αu)n

we can compute
ϕ

1−αu
=

∞

∑
n=0

ϕ(αu)n

But since uϕ ∈ zH2 it follows that ∑∞
n=0ϕ(αu)n A≡ϕ(1+αu) and so Au

ϕ/(1−αu) =
Au
ϕ(1+αu) . The second equality then holds because

Suϕ̃ = S̃∗uϕ = uz
ϕ−ϕ(0)

z
A≡ ϕu.

(2) ϕ/(1−αu)
A≡ ϕ+αuϕ/(1−αu)

A≡ ϕ by Proposition 2.2, since uϕ/(1−αu) ∈
uH2 .

(3) Equation (4.2) and part (1) of this proof imply that Sαu has symbol

1

1−αu(0)

(
SuKu

0

1−αu
+αu′(0)

)
so it suffices to show that

z(1−αu(0))
1−αu

A≡ SuKu
0

1−αu
+αu′(0).

Since z = SuKu
0 +uP(uz) ,

z
1−αu

A≡ SuKu
0

1−αu
+

uP(uz)
1−αu

A≡ SuKu
0

1−αu
+
αP(uz)
1−αu

.

Since K̃u
0 = (u−u(0))z , P(uz) = K̃u

0 (0)+u(0)z = u′(0)+u(0)z ,

z(1−αu(0))
1−αu

A≡ z
1−αu

− αu(0)z
1−αu

A≡ SuKu
0

1−αu
+
αu′(0)
1−αu

+
αu(0)z
1−αu

− αu(0)z
1−αu

A≡ SuKu
0

1−αu
+αu′(0). �
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LEMMA 6.2. Let ϕ ∈H2 and α ∈D . Then TαAuα
ϕ T−1

α = Au
ϕ/(1−αu) and TαAuα

ϕ T−1
α

= Au
ϕ/(1−αu) . Therefore Auα

ϕ and Au
ϕ/(1−αu) (respectively Auα

ϕ and Au
ϕ/(1−αu) ) have

the same norm, and if ψ ∈ H2 , then Au
ϕ/(1−αu) = Au

ψ/(1−αu) (respectively Au
ϕ/(1−αu) =

Au
ψ/(1−αu) ) if and only if uα |(ϕ−ψ) .

Proof. It suffices to show that the equalities hold on K∞
u , so let f ∈ K∞

u . Then

Au
ϕ/(1−αu) f = Pu

(
fϕ

1−αu

)
= P

(
fϕ

1−αu

)
−uP

(
u fϕ

1−αu

)
On the other hand,

TαAuα
ϕ T−1

α f = (1−αu)Puα

(
fϕ

1−αu

)
= (1−αu)

[
fϕ

1−αu
−uαP

(
uα fϕ
1−αu

)]
= fϕ− (u−α)P

(
u fϕ

1−αu

)
= fϕ +P

(
αu fϕ
1−αu

)
−uP

(
u fϕ

1−αu

)
= P

(
fϕ

1−αu

)
−uP

(
u fϕ

1−αu

)
Since Tα is unitary, it follows that Au

ϕ/(1−αu) = Au
ψ/(1−αu) if and only if Auα

ϕ =
Auα
ψ , but by Proposition 2.2 the latter is true if and only if uα |ϕ−ψ .

Since Tα is unitary, we have

Au
ϕ/(1−αu) =

(
Au
ϕ/(1−αu)

)∗
=
(
TαAuα

ϕ T−1
α
)∗

= TαAuα
ϕ T−1

α

proving the result for the adjoints. �

THEOREM 6.3. Let A be an bounded operator on K2
u and let α ∈ D . Then A is

of type α if and only if there is a function ϕ ∈ H2 such that A = Au
ϕ/(1−αu) . If A is

of type α then there is a function ψ ∈ H∞ such that ‖ψ‖∞ = ‖A‖ and A = Au
ψ/(1−αu)

and therefore every operator of type α has a bounded symbol. Further, if ϕ ,ψ are in
H∞ then Au

ϕ/(1−αu)A
u
ψ/(1−αu) = Au

ϕψ/(1−αu) .

Proof. Let B = T−1
α ATα . Then

AAu
z/(1−αu) = Au

z/(1−αu)A
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if and only if

BAuα
z = T−1

α AAu
z/(1−αu)Tα = T−1

α Au
z/(1−αu)ATα = Auα

z B

But this is true if and only if B = Auα
ϕ for some ϕ ∈ H2 which is true if and only if

A = Au
ϕ/(1−αu) for some ϕ ∈H2 , hence the first claim holds. By the Commutant Lifting

Theorem, there is a function ψ ∈ H∞ such that Auα
ϕ = Auα

ψ and ‖Auα
ϕ ‖ = ‖ψ‖∞ . By

Lemma 6.2 it follows that A = Au
ψ/(1−αu) . Since Tα is unitary, ‖A‖ = ‖ψ‖∞ .

To prove the last claim, we compute

Au
ϕ/(1−αu)A

u
ψ/(1−αu) = T−1

α Auα
ϕ Auα

ψ Tα = T−1
α Auα

ϕψTα = Au
ϕψ/(1−αu) �

Just as Au
ϕ = ϕ(Su) for ϕ ∈ H∞ , we get that Au

ϕ/(1−αu) = ϕ (Sαu ) for ϕ ∈ H∞ .

Note that λ is in the spectrum of Au
ϕ if and only if infz∈D(|u(z)|+ |ϕ(z)−λ |) =

0 [3].

PROPOSITION 6.4. Let α ∈ D and let ϕ ∈ H∞ . Then Au
ϕ/(1−αu) is invertible if

and only if infz∈D(|uα(z)|+ |ϕ(z)|) > 0

Proof. Au
ϕ/(1−αu) is invertible if and only if Auα

ϕ is invertible, which is true if and
only if infz∈D(|uα(z)|+ |ϕ(z)|) > 0. �

6.2. α ∈ T

The case of |α| = 1 is indirectly dealt with in [11, 1] and we collect those results
here. There are TTOs of unimodular type without a bounded symbol under certain
conditions. Specifically, in [1] it is shown that there exists u an inner function with an
ADC at ζ ∈ T such that Ku

ζ ⊗Ku
ζ ∈ Tu does not have a bounded symbol.

Example 5.3 shows that Ku
ζ ⊗Ku

ζ is of type u(ζ ) , and hence it is an example of a
TTO of unimodular type without a bounded symbol.

If, however, we weaken what we mean by “bounded symbol” we can find a bounded
symbol for any TTO of unimodular type. Specifically, we change the measure with re-
spect to which we take the sup norm of a function.

Let α be unimodular, and fixed for the rest of this section. An operator is of type
α if and only if it commutes with Sαu , which is in this case a unitary operator known as
a Clark unitary operator, and is unitarily equivalent to Mz on the space L2(T,μα ) where
μα is the Clark measure associated with Sαu [4]. [Mz]′ is the space of multiplication
operators induced by L∞(μα) and so by using the unitary equivalence, every operator
of type α is equal to Φ(Sαu ) where Φ ∈ L∞(μα) . In this sense we can think about
Φ as a “bounded symbol” for the operator. This gives us a symbol calculus of sorts
for operators of type α : given Φ,Ψ bounded μα -almost everywhere, the product of
MΦ and MΨ is MΦΨ where ΦΨ is itself bounded μα -almost everywhere. Hence
Φ(Sαu )Ψ(Sαu ) = ΦΨ(Sαu ) . It follows that a TTO of type α is invertible if and only if it
is of the form Φ(Sαu ) , where |Φ| � δ > 0 μα -almost everywhere.
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We can use this symbol calculus to precisely describe the unitary operators in Tu

on a given model space.

PROPOSITION 6.5. Let A ∈ Tu . Then A is unitary if and only if it is equal to
Φ(Sαu ) for some α ∈ T and some Φ ∈ L∞(T,μα ) such that |Φ| = 1 μα -almost every-
where. Specifically, any unitary operator in Tu is of unimodular type, and commutes
with the Clark unitary operator of the same type.

Proof. If A is unitary then AA∗ = I , which means that A and A∗ must both be of
the same type α ∈ C∗ . Thus α = α−1 which implies that α is of unimodular type. So
A =Φ(Sαu ) for some Φ∈ L∞(T,μα ) . Then I = AA∗ =Φ(Sαu )Φ(Sαu ) = |Φ|2(Sαu ) which
implies that |Φ| = 1 μα−almost everywhere. The other direction is obvious. �
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