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Abstract. It is known that the Kadison-Singer Problem (KS) and the Paving Conjecture (PC)
are equivalent to the Bourgain-Tzafriri Conjecture (BT). Also, it is known that (PC) fails for 2 -
paving projections with constant diagonal 1/2 . But the proofs of this fact are existence proofs.
We will use variations of the discrete Fourier Transform matrices to construct concrete examples
of these projections and projections with constant diagonal 1/r which are not r -pavable in a
very strong sense.

In 1989, Bourgain and Tzafriri showed that the class of zero diagonal matrices with small
entries (on the order of � 1/ log1+ε n , for an n -dimensional Hilbert space) are pavable. It has
always been assumed that this result also holds for the BT-Conjecture – although no one formally
checked it. We will show that this is not the case. We will show that if the BT-Conjecture is true
for vectors with small coefficients (on the order of � C/

√
n ) then the BT-Conjecture is true and

hence KS and PC are true.

1. Introduction

It is now known that the 1959 Kadison-Singer Problem is equivalent to funda-
mental unsolved problems in a dozen areas of research in pure mathematics, applied
mathematics and engineering [7, 8]. In 1979, Anderson [1] showed that the Kadison-
Singer Problem is equivalent to the Paving Conjecture.

PAVING CONJECTURE (PC). For ε > 0 , there is a natural number r so that
for every natural number n and every linear operator T on ln2 whose matrix has zero
diagonal, we can find a partition (i.e. a paving) {Aj}r

j=1 of {1, . . . ,n} , such that

‖QAjTQAj‖ � ε‖T‖ for all j = 1,2, . . . ,r ,

where QAj is the natural projection onto the Aj coordinates of a vector.

Operators satisfying the Paving Conjecture are called pavable operators. A projec-
tion P on Hn is (ε,r)-pavable if there is a partition {Aj}r

j=1 of {1,2, . . . ,n} satisfying

‖QAjPQAj‖ � ε, for all j = 1,2, . . . ,r .

Mathematics subject classification (2010): 42C15, 46C05, 46C07.
Keywords and phrases: Kadison-Singer Problem, Anderson Paving Problem, discrete Fourier Trans-

form.

c© � � , Zagreb
Paper OaM-05-25

351



352 P.G. CASAZZA, M. FICKUS, D.G. MIXON, J.C. TREMAIN

It was shown in [5] that projections with constant diagonal 1/r are not (r,ε)-
pavable for any ε > 0. But the argument in [5] is an existence proof and the actual
matrices failing paving were not known. In this note we will construct concrete exam-
ples of these projections. As a consequence, we will obtain a stronger result than that of
[5]. The main question now is whether this construction can be generalized to produce
a counter-example to KS.

NOTATION 1.1. Throughout this paper, if Hn is an n-dimensional Hilbert space,
then {ei}n

i=1 denotes a fixed orthonormal basis for H .

It was shown [7] that BT is equivalent to PC. Our construction of non-2-pavable
projections starts with a construction of non-2-Rieszable sequences (See Section 2 for
the definitions). The vectors we will produce have very small coefficients, on the order
of 1/

√
n for an n -dimensional Hilbert space. However, conventional wisdom indicates

that we cannot construct a counter-example to PC out of vectors with small coeffi-
cients. So next, we will show that conventional-wisdom has been wrong for the last 20
years and a counter-example to BT exists in general if and only if it exists for matrices
with coefficients on the order of 1/

√
n . Conventional wisdom came from a result of

Bourgain and Tzafriri [2, 3] where they showed that the Paving Conjecture has a posi-
tive solution for the class of zero diagonal matrix operators A = (ai j)n

i, j=1 on Hn with
small coefficients. In particular, a matrix is pavable if the coefficients satisfy for some
ε > 0,

|ai j| � C

log1+ε n
.

It has always been assumed that the corresponding result holds for BT if

|Tei( j)| � C

log1+ε n
, for all i, j = 1,2, . . . ,n .

We will show that this is not the case. This is the second main theorem of this
paper (See Section 2 for the definitions).

THEOREM 1.2. The following are equivalent:
(1) The Bourgain-Tzafriri Conjecture is true.
(2) There are constants δ and r ∈ N so that for every C > 0 there is an N0 so

that for every N � N0 if { fi}2N
i=1 is a unit norm 2-tight frame for HN satisfying

| fi( j)| � C√
2N

,

then { fi}2N
i=1 is (δ ,r)-Rieszable.

We need to explain why part (2) of the theorem is really an equivalent form of the
Bourgain-Tzafriri Conjecture. Given the assumptions (2), we embed HN into H2N as
L(HN) = HN ⊕{0} . Now,

|(L fi)( j)| =
{
| fi( j)| � C√

2N
if i = 1,2, . . . ,N

0 if j = N +1,N +2, . . . ,2N
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We now define an operator T : H2N →H2N by Tei = fi , for all i = 1,2, . . . ,2N , where
{ei}2N

i=1 is the unit vector basis of H2N . Now, ‖Tei‖ = 1 for all i = 1,2, . . . ,2N and
‖T‖2 = 2. Also, the Bourgain-Tzafriri Conjecture holding is equivalent to {Tei}2N

i=1 =
{L fi}2N

i=1 being (δ ,r)-Rieszable. Since L is an isometry, this is equivalent to { fi}2N
i=1

being (δ ,r)-Rieszable.

2. Preliminaries

We will actually work with an equivalent form of the Paving Conjecture for pro-
jections with constant diagonal. In 1989, Bourgain and Tzafriri proved one of the most
celebrated theorems in analysis: The Bourgain-Tzafriri Restricted Invertibility Theorem
[2]. This gave rise to a major open problem in analysis.

BOURGAIN-TZAFRIRI CONJECTURE (BT). There is a universal constant A > 0
so that for every B > 1 there is a natural number r = r(B) satisfying: For any natural
number n, if T : �n

2 → �n
2 is a linear operator with ‖T‖ � B and ‖Tei‖ = 1 for all i =

1,2, . . . ,n, then there is a partition {Aj}r
j=1 of {1,2, . . . ,n} so that for all j = 1,2, . . . ,r

and all choices of scalars {ai}i∈Aj we have:

‖ ∑
i∈Aj

aiTei‖2 � A ∑
i∈Aj

|ai|2.

It was shown in [7] that BT is equivalent to the Paving Conjecture.

DEFINITION 2.1. A family of vectors { fi}M
i=1 for an n-dimensional Hilbert space

Hn is (δ ,r)-Rieszable if there is a partition {Aj}r
j=1 of {1,2, . . . ,M} so that for all

j = 1,2, . . . ,r and all scalars {ai}i∈Aj we have

‖ ∑
i∈Aj

ai fi‖2 � δ ∑
i∈Aj

|ai|2.

A projection P on Hn is (δ ,r)-Rieszable if {Pei}n
i=1 is (δ ,r)-Rieszable.

Recall that a family of vectors { fi}i∈I is a frame for a Hilbert space H if there are
constants 0 < A,B < ∞ , called the lower (upper) frame bounds respectively, satisfying
for all f ∈ H :

A‖ f‖2 �∑
i∈I

|〈 f , fi〉|2 � B‖ f‖2.

If ‖ fi‖ = ‖ f j‖ for all i, j , we call this an equal norm frame and if ‖ fi‖ = 1 for all i ,
it is a unit norm frame. If A = B this is an A-tight frame and if A = B = 1, it is a
Parseval frame. It is known [4, 6, 9] that { fi}i∈I is an A-tight frame if and only if the
matrix with the f ′i s as rows has orthogonal columns and the square sums of the column
coefficients equal A . It is also known [4, 9] that { fi}M

i=1 is a Parseval frame for Hn if
and only if there is an othogonal projection P : �M

2 → Hn with

Pei = fi, for all i = 1,2, . . . ,M ,

where {ei}M
i=1 is the unit vector basis of �M

2 .
The following result can be found in [5, 10].
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PROPOSITION 2.2. Fix a natural number r ∈ N . The following are equivalent:
(1) The class of projections with constant diagonal 1/r are pavable.
(2) The class of projections with constant diagonal 1/r are Rieszable.
(3) The class of unit norm r-tight frames { fm}nr

m=1 for Hn are Rieszable.

Moreover, the Paving Conjecture is equivalent to (1)-(3) holding for some r ∈ N .

We will construct concrete counterexamples for (4) of Proposition 2.2 for the case
r = 2. These will give concrete counterexamples to 1-3 in the proposition by the follow-
ing result which can be found in [5]. The point here is that the proof of this proposition
gives an explicit representation of each of the equivalences in the proposition in terms
of all the others.

PROPOSITION 2.3. Let P be an orthogonal projection on Hn with matrix B =
(ai j)n

i, j=1 . The following are equivalent:
(1) The vectors {Pei}n

i=1 are (δ ,r)-Rieszable,
(2) There is a partition {Aj}r

j=1 of {1,2, . . . ,n} so that for all j = 1,2, . . . ,r and
all scalars {ai}i∈Aj we have

‖ ∑
i∈Aj

ai(I−P)ei‖2 � (1− δ )∑
i∈I

|ai|2,

(3) The matrix of I−P is (δ ,r)-pavable.

As a fundamental tool in our work, we will work with the n× n discrete Fourier
transform matrices which we will just call DFT matrices or DFTn×n . For these, we fix
n ∈ N and let ω be a primitive nth root of unity and define

DFTn×n =
(

1√
n
ω i j
)n

i, j=1
.

The main point of these DFTn×n matrices is that they are unitary matrices for
which the modulus of all of the entries of the matrix are equal to 1. We will use the
following simple observation.

PROPOSITION 2.4. Let A = (ai j}n
i, j=1 is a matrix with |ai j|2 = a for all i, j and

orthogonal columns. If we multiply the jth -column of A by a constant Cj to get a new
matrix B, then the following hold:

(1) The columns of B are orthogonal.
(2) The square sums of the coefficients of any row of B all equal

a
n

∑
j=1

C2
j .

(3) The square sum of the coefficients of the jth column of B equal aC2
j .
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3. The Bourgain-Tzafriri Conjecture for r=2

Let us first outline our construction. For any natural number n , we will alter two
2n×2n DFT matrices along the lines of Proposition 2.4 and then stack them on top of
one another to get a 4n×2n matrix with the following properties:

(1) Each altered DFT has the square sums of the coefficients of any row equal to
1.

(2) The top altered DFT will have the square sums of the coefficients of each
column j with 1 � j � n−1 equal to 2, and the square sums of the coefficients of the
remaining columns will all equal 2/(n+1) .

(3) The combined matrix will have the square sums of the coefficients of each
column equal to 2.

(4) The columns of the combined matrix are orthogonal.
It follows that this is the matrix of a unit norm 2-tight frame and hence multiplying

the matrix by 1/
√

2 will turn it into an equal norm Parseval frame, creating the matrix
of a rank 2n projection on C 4n with constant diagonal 1/2. We will then show that the
rows of this class of matrices are not uniformly 2-Rieszable to complete the example.

So we start with a 2n×2n DFT and multiply the first n−1 columns by
√

2 and the

remaining columns by
√

2
n+1 to get a new matrix B1 . Now, we take the second 2n×2n

DFT matrix and multiply the first n− 1 columns by 0 and the remaining columns by√
2n

n+1 to get a matrix B2 . We form the matrix B by stacking the matrices B1 and B2

on top of one another to get the matrix B given below.

(n-1)-colmns (n+1)-colmns.
√

2
√

2
n+1

0
√

2n
n+1

Now we can prove:

PROPOSITION 3.1. The matrix B satisfies:
(1) The columns are orthogonal and the square sum of the coefficients of every

column equals 2.
(2) The square sum of the coefficients of every row equals 1.
(3) The row vectors of the matrix B are not (δ ,2)-Rieszable, for any δ indepen-

dent of n .

Proof. Clearly the columns of B are orthogonal. To check the square sums of
the column coefficients, recall that for columns 1 � � � n− 1 the modulus of all the
coefficients of B1 are 1√

n , then the coefficients of B2 are 0. So the square sum of the
coefficients in column � are:

1
n
·2n+0 = 2.
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For the columns n � � � 2n , the modulus of the coefficients of B1 are 1√
n(n+1)

and

the coefficients of B2 are 1√
n+1

. So the square sum of the coefficients of B in column
� are:

2n · 1
n(n+1)

+2n · 1
n+1

=
2

n+1
+

2n
n+1

= 2.

Now we check the row sums. For any row of B1 , the first n−1 column coefficients
have modulus 1√

n , and the modulus of the coefficients of the last n+1 columns of B1

have modulus 1√
n(n+1)

. So the square sum of the coefficients of any row of B1 are:

(n−1)
1
n

+(n+1)
1

n(n+1)
= 1.

For any row of B2 , the first n−1 column coefficients are equal to 0 and the remaining
n+ 1 column coefficients have modulus 1√

n+1
. So the square sum of the row coeffi-

cients of B2 are

(n+1)
1

n+1
+0 = 1.

We will now show that the row vectors of B are not two Rieszable. So let {A1,A2}
be a partition of {1,2, . . . ,4n} . Without loss of generality, we may assume that |A1 ∩
{1,2, . . . ,2n}|� n . Let the row vectors of the matrix B be { fi}4n

i=1 as elements of C 2n .
Let Pn−1 be the orthogonal projection of C 2n onto the first n− 1 coordinates. Since
|A1| � n , there are scalars {ai}i∈A1 so that ∑i∈A1

|ai|2 = 1 and

Pn−1

(
∑
i∈A1

ai fi

)
= 0.

Also, let {g j}2n
j=1 be the orthonormal basis consisting of the original rows of the DFT2n×2n .

We now have:

‖ ∑
i∈A1

ai fi‖2 = ‖(I−Pn−1)

(
∑
i∈A1

ai fi

)
‖2

=
2

n+1
‖(I−Pn−1)

(
∑
i∈A1

aigi

)
‖2

� 2
n+1

‖ ∑
i∈A1

aigi‖2

=
2

n+1 ∑i∈A1

|ai|2

=
2

n+1
.

Letting n → ∞ , we have that this class of matrices is not (δ ,2)-pavable for any δ > 0.
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4. The Bourgain-Tzafriri Conjecture for general r

In this section we will extend our construction to projections with constant diag-
onal 1/r and actually prove a stronger result. For notation, given natural numbers r,n
any k = 1,2, . . . ,r we let

Dk = {(k−1)rn+1,(k−1)rn+2, . . .,krn}.

PROPOSITION 4.1. For all natural numbers n,r � 2 , there is a rank rn projection
on Cr2N whos matrix with respect to the unit vector basis has constant diagonal 1/r so
that whenever we partition {1,2, . . . ,r2n} into sets {Aj}r

j=1 , and for all k = 1,2, . . . ,r ,
then for every k = 1,2, . . . ,r− 1 , there is a j so that the vectors { fi}i∈Aj∩Dk are not
uniformly 2 -Rieszable.

This time, we will take r DFT matrices of size rn× rn and alter their columns by
certain amounts so that when we stack them on top of one another we get a matrix B
of size r2n× rn satisfying:

1. The columns of B are orthogonal and the sums of the squares of the coefficients
of each row of B equals 1.

2. The sums of the squares of the coefficients of each column of B equals r .

3. B satisfies the requirements of the proposition.

It follows that this is the matrix of a r -tight frame and hence multiplying the matrix
by 1/

√
r will turn it into an equal norm Parseval frame, creating a matrix of a rank rn

projection on Cr2n with constant diagonal 1/
√

r . We will then show that the rows of
this class of matrices satgisfy Proposition 4.1.

For the first matrix B1 we take the rn× rn DFT and multiply the first n− 1
columns by

√
r and the remaining columns by

√
δ1 (to be chosen later). For B2 we

take the rn× rn DFT and multiply the first n−1 columns by 0, multiply the columns
n−1+ j , j = 1,2, . . . ,n−1 by

√
r− δ1 , and multiply the remaining columns by

√
δ2

(to be chosen later). And for k = 3, . . . ,r− 1 we construct the matrix Bk by taking
the rn× rn DFT and multiplying the first (k− 1)(n− 1) columns by 0, multiply the
columns (k−1)(n−1)+ j for j = 1,2, . . . ,n−1 by√√√√r−

k−1

∑
i=1

δk−1,

and multiplying the remaining columns by
√
δk (to be chosen later). Finally, for Br

we take the rn× rn DFT and multiplying the first (r−1)(n−1) columns by 0 and the
remaining columns by

√
δr (to be chosen later).

We then stack these r , rn× rn matrices {Bk}r
k=1 on top of each other to produce

the matrix B for which the moduli of the coefficients of B are given in figure 2 below.
Now we must show that the matrix B has all of the properties of Proposition 4.1.
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It is clear that the columns of B are orthogonal. To show that the square sums of
the row coefficients of the matrix B are all equal to 1, we need a lemma.

LEMMA 4.2. If

δk =
r2n

[(r− k+1)n+ k−1][(r− k)n+ k]
, (1)

then the rows of the matrix B will square sum to one.

Proof. We will proceed by induction on k to show Equation 1 for all k = 1,2, . . . ,r .
For k = 1, we observe that the coefficients of the first n−1 columns of B1 have mod-
ulus equal to 1/n , while the coefficients of the remaining rn− (n−1) columns of B1

have modulus
√

δ1
rn . So the sum of the squares of the coefficients of any row of B1

equals
1
rn

[r(n−1)+ δ1(rn− (n−1))] = 1.

Hence,
δ1(rn− (n−1)) = rn− r(n−1) = r.

So,

δ1 =
r

(r−1)n+1
=

r2n
[(r−1+1)n+1−1][(r−1)n+1]|.

For k = 2, our matrix B2 has coefficients of the first n−1 columns equal to 0, coeffi-
cients of the columns (n−1)+ j , j = 1,2, . . . ,n−1 have modulus equal to√

r− δ1

rn
.

and the remaining rn−2(n−1) columns have modulus equal to
√

δ2
rn . So the square

sums of the coefficients of any row of B2 equals

1
rn

[(n−1)(r− δ1)+ (rn−2(n−1))δ2] = 1.

Since

r− δ1 = r− r
(r−1)(n+1)

=
r(r−1)n

(r−1)n+1
,

we can solve the equation to get

δ2 =
r2n

[(r−1)n+1][(r−2)n+2]
.

Now assume our formula holds for any k � r−1 and we check it for k +1. The
matrix Bk+1 has coefficients of the first k(n−1) columns equal to 0, coefficients of the
columns k(n−1)+ j , j = 1,2, . . . ,n−1 of modulus(

r−∑k
j=1δk

rn

)1/2

,
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and the coefficients of the remaining columns have modulus
√

δk+1
rn . It follows that the

square sums of the row coefficients of the matrix Bk+1 must satisfy

(
r−

k

∑
j=1

δ j

)
(n−1)+ δk+1[rn− (k+1)(n−1)] = rn. (2)

Hence, letting a = rn/(n−1) we have

k

∑
j=1

δ j = r2n
k

∑
j=1

1
[r− j +1)n+ j−1][(r− j)n+ j]

=
r2n

(n−1)2

k

∑
j=1

1
(a+1− j)(a− j)

=
r2n

(n−1)2

k

∑
j=1

(
1

a− j
− 1

a− ( j−1)

)

=
r2n

(n−1)2

1
a− k

− 1
a−0

=
r2n

(n−1)2

k
a(a− k)

=
r2kn

rn(rn− k(n−1))

=
rk

(r− k)n+ k
.

Combining this with Equation 2 we have

δk+1 =
r+(n−1)∑k

j=1 δ j

rn− (k+1)(n−1)

=
r+(n−1)

(
rk

(r−k)n+k

)
(r− k+1)n+ k−1

=
r[(r− k)n+ k]+ (n−1)rk

[(r− k+1)n+ k−1][(r− k)n+ k]

=
r2n− rkn+ rk+ rnk− kr

[(r− k+1)n+ k−1][(r− k)n+ k]

=
r2n

[(r− k+1)n+ k−1][(r− k)n+ k]
.

By Lemma 4.2, we know that the rows of the matrix B square sum to 1. Now we
need to check the column sums. Most of this is true by our definitions. We check two
cases:
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Case 1: For a column � = k(n− 1)+ j , k = 1,2, . . . ,r− 1, the column coefficients

for 1 � j � k− 1 and i = jrn + m , m = 1,2, . . . ,rn , have modulus
√

δ j
rn , and for

i = krn+m , m = 1,2, . . . ,rm the modulus of the coefficients are

√
r−∑k−1

j=1 δ j

rn , and all

other coefficients are 0. Hence, the square sum of the column coefficients is

rn
k−1

∑
j=1

δ j

rn
+ rn

(
r−∑k−1

j=1 δ j

rn

)
= r.

Case 2: For a column � = (r− 1)(n− 1)+ j , with j = 1,2, . . .rn− (r− 1)(n− 1) =
r+n−1, the square sum of the coefficients of column � are (using our formula for the
sum of the δk above):

r

∑
k=1

δk =
r2

(r− r)n+ r
= r.

Finally, we need to show that our matrix B is not pavable (with paving constants
independent of n ) in the strong sense given in the proposition. This follows similarly
to the DFT2n×2n case. Let { fi}r2n

i=1 be the rows of the matrix B and let {gi}rn
i=1 be the

rows of the DFT matrix. Also, let Pk be the orthogonal projection of C rn
2 onto the first

k(n− 1) coordinates. Now let {Aj}r
j=1 be a partition of {1,2, . . . ,r2n} and fix 1 �

k � r−1. Then there is a j so that |Aj ∩Dk| � n . Since the vectors { fi}i∈Aj∩Dk have
zero coordinates for all j = 1,2, . . . ,(k− 1)(n− 1) , and there are scalars {ai}i∈Aj∩Dk

satisfying
1. ∑i∈Aj∩Dk

|ai|2 = 1.

2. We have

Pk

(
∑

i∈Aj∩Dk

ai fi

)
= 0.

It follows from our construction that

‖ ∑
i∈Aj∩Dk

ai fi‖2 = ‖(I−Pk)

(
∑

i∈Aj∩Dk

ai fi

)
‖2

= δk‖(I−Pk)

(
∑

i∈Aj∩Dk

aigi

)
‖2

� δk‖ ∑
i∈Aj∩Dk

a jg j‖2

= δk ∑
i∈Aj∩Dk

|ai|2

= δk

Since limn→∞ δk = 0, it follows that our family of matrices are not 2-Rieszable in the
strong sense of the Proposition. This argument looks pictorially as:
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Each square is a rn× (n−1) submatrix

√ r
rn

√
δ1
rn

√
δ1
rn · · ·

√
δ1
rn

0
√ r

rn

√
δ2
rn · · ·

√
δ2
rn

0 0
√ r

rn · · ·
√

δ3
rn

...
...

...
. . .

...

0 0 0 · · ·
√

δr
rn

The main question is whether it is possible to take the concrete constructions in this
paper and generalize them to give a complete counterexample to the Paving Conjecture.

5. The Proof of Theorem 1.2

Proof. (1) ⇒ (2) : This is from Proposition 2.2.
(2) ⇒ (1) : Let P be a projection with constant diagonal 1/2 on H2N . So

{√2Pei}2N
i=1 is a unit norm 2-tight frame for H2N . Let A be the N ×N matrix with

row vectors {√2Pei}2N
i=1 . Define recursively,

A1 =
1√
2

[
A A
A −A

]

and

AK+1 =
1√
2

[
AK AK

AK −AK

]

Note: Each AK (their rows) is a unit norm 2-tight frame for H2KN . Since the columns
of AK are orthogonal, this implies that the columns of AK+1 are orthogonal. Also,
clearly the sums of the squares of the row elements are still one and the sums of the
squares of the column elements are still one.

Also, the entries (ai, j) of AK satisfy

|ai, j| � 1√
2K

=
√

N√
2KN

. (3)

Letting C =
√

N in (2) of the theorem, there is some N0 such that for every L � N0 ,
if { fi}2L

i=1 is a unit norm 2-tight frame for HL with

| fi, j| � C√
2L

,
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then { fi}2L
i=1 is (δ ,r)-Rieszable. Hence, for K large enough, Equation 3 has this in-

equality. So, AK is (δ ,r)-Rieszable. That is, there is a partition {Aj}r
j=1 of {1,2, . . . ,2KN}

so that for every j = 1,2, . . . ,r and all scalars {ai}i∈Aj we have

‖ ∑
i∈Aj

ai fi‖2 � δ ∑
i∈Aj

|ai|2,

where { fi} are the row vectors of AK . Let

Bj = Aj ∩{1,2, . . . ,N}.
Then {Bj}r

j=1 is a partition of {1,2, . . . ,N} . Now we compute,

δ � ‖ ∑
i∈Bj

ai fi‖2

=
1
2K

2K

∑
�=1

‖ ∑
i∈Bj

ai

N

∑
j=1

fi,�+ j‖2

=
1
2K ·2K‖ ∑

i∈Bj

ai

√
2Pei‖2

= ‖ ∑
i∈Bj

ai

√
2Pei‖2.

Hence, A is (δ ,r)-Rieszable and hence KS holds by Proposition 2.2.

REMARK 5.1. The above points out that there really is a major difference between
“paving” and “Rieszing”. Recall that if { fi}M

i=1 is a set of vectors, the Grammian of
this family is the M ×M matrix (〈 fi, f j〉) . In the above construction, if GA is the
Grammian of the row vectors A then the Grammian of of the row vectors of AK is⎡

⎢⎢⎢⎣
GA 0 0 · · ·
0 GA 0 · · ·
0 0 GA · · ·
...

...
...

. . .

⎤
⎥⎥⎥⎦

That is, the coefficients of the Grammian do not get smaller in this construction while
the coefficients of the matrix do get smaller.

REMARK 5.2. This result also says that passing results on paving from the Gram-
mian back to the matrix and the other way do not hold in general.
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