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SUFFICIENT CONDITIONS FOR COMPLETE POSITIVITY
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(Communicated by R. Bhatia)

Abstract. Marcus and Minc gave sufficient conditions on the diagonal entries of a doubly non-
negative doubly stochastic n×n matrix A , that there is a doubly nonnegative doubly stochastic
matrix C with A = C2 . In this event, A is completely positive. We shall assume that A is
doubly nonnegative and irreducible and provide slightly more general sufficent conditions on the
diagonal entries of A for the existence of C . Our main result provides sufficient conditions on
the principal 2× 2 minors of a doubly nonnegative doubly stochastic irreducible matrix A for
the existence of C .

1. Introduction

Let A = (ai j)∈Rn×n . We will say A is nonnegativewhen ai j � 0, for 1 � i, j � n ,
and in the same way for x = (x1, . . . ,xn)T ∈ Rn we will call the vector x nonnegative
when xi � 0 for 1 � i � n . As usual ei will denote the i th standard basis vector. If A
is nonnegative and has row and column sums 1 then A is called doubly stochastic. For
x = (x1, . . . ,xn)T ∈Rn , we will write x � 0 to mean x is nonnegative, and x > 0 to mean
x is positive, which is to say xi > 0 for all 1 � i � n . A is said to be positive semidefinite
if A is symmetric and xT Ax � 0, for all x ∈ Rn . A is said to be doubly nonnegative
if it is both nonnegative and positive semidefinite. A is said to be completely positive
if A = BT B , where B ∈ Rm×n is nonnegative. A is said to be irreducible if there
is no permutation matrix P ∈ Rn×n such that PT AP can be written in block form as

PT AP =
(

A11 O
A21 A22

)
, where O is a zero block matrix (which is not n×n ). The Perron-

Fröbenius Theorem [5] states that an n× n irreducible nonnegative matrix A has a
real eigenvalue r > |λi| , where λi , for 2 � i � n , are the other eigenvalues of A .
Additionally, this theorem states that A has a positive eigenvector v corresponding to
r . The eigenvalue r is often called the Perron root and v the Perron vector. With the
eigenvalues ordered as r � λ2 � · · ·� λn , we will denote the eigenvector corresponding
to λ2 by w = (w1, . . . ,wn)T . Let A∈Rm×n and k be such that 1 � k � min{m,n} , then

A(k) will denote the k th compound matrix [3]. That is to say A(k) is the

(
m
k

)
×

(
n
k

)

matrix whose entries are the k× k minors of A listed in A(k) in lexicographic order.
We will say C ∈ Rn×n is a square root of A ∈ Rn×n , if A = C2 .
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In Section 2, we extend a result due to Marcus and Minc [8] (also in [2] and
[10]). Their result gives sufficient conditions on the diagonal entries of A ∈ Rn×n , for
the existence of a positive semidefinite doubly stochastic square root C if A is positive
semidefinite and doubly stochastic. Theorem 1 is similarly concernedwith the existence
of a positive semidefinite square root which is nonnegative, but only requires A to be
doubly nonnegative and irreducible. In Section 3, Theorem 3 gives sufficient conditions
on the 2×2 principal minors of doubly nonnegative, doubly stochastic and irreducible
A for the existence of a nonnegative positive semidefinite square root C .

2. Conditions on diagonal entries

Marcus and Minc’s result [8] is a corollary of Theorem 1.

THEOREM 1. Let A = (ai j) ∈ Rn×n be doubly nonnegative and irreducible. Then
A = C2 , for positive semidefinite C = (ci j) ∈ Rn×n . Let r be the Perron root of A, and

v = (v1, . . . ,vn)T its Perron vector. If aii � rv2
i

∑ j �=p v2
j

, for all i , 1 � i � n, for all p ,

1 � p � n, then C is nonnegative.

Proof. Write A =UTΛU , where U is orthogonal and Λ= diag(r,λ2, . . . ,λn) , then

C =UTΛ
1
2U is positive semidefinite (and unique [5]). A irreducible implies r > 0 and

v > 0.
If ci0 j0 < 0, for some i0, j0 , i0 �= j0 , then

ai0i0 = eT
i0C

2ei0 = c2
1i0 + · · ·+ c2

ni0 > ∑
j �= j0

c2
ji0 �

(∑ j �= j0 c ji0v j)2

∑ j �= j0 v2
j

>
(
√

rvi0)
2

∑ j �= j0 v2
j

=
rv2

i0

∑ j �= j0 v2
j

,

where the second inequality is from Cauchy-Schwartz and the third from ci0 j0 < 0. �

Since C is symmetric we remark that if ci0 j0 < 0 we also have a j0 j0 >
rv2

j0

∑i �=i0
v2
i
.

Marcus and Minc’s result has r = 1 and v = (1,1, . . . ,1)T in Theorem 1.

COROLLARY 2. (Marcus and Minc) Let A = (ai j) ∈ Rn×n be positive semidefi-
nite and doubly stochastic, and A =C2 , where C ∈ Rn×n is positive semidefinite. Then

aii �
1

n−1
, for all i , 1 � i � n, implies C is nonnegative.

For n � 4, Maxfield and Minc [9] proved that if an n× n matrix is doubly non-
negative then it is completely positive. Hall [7], and later Gray and Wilson [4], gave
examples to show that a 5×5 doubly nonnegative matrix need not be completely posi-
tive. Kaykobad [6] proved that a diagonally dominant symmetric nonnegative matrix is
completely positive, and there are other results known that relate a completely positive
matrix to its graph (see [1], [2]).

It is possible for A to be completely positive but not writeable in the form A =C2 ,
where C is nonnegative and positive semidefinite. There is no example to illustrate
this fact by using 2× 2 matrices. However, there are examples with 3× 3 matrices,
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for instance A =

⎛
⎝

81
64 0 15

16
0 81

64
15
16

15
16

15
16

3
2

⎞
⎠ , for which A = C2 , when C =

⎛
⎝ 1 − 1

8
1
2

− 1
8 1 1

2
1
2

1
2 1

⎞
⎠ . C is

the unique positive semidefinite square root of A , but A is doubly nonnegative and
therefore completely positive from Maxfield and Minc’s result [9]. In fact, A = BT B ,

where B =

⎛
⎝

9
8 0 5

6
0 9

8
5
6

0 0 1
3

⎞
⎠ .

3. Conditions on principal 2×2 minors

Finally we come to our main result, Theorem 3, which extends Theorem 1 when
v = e .

THEOREM 3. For n � 3 let A = (ai j) ∈ Rn×n be positive semidefinite, doubly
stochastic, irreducible, and A = C2 , where C ∈ Rn×n is positive semidefinite. Let w
be an eigenvector corresponding to λ2 , where λ2 is the second largest eigenvalue of
A, and P a permutation matrix so that Pw has its components in increasing order.

Let B = PAPT = (bi j) . If

∣∣∣∣aii ai j

ai j a j j

∣∣∣∣ � λ2(wj −wi)2

∑1�k<l�n,(k,l) �=(p,q)(wl −wk)2 , for all (i, j) , 1 �

i, j � n, for all (p,q) , 1 � p < q � n, and either b11 � 1
n−1 or bnn � 1

n−1 then C is
nonnegative.

Proof. The denominator ∑1�k<l�n,(k,l) �=(p,q)(wl −wk)2 in the inequality of the the-
orem cannot be zero for any (p,q) , since if it were then w would be a multiple of e
which is not possible.

Note that we must have cii > 0 for all i , 1 � i � n , since for any positive semidef-
inite matrix C = (ci j) if the diagonal entry cii = 0, then the i th row and i th column of
C would be all zeros, which would make C and therefore A reducible. Now to prove
our theorem suppose, for the sake of obtaining a contradiction, that C has a negative
entry. Since A = C2 if and only if B = (PCPT )2 , without loss of generality we may
replace C by PCPT , where P is as stated in the theorem. With i0 �= j0 we’ll say that
ci0 j0 < 0.

If (i0, j0) = (1,n) then b11 > 1
n−1 and bnn > 1

n−1 from the proof of Theorem 1
when v = e and the remark after Theorem 1, which would contradict b11 � 1

n−1 or

bnn � 1
n−1 in the statement of the theorem. Thus (i0, j0) �= (1,n) . We claim we can

argue that C(2) has a negative entry. Fix (i0, j0) for the remainder of the proof. For any
m , 1 � m � n , if m > i0 and m > j0 (assuming there is such an m) consider the pair

of 2× 2 minors

∣∣∣∣ci0i0 ci0m

c j0i0 c j0m

∣∣∣∣ and

∣∣∣∣ci0 j0 ci0m

c j0 j0 c j0m

∣∣∣∣ . We will see that for some m satisfying

m > i0 and m > j0 , at least one of these 2×2 minors is negative. If m < i0 and m < j0

(assuming there is such an m) consider

∣∣∣∣ci0m ci0 j0
c j0m c j0 j0

∣∣∣∣ and

∣∣∣∣ci0m ci0i0
c j0m ci0 j0

∣∣∣∣ .
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Suppose to the contrary that for all m satisfying m > i0 and m > j0 we have both

ci0i0c j0m � ci0mci0 j0 , (1)

and

ci0 j0c j0m � ci0mc j0 j0 , (2)

and for all m satisfying m < i0 and m < j0 we have both

ci0mc j0 j0 � ci0 j0c j0m, (3)

and

ci0mci0 j0 � ci0i0c j0m. (4)

If for m > i0 and m > j0 we have ci0m � 0, then inequality (2) implies c j0m � 0,
whereas if ci0m � 0 then inequality (1) implies c j0m � 0. So far we have only argued
that ci0m and c j0m are oppositely signed or one of them (at least) is zero. For m < i0
and m < j0 a similar argument shows ci0m and c j0m are oppositely signed or one of
them (at least) is zero.

Suppose now that ci0 j0 is on the superdiagonal, and consider row i0 and row j0
of C . With ci0 j0 on the superdiagonal this means that for all m �= i0 and m �= j0 we
have m > i0 and m > j0 , or we have m < i0 and m < j0 . Then the dot product of row
i0 and row j0 , thought of as vectors, which equals (∑m�=i0,m�= j0 ci0mc j0m)+ ci0i0c j0i0 +
ci0 j0c j0 j0 , must be negative. But this would imply the (i0, j0) entry of A is negative,
which is not the case.

We next argue that with C having a negative off-diagonal entry, not in the upper
right (or lower left) corner and not on the superdiagonal, then if C(2) has all nonnegative
entries this would contradict C being irreducible, which is not possible.

Suppose that i0 = 1 and 3 � j0 � n−1. Suppose that c1 j0 is the leftmost negative
entry in the first row, so that c1l � 0 for all l , 3 � l < j0 . We must have c1lc j0l > 0 for
at least one l , 2 � l < j0 , since otherwise a1 j0 = c11c1 j0 +∑1<l< j0 c1lc j0l +c1 j0c j0 j0 +
∑ j0<l�n c1lc j0l would be negative since c1lc j0l � 0 for all l > j0 , from inequalities (1)–
(2) and the reasoning of the paragraph immediately after them. Fix l , 2 � l < j0 , for

which c1lc j0l > 0. Since c1l � 0 this implies c1l > 0 and c j0l > 0. If now

∣∣∣∣ c1l c1n

c j0l c j0n

∣∣∣∣ �
0, this implies c1n = 0 and c j0n = 0, since c j0n � 0. Then letting k ∈ {2, . . . ,n−1} , if

we have

∣∣∣∣c1l c1n

ckl ckn

∣∣∣∣� 0, this implies ckn � 0, and then

∣∣∣∣c1 j0 c1n

ck j0 ckn

∣∣∣∣� 0 implies ckn = 0. But

now we have that all entries of the n th column of C , except cnn , are zeroes, implying
C , and therefore A , is reducible, contrary to our assumption.

Finally, suppose ci0 j0 < 0, where i0 > 1 and j0 > i0 , and furthermore c1l � 0

for all l , 1 � l � n . Then

∣∣∣∣c1i0 c1 j0
ci0i0 ci0 j0

∣∣∣∣ � 0 implies c1i0 = 0 and c1 j0 = 0. But then∣∣∣∣c11 c1 j0
ci01 ci0 j0

∣∣∣∣ � 0 is not possible.
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Now Ae = re and Aw = λ2w implies AX = X diag(r,λ2) , where X is the n× 2
matrix with 1st column e and 2nd column w , and diag(r,λ2) is 2× 2. Taking the
2nd compound of both sides, and with x = X (2) , we can say A(2)x = rλ2x , where
x is the vector with its components written in lexicographic order, so that here x =
(w2 −w1,w3 −w1, . . .)T . Then (C(2))2x = rλ2x , where r = 1. Since by replacing A
with PAPT and the components of Pw are increasing we may assume (after making the
replacement) that the components of x are nonnegative. Then C(2) , being the unique
positive semidefinite square root of A(2) , has eigenvector x , and corresponding eigen-
value

√
λ2 . Labeling the negative entry in C(2) (or one of the negative entries if there

is more than one) as

∣∣∣∣ci0 p ci0q

c j0 p c j0q

∣∣∣∣ , a similar argument to that given in the proof Theorem

1 is all that remains.

∣∣∣∣ai0i0 ai0 j0
ai0 j0 a j0 j0

∣∣∣∣ = ∑
1�k<l�n

∣∣∣∣ci0k ci0l

c j0k c j0l

∣∣∣∣
2

, (5)

> ∑
1�k<l�n,(k,l) �=(p,q)

∣∣∣∣ci0k ci0l

c j0k c j0l

∣∣∣∣
2

, (6)

�
(∑(k,l) �=(p,q)

∣∣∣∣ci0k ci0l

c j0k c j0l

∣∣∣∣xkl)2

∑(k,l) �=(p,q) x
2
kl

, (7)

� (
√
λ2xi0 j0)

2

∑(k,l) �=(p,q) x
2
kl

, (8)

=
λ2x2

i0 j0

∑(k,l) �=(p,q) x
2
kl

, (9)

where equality (5) follows from A(2) = (C(2))2 , inequality (7) from Cauchy-Schwartz,
and inequality (8) from C(2)x =

√
rλ2x , where r = 1 here. Note that the vector x is non-

negative, unlike the vector v in Theorem 1 which is necessarily a positive vector. �

4. An example

When n = 2 the sufficient conditions of Corollary 2 that aii � 1, for each i , 1 �
i � 2, are redundant since they are a consequence of A being doubly stochastic. We
saw in the paragraph after Corollary 2 that in any case we can write A = C2 . Consider
Corollary 2 and Theorem 3 with the following 3× 3 example when e = (1,1,1)T ,
w = (−2,1,1)T and

C = βeeT + γwwT =

⎛
⎝β +4γ β −2γ β −2γ
β −2γ β + γ β + γ
β −2γ β + γ β + γ

⎞
⎠ .
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Then since eT w = 0, ||e||2 = 4, and ||w||2 = 6, we have that

A=C2 = 3β 2eeT +6γ2wwT =

⎛
⎝3β 2 +24γ2 3β 2−12γ2 3β 2−12γ2

3β 2−12γ2 3β 2 +6γ2 3β 2 +6γ2

3β 2−12γ2 3β 2 +6γ2 3β 2 +6γ2

⎞
⎠ .

Taking 3β 2 = 1
3 and 1

6 � γ � 0 the matrix A is doubly stochastic and positive semidef-
inite with second largest eigenvalue 36γ2 , and C is positive semidefinite. Then since
1
6 � γ the diagonal entry 1

3 + 6γ2 � 1
2 , but if we also take γ > 1

12 the diagonal en-
try 1

3 + 24γ2 > 1
2 so the sufficient conditions of Corollary 2 do not hold. However,

the 2× 2 minors

∣∣∣∣aii ai j

ai j a j j

∣∣∣∣ in lexicographic order are 18γ2,18γ2,0 respectively. The

rλ2 = λ2 eigenvector of A(2) being x = (wj −wi) = (3,3,0) means that the denomina-
tor on the right hand side of the inequalities of Theorem 3 is largest when it is 18. Then
in lexicographic order the right hand sides of these inequalities are 36γ2 9

18 ,36γ2 9
18 ,0,

respectively, at their smallest. Thus, the inequalities of Theorem 3 are satisfied but
those of Corollary 2 are not.

Acknowledgement. I am grateful to an anonymous referee for improving the results
herein.
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