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SUFFICIENT CONDITIONS FOR COMPLETE POSITIVITY

ROBERT REAMS

(Communicated by R. Bhatia)

Abstract. Marcus and Minc gave sufficient conditions on the diagonal entries of a doubly non-
negative doubly stochastic n x n matrix A, that there is a doubly nonnegative doubly stochastic
matrix C with A =C?. In this event, A is completely positive. We shall assume that A is
doubly nonnegative and irreducible and provide slightly more general sufficent conditions on the
diagonal entries of A for the existence of C. Our main result provides sufficient conditions on
the principal 2 x 2 minors of a doubly nonnegative doubly stochastic irreducible matrix A for
the existence of C.

1. Introduction

Let A= (a;;) € R"". We will say A is nonnegative when a;; >0, for 1 <i,j<n,
and in the same way for x = (x1,...,x,)” € R" we will call the vector x nonnegative
when x; > 0 for 1 <i <n. Asusual ¢; will denote the ith standard basis vector. If A
is nonnegative and has row and column sums 1 then A is called doubly stochastic. For
x=(x1,... ,x,,)T € R", we will write x > 0 to mean x is nonnegative, and x > 0 to mean
X is positive, which is to say x; > 0 forall 1 <i<n. A is said to be positive semidefinite
if A is symmetric and x”Ax > 0, for all x € R". A is said to be doubly nonnegative
if it is both nonnegative and positive semidefinite. A is said to be completely positive
if A= BTB, where B € R"™" is nonnegative. A is said to be irreducible if there
is no permutation matrix P € R™" such that PTAP can be written in block form as
PTAP = (ﬁ; A?z) , where O is a zero block matrix (which is not n X n). The Perron-
Frobenius Theorem [5] states that an n x n irreducible nonnegative matrix A has a
real eigenvalue r > |A;|, where A;, for 2 < i < n, are the other eigenvalues of A.
Additionally, this theorem states that A has a positive eigenvector v corresponding to
r. The eigenvalue r is often called the Perron root and v the Perron vector. With the
eigenvalues ordered as r > Ay > -+ > A,, we will denote the eigenvector corresponding
to A by w= (wy,...,w,;)T. Let A € R™" and k be such that 1 < k < min{m,n}, then

A® will denote the kth compound matrix [3]. That is to say AK®) is the (Z) X (Z)

matrix whose entries are the k x k minors of A listed in A® in lexicographic order.
We will say C € R™" is a square root of A € R™" if A= C?.
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In Section 2, we extend a result due to Marcus and Minc [8] (also in [2] and
[10]). Their result gives sufficient conditions on the diagonal entries of A € R™*", for
the existence of a positive semidefinite doubly stochastic square root C if A is positive
semidefinite and doubly stochastic. Theorem 1 is similarly concerned with the existence
of a positive semidefinite square root which is nonnegative, but only requires A to be
doubly nonnegative and irreducible. In Section 3, Theorem 3 gives sufficient conditions
on the 2 x 2 principal minors of doubly nonnegative, doubly stochastic and irreducible
A for the existence of a nonnegative positive semidefinite square root C.

2. Conditions on diagonal entries

Marcus and Minc’s result [8] is a corollary of Theorem 1.

THEOREM 1. Let A = (a;;) € R"*" be doubly nonnegative and irreducible. Then
A = C2, for positive semidefinite C = (cij) € R™". Let r be the Perron root of A, and

, Vv . .
V= (vl,...,v,,)T its Perron vector. If aj; < 7’2, forall i, 1 <i<n, forall p,
. . i#pVj
1 < p < n, then C is nonnegative.

Proof. Write A=UT AU, where U is orthogonal and A = diag(r, A2, ...,A,), then
C=UTAU is positive semidefinite (and unique [5]). A irreducible implies » > 0 and
v>0.

If ¢jyj, <0, for some ig, jo, io 7 Jjo, then

2 2 2

T 2 2 2 2 (4o o Vi) (Vrvi) Vi
aigiy = € C el = Clio -+ Cig > D, €y = 7~ 2= 7
’ ’ T Tt SitinVi  ZitioVj
where the second inequality is from Cauchy-Schwartz and the third from ¢;,;, <0. U

)

2

. . . . rvs

Since C is symmetric we remark that if c;;, < 0 we also have a;j;, > E—JOVZ
i#io Vi

Marcus and Minc’s result has » = 1 and v = (1,1,...,1)” in Theorem 1.

COROLLARY 2. (Marcus and Minc) Let A = (a;j) € R"*" be positive semidefi-
nite and doubly stochastic, and A = C*, where C € R™" is positive semidefinite. Then

1 . .
a;; < nTl,for all i, 1 <i< n, implies C is nonnegative.

For n < 4, Maxfield and Minc [9] proved that if an n X n matrix is doubly non-
negative then it is completely positive. Hall [7], and later Gray and Wilson [4], gave
examples to show that a 5 x 5 doubly nonnegative matrix need not be completely posi-
tive. Kaykobad [6] proved that a diagonally dominant symmetric nonnegative matrix is
completely positive, and there are other results known that relate a completely positive
matrix to its graph (see [1], [2]).

It is possible for A to be completely positive but not writeable in the form A = C2,
where C is nonnegative and positive semidefinite. There is no example to illustrate
this fact by using 2 x 2 matrices. However, there are examples with 3 x 3 matrices,
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for instance A = | 0 34 & | . for which A=C? when C=|—34 1 5 |. Cis
15 3 1
16 16, 2 7 3 1

the unique positive semidefinite square root of A, but A is doubly nonnegative and
therefore completely positive from Maxfield and Minc’s result [9]. In fact, A = BB,
0

where B = 0
0

O oolo
W=\ NN

3. Conditions on principal 2 x 2 minors

Finally we come to our main result, Theorem 3, which extends Theorem 1 when
y=e.

THEOREM 3. For n >3 let A = (a;;) € R™" be positive semidefinite, doubly
stochastic, irreducible, and A = C*, where C € R s positive semidefinite. Let w
be an eigenvector corresponding to Ay, where Ay is the second largest eigenvalue of
A, and P a permutation matrix so that Pw has its com;;onents in increasing order.
Let B=PAPT = (b;;). If Aaw; = wi) forall (i,j), 1<

21<k<1<n () £(pag) (W1 = wi)?
<n, forall (p,q), 1 < p<q<n, and either by < ﬁ or by, < nlj then C is
nonnegative.

aiji aijj
a; a”

Proof. The denominator ¥ <ij<n, (k1) (p.q) (W1 — wy)? in the inequality of the the-
orem cannot be zero for any (p,q), since if it were then w would be a multiple of e
which is not possible.

Note that we must have c¢;; > 0 for all i, 1 < i< n, since for any positive semidef-
inite matrix C = (c;;) if the diagonal entry ¢;; = 0, then the ith row and ith column of
C would be all zeros, which would make C and therefore A reducible. Now to prove
our theorem suppose, for the sake of obtaining a contradiction, that C has a negative
entry. Since A = C? if and only if B = (PCPT)?, without loss of generality we may
replace C by PCPT | where P is as stated in the theorem. With ig # jo we’ll say that
Cipjo < 0.

If (io, jo) = (1,n) then by; > L5 and by, > L from the proof of Theorem 1
when v = ¢ and the remark after Theorem 1, Wthh would contradict by < ﬁ or
bun < 715 in the statement of the theorem. Thus (i, jo) # (1,n). We claim we can

argue that C(?) has a negative entry. Fix (i, jo) for the remainder of the proof. For any
m, 1 <m< n,if m>ipand m > jy (assuming there is such an m) consider the pair
Cioio Ciom and Ciojo Ciom
) _Cjoio Cjom Cjojo Ciom ) ) ) ) ]
m > ig and m > jp, at least one of these 2 x 2 minors is negative. If m < iy and m < jo

and

of 2 x 2 minors . We will see that for some m satisfying

Cigm Cig jo
Cjom Cjojo

Cigm Ciyi

(assuming there is such an m) consider
Cjom Cigjo
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Suppose to the contrary that for all m satisfying m > iy and m > jo we have both
CigigCjom 2 CigmCig jo (D
and

CigjoCjom Z CigmC o jo> 2)

and for all m satisfying m < ip and m < jo we have both

CigmCjojo 2 CigjoCjom> 3)
and

Ciomciojo 2 Cioiocjom~ (4)

If for m > iy and m > jo we have cj,, > 0, then inequality (2) implies cj,, <0,
whereas if ¢;, < 0 then inequality (1) implies cj,» > 0. So far we have only argued
that ¢;y, and cj,, are oppositely signed or one of them (at least) is zero. For m < iy
and m < jo a similar argument shows ¢;,,, and cj,, are oppositely signed or one of
them (at least) is zero.

Suppose now that c;,j, is on the superdiagonal, and consider row iy and row jg
of C. With cj,;, on the superdiagonal this means that for all m # iy and m # jo we
have m > iy and m > jy, or we have m < iy and m < jo. Then the dot product of row
ip and row jg, thought of as vectors, which equals (Zmiimm;éjo CigmC j0m> + Cigi Cjoip +
CiyjoCjojo » MUSt be negative. But this would imply the (ig, jo) entry of A is negative,
which is not the case.

We next argue that with C having a negative off-diagonal entry, not in the upper
right (or lower left) corner and not on the superdiagonal, then if C (2) has all nonnegative
entries this would contradict C being irreducible, which is not possible.

Suppose that ip = 1 and 3 < jo <n— 1. Suppose that ¢y j, is the leftmost negative
entry in the first row, so that ¢y; > 0 forall [, 3 <1 < jo. We must have cy;c;,; > 0 for
atleastone [, 2 <1 < jo, since otherwise aj j, = c11¢1j, + X1<i<j, CLCjot +C1jyClojo T
2~,»0<1<,,c11cj01 would be negative since cy;c;,; <0 forall [ > jo, from inequalities (1)-
(2) and the reasoning of the paragraph immediately after them. Fix [, 2 <1 < jp, for
C11 Cin
Cjol Cjon
0, this implies c¢1, =0 and ¢;,, = 0, since cj,, < 0. Then letting k € {2,...,n—1},if

which c¢y;c;,; > 0. Since ¢y; > 0 this implies ¢1; > 0 and c¢j; > 0. If now >

C1l Cln
Crl Ckn Ckjoy Ckn
now we have that all entries of the nth column of C, except c,,, are zeroes, implying
C, and therefore A, is reducible, contrary to our assumption.

Finally, suppose cj,j, < 0, where iy > 1 and jy > iy, and furthermore cy; > 0

Cljy Cln

we have > 0, this implies ¢, > 0, and then > 0 implies ¢, =0. But

forall [, 1 <I<n. Then |"0 “lio

079 >0 implies cp, = 0 and c1j, = 0. But then
Cl()l() cl()]o
C11 C1jy

> 0 is not possible.
Cipl Cipjo




SUFFICIENT CONDITIONS FOR COMPLETE POSITIVITY 331

Now Ae = re and Aw = Ayw implies AX = X diag(r,4,), where X is the n x 2
matrix with Ist column e and 2nd column w, and diag(r,A;) is 2 x 2. Taking the
2nd compound of both sides, and with x = X, we can say A®x = rA,x, where
x is the vector with its components written in lexicographic order, so that here x =
(wy —wi,w3 —wq,...)T. Then (C))2x = rAsx, where r = 1. Since by replacing A
with PAPT and the components of Pw are increasing we may assume (after making the
replacement) that the components of x are nonnegative. Then C(?), being the unique
positive semidefinite square root of A(?), has eigenvector x, and corresponding eigen-
value \/A,. Labeling the negative entry in C? (or one of the negative entries if there

. Cigp Ci . .
is more than one) as C’f”’ c’f)q , a similar argument to that given in the proof Theorem
Jop Cjoa
1 is all that remains.
®)
Qigjo Ajojo I <k=1<n | Cok Cjol
> Cigk Cigl (6)
1<k<t<n (k) #(p.q) | CIok Ciol
Cink Cigl
b pa) o) or Xu)?
> C./Ok CJOZ (7)
= 2 )
Z(k)#(p.9) ¥ia
(V22xigjo)®
zZ o> (8)
2 )
Xk #(p.a) Yia
2
— lzxi()j() (9)
2 )
Xk 1)#(p.a) ¥k

where equality (5) follows from A?) = (C(?))2 | inequality (7) from Cauchy-Schwartz,
and inequality (8) from C(®)x = \/rAx, where r= 1 here. Note that the vector x is non-
negative, unlike the vector v in Theorem 1 which is necessarily a positive vector. [l

4. An example

When n = 2 the sufficient conditions of Corollary 2 that a; < 1, for each i, 1 <
i < 2, are redundant since they are a consequence of A being doubly stochastic. We
saw in the paragraph after Corollary 2 that in any case we can write A = C2. Consider
Corollary 2 and Theorem 3 with the following 3 x 3 example when e = (1,1,1)7,
w=(-2,1,1)T and

B+4yB—-2yB -2y
C=Bee” +yww’ = B-2y B+y B+v
B-2y B+y B+y
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Then since e”w =0, ||e||> = 4, and ||w||> = 6, we have that

3B%+24y% 362 — 1292 382 — 1292
A=C*=3f%e" +6y>ww’ = | 32— 12y* 3>+ 67> 3B>+6)
3621277 3%+ 67> 362 +6y°

Taking 3% = % and é > v 2 0 the matrix A is doubly stochastic and positive semidef-
inite with second largest eigenvalue 36y, and C is positive semidefinite. Then since
% > y the diagonal entry % + 6)/2 < %, but if we also take y > ﬁ the diagonal en-
try % +24y% > % so the sufficient conditions of Corollary 2 do not hold. However,
aij ajj
aij dajj
A2 = Ay eigenvector of A?) being x = (w; —w;) = (3,3,0) means that the denomina-
tor on the right hand side of the inequalities of Theorem 3 is largest when it is 18. Then
in lexicographic order the right hand sides of these inequalities are 36}/2%736)/2%70,
respectively, at their smallest. Thus, the inequalities of Theorem 3 are satisfied but
those of Corollary 2 are not.

the 2 x 2 minors in lexicographic order are 18y%,18y2,0 respectively. The
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