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SPECTRAL MEASURES OF JACOBI

OPERATORS WITH RANDOM POTENTIALS

RAFAEL DEL RIO AND LUIS O. SILVA

Abstract. Let Hω be a self-adjoint Jacobi operator with a potential sequence {ω(n)}n of inde-
pendently distributed random variables with continuous probability distributions and let μω

φ be
the corresponding spectral measure generated by Hω and the vector φ . We consider sets A (ω)
which depend on ω , but are independent of two consecutive given entries of the secuence ω ,
and prove that μω

φ (A (ω)) = 0 for almost every ω . This result is applied to show equivalence
relations between spectral measures for random Jacobi matrices and to study the interplay of the
eigenvalues of these matrices and their submatrices.
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[9] V. JAKŠIĆ, AND Y. LAST, Spectral structure of Anderson type Hamiltonians, Invent. math, 141, 3
(2000), 561–567.

[10] T. KATO, Perturbation theory for linear operators. Classics in Mathematics. Springer-Verlag, Berlin,
1995.

[11] S. NABOKO, I. PCHELINTSEVA, AND L.O. SILVA, Discrete spectrum in a critical coupling case of
Jacobi matrices with spectral phase transitions by uniform asymptotic analysis, J. Approx. Theory,
161, 1 (2009), 314–336.

[12] L. PASTUR, AND A. FIGOTIN, Spectra of random and almost-periodic operators, Grundlehren der
Mathematischen Wissenschaften 297, Springer-Verlag, Berlin, 1992.

[13] W. RUDIN, Real and complex analysis, Third edition, McGraw-Hill, New York, 1987.
[14] B. SIMON, Orthogonal polynomials on the unit circle, Part 1, American Mathematical Society Collo-

quium Publications 54,1, American Mathematical Society, Providence, RI, 2005.

c© � � , Zagreb
Paper OaM-05-31



436 RAFAEL DEL RIO AND LUIS O. SILVA

[15] G. TESCHL, Jacobi operators and completely integrable nonlinear lattices, Mathematical Surveys and
Monographs 72, American Mathematical Society, Providence, RI, 2000.

Operators and Matrices
www.ele-math.com
oam@ele-math.com


