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Abstract. Let Hω be a self-adjoint Jacobi operator with a potential sequence {ω(n)}n of inde-
pendently distributed random variables with continuous probability distributions and let μω

φ be
the corresponding spectral measure generated by Hω and the vector φ . We consider sets A (ω)
which depend on ω , but are independent of two consecutive given entries of the secuence ω ,
and prove that μω

φ (A (ω)) = 0 for almost every ω . This result is applied to show equivalence
relations between spectral measures for random Jacobi matrices and to study the interplay of the
eigenvalues of these matrices and their submatrices.

1. Introduction

Let H0 be a Jacobi operator with zero main diagonal in a Hilbert space with an
orthonormal basis {δk}k∈I , where I is a finite or countable index set. We consider the
random self-adjoint operator given by

Hω = H0 +∑
n∈I

ω(n)〈δn, ·〉δn ,

where ω(n) are independent random variables with continuous probability distribu-
tions, that is, distributions such that the probability of any single point is zero. Note
that a continuous probability distribution may be singular, i. e., there may be sets of
zero Lebesgue measure with positive probability.

It is a well known fact regarding Schrödinger and Jacobi operators with ergodic
potentials, that the probability of a given λ ∈ R being an eigenvalue is zero [3, 4, 12].
Here we present an extended result (Theorem 3.1) for Hω , which is not necessarily
ergodic, when the point λ depends on the sequence ω except for two entries ω(n0)
and ω(n0 +1) , n0 ∈ I . This is complemented by Theorem 3.2 when λ is a measurable
function of ω . Since λ is allowed to depend on ω , it is possible to apply these results
to obtain information about the spectral behavior of the above mentioned operators.

As a first application, we study equivalence relations of spectral measures μω
n (·) :=

〈δn,EHω (·)δn〉 , where EHω is the family of spectral projections for Hω given by the
spectral theorem. By applying Theorems 3.1 and 3.2, we obtain equivalence of spectral
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measures for one-sided infinite random Jacobi matrices with continuous (could be sin-
gular) probability distributions, that is, μω

n ∼ μω
m for a. e. ω and any n,m in I . When

these distributions are not only continuous but absolutely continuous, the equivalence
of spectral measures was proven in [9] by different methods. For spectral measures of
double-sided infinite Jacobi operators, the equivalence relations μω

k + μω
l ∼ μω

m + μω
n

for a. e. ω and any k, l,m,n ∈ I are established.
A second application concerns the interplay of the eigenvalues of Jacobi matrices

and their submatrices. This has been studied in the context of orthogonal polynomials,
in particular, there are results describing the behavior of eigenvalues of submatrices
near a neighborhood of an eigenvalue of the whole matrix [5] [14, Sec. 1.2.11]. Here
we show, as a consequence of Theorems 3.1 and 3.2, that eigenvalues of a Jacobi matrix
do not coincide with eigenvalues, moments or entries of its submatrices almost surely.
Thus, it is not only true that one point is an eigenvalue of Hω for at most a set of
zero measure as mentioned above, but an arbitrary eigenvalue of any submatrix (which
depends on ω ) is not an eigenvalue of Hω almost surely.

This work is organized as follows. In Section 2 the notation is introduced along
with some preliminary concepts. Section 3 is devoted to the proof of the main results
(Theorems 3.1 and 3.2), where measurability conditions play a key role. In Section
4, we apply the results of the previous section to study equivalence relations between
spectral measures and the possible coincidence of eigenvalues with sets of real numbers
associated with submatrices.

2. Preliminaries

In this section we fix the notation and introduce the setting of the model. Mainly
we use a notation similar to that in [15]. Fix n1,n2 in Z∪{+∞}∪ {−∞} define an
interval I of Z as follows

I := {n ∈ Z : n1 < n < n2} .

The linear space of M -valued sequences {ξ (n)}n∈I will be denoted by l(I,M) , that is,

l(I,M) := {ξ : I → M} .

If M is itself a Hilbert space, then one has a Hilbert space

l2(I,M) := {ξ ∈ l(I,M) : ∑
n∈I

‖ξ (n)‖2
M < ∞} ,

with inner product given by

〈ξ ,η〉 := ∑
n∈I

〈ξ (n),η(n)〉M .

Now, let us introduce a measure in l(I,R) as follows. Let {pn}n∈I be a sequence
of arbitrary probability measures on R and consider the product measure P = ×n∈I pn

defined on the product σ -algebra F of l(I,R) generated by the cylinder sets, i. e, by
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sets of the form {ω : ω(i1) ∈ A1, . . . ,ω(in) ∈ An} for i1, . . . , in ∈ I , where A1, . . . ,An

are Borel sets in R . We have thus constructed a measure space Ω= (l(I,R),F ,P) .
Consider a ∈ l(I,R) with a(n) > 0 for all n ∈ I , and let ω ∈ Ω . Define, for

ξ ∈ l2(I,C) ,

(Hξ )(n) :=

⎧⎪⎨⎪⎩
ω(n)ξ (n)+a(n)ξ (n+1) n = n1 +1, n1 > −∞,

(τξ )(n) n1 +1 < n < n2−1,

a(n−1)ξ (n−1)+ω(n)ξ (n) n = n2−1, n2 < +∞,

(2.1)

where
(τξ )(n) := a(n−1)ξ (n−1)+ω(n)ξ (n)+a(n)ξ (n+1) . (2.2)

In the Hilbert space l2(I,C) , one can uniquely associate a closed symmetric operator
with H (see [1, Sec. 47]) which we shall denote by Hω to emphasize the dependence
on the sequence ω ∈Ω . The operator Hω is a Jacobi operator having a Jacobi matrix as
its matrix representation with respect to the canonical basis {δk}k∈I in l2(I,C) , where

δk(n) =

{
0 n 	= k

1 n = k .
(2.3)

Hω is defined so that {δk}k∈I ⊂ dom(Hω ) .
As in the case of differential equations, one defines the Wronskian associated with

the difference equation (2.1) by

Wn(ξ ,η) := a(n)((ξ (n)η(n+1)−η(n)ξ (n+1)) , n1 < n < n2−1 .

It turns out that, for all n,m such that n1 < m < n < n2−1, the Green formula (see [15,
Eq. 1.20]) holds

n

∑
k=m+1

(ξ (τη)− (τξ )η)(k) = Wn(ξ ,η)−Wm(ξ ,η) . (2.4)

Besides this formula, the Wronskian shares some properties with the Wronskian of the
theory of differential equations, in particular, if Wn(ξ ,η) = 0 for all n in a subinterval
of I , then ξ and η are linearly dependent in that subinterval. This is verified directly
from the definition of the Wronskian.

Now, assume that I = Z and consider the second-order difference equation

(τu)(n) = zu(n) , n ∈ Z, z ∈ C , (2.5)

where τ is defined in (2.2). Fix the numbers m ∈ Z and z ∈ C . In the space l(Z,C) ,
take the sequences

cm(z) = {cm(z,n)}n∈Z , sm(z) = {sm(z,n)}n∈Z

which are solutions of (2.5) and satisfy the following initial conditions:

cm(z,m−1) = 1 , cm(z,m) = 0 , (2.6)

sm(z,m−1) = 0 , sm(z,m) = 1 . (2.7)
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Because of the linear independence of cm(z),sm(z) , they constitute a fundamental sys-
tem of solutions of (2.5). Note that for any n ∈ Z , cm(z,n),sm(z,n) are polynomials of
z . The roots of these polynomials are measurable functions of ω .

By means of the polynomials defined above we state the following result [15], [7,
Prop.A.1].

LEMMA 2.1. Consider the operator Hω with fixed ω ∈ Ω . For any fixed n ∈ I ,
we have

δn =

⎧⎪⎨⎪⎩
sn1+1(Hω ,n)δn1+1 −∞< n1

cn2(Hω ,n)δn2−1 n2 < +∞
sm+1(Hω ,n)δm+1 + cm+1(Hω ,n)δm −∞= n1,n2 = +∞ ∀m ∈ I ,

(2.8)

where the polynomials cm(z,n),sm(z,n) have been evaluated at the operator Hω .

The symmetric operator Hω is not always self-adjoint. However, in this work, we
always consider Hω to be a self-adjoint operator for each ω ∈Ω . If one of the numbers
n1,n2 is not finite, conditions for self-adjointness should be assumed. For instance,
when both n1 and n2 are infinite, the so called Carleman criterion (cf. [2, Chap. 7
Sec. 3.2])

∑
n∈N

1
max{a(−n−1),a(n−1)} =∞ (2.9)

entails self-adjointness of Hω .
Notice that the operator Hω can be written as

Hω = H0 +∑
n∈I

ω(n)〈δn, ·〉δn ,

where H0 is a self-adjoint Jacobi operator with zero main diagonal.
For the self-adjoint operator Hω , we have the following remarks.

REMARK 1. For every pair ξ ,η in the domain of the self-adjoint operator Hω ,

lim
n→∞

Wn(ξ ,η) = 0

(see [15, Sec. 2.6]).

REMARK 2. From (2.8), it follows that a self-adjoint Jacobi operator, whose cor-
responding matrix is finite or one-sided infinite, has simple spectrum (see [1, Sec. 69]).
Moreover, the last equation in (2.8) shows that, when both n1,n2 are infinite, two con-
secutive elements of the canonical basis constitute a generating basis for Hω (see [1,
Sec. 72]).

Let μω
φ be the spectral measure for Hω and the vector φ , viz., the unique Borel

measure on R such that

〈φ , f (Hω )φ〉 =
∫

R
f (λ )dμω

φ (λ )
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for any bounded function f . Equivalently,

μω
φ (·) = 〈φ ,EHω (·)φ〉 , (2.10)

where EHω is the family of spectral projections for Hω given by the spectral theorem.

NOTATION. Below, we shall repeatedly deal with μω
δn

(see (2.3)) and we denote
it by μω

n for short.

DEFINITION 1. Given two measures ν and μ with the same collection of mea-
surable sets, we say that μ is absolutely continuous with respect to ν , denoted μ ≺ ν ,
if for every measurable Δ such that ν(Δ) = 0, it follows that μ(Δ) = 0. Also, ν and
μ are said to be equivalent, denoted ν ∼ μ , if they are mutually absolutely continuous,
that is, if they have the same zero sets.

Suppose that at least one of the numbers n1,n2 is finite. By inserting (2.8) into
(2.10), one obtains, for an arbitrary Borel set Δ⊂ R [7, Cor. A.2],

μω
n (Δ) =

{∫
Δ s2

n1+1(λ ,n)dμω
n1+1(λ ) n1 > −∞∫

Δ c2
n2

(λ ,n)dμω
n2−1(λ ) n2 < +∞ .

(2.11)

When both numbers n1,n2 are infinite, let us define, for any Borel Δ ⊂ R and
n ∈ Z , the matrix

μμμμn(Δ) :=

(
μω

n (Δ) 〈EHω (Δ)δn,δn+1〉
〈EHω (Δ)δn+1,δn〉 μω

n+1(Δ)

)
.

The third equation in (2.8) implies

μω
n (Δ) =

∫
Δ

〈
dμμμμm(λ )

(
cm+1(λ ,n)
sm+1(λ ,n)

)
,

(
cm+1(λ ,n)
sm+1(λ ,n)

)〉
C2

. (2.12)

There exists a matrix (see comment after [15, Lem.B.13])

RRRRm(λ ) =

(
am(λ ) bm(λ )
bm(λ ) 1−am(λ )

)

such that

μmμmμmμm(Δ) =
∫
Δ
RRRRm(λ )d(μω

m + μω
m+1)(λ ) . (2.13)

REMARK 3. Notice that from Remark 2, (2.13), and [1, Sec. 72] it follows that
μω

k + μω
k+1 ∼ μω

l + μω
l+1 for any k, l ∈ Z .
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3. Main results

Under the assumption that Hω is ergodic, it is well known that a fixed r ∈ R is an
eigenvalue of Hω with probability zero [12, Thm.2.12], [3, Prop.V.2.8] [4, Thm. 9.5].
In the case of Hω considered here, the following result holds.

THEOREM 3.1. Assume that I contains at least three integers and suppose n0,n0+
1 are in I . Let the measures pn0 , pn0+1 be continuous (a continuous measure evalu-
ated at a single point of R equals zero). Consider a finite or infinite sequence of real
functions {r}k (rk : Ω→ R), not necessarily measurable, such that, for ω , ω̃ ∈Ω ,

rk(ω) = rk(ω̃) (3.1)

whenever ω(n) = ω̃(n) for all n ∈ I \ {n0,n0 +1} . For any non-zero element φ in the
Hilbert space l2(I,C) , either

μω
φ (∪krk(ω)) = 0 (3.2)

for P a. e. ω , or the set of ω where (3.2) holds is not measurable.

Proof. We consider two cases:
A) One of the numbers n1,n2 is finite.
Without loss of generality let us assume that n1 is finite. By Remark 2, δn1+1 is a

cyclic vector of Hω for any ω ∈Ω .
Fix an element rk0 of the sequence {rk}k . Define the set

Qrk0 := {ω ∈Ω : μω
n1+1({rk0(ω)}) > 0} .

Let us construct a partition of Qrk0 . If ω0 ∈ Qrk0 , then rk0(ω0) is an eigenvalue of
Hω0 with corresponding eigenvector ψ = EHω0

({rk0(ω0)})δn1+1 . Due to the cyclic-
ity of δn1+1 , the converse is true, that is, if we have an eigenvalue r of Hω0 , then
μω0

n1+1({r}) > 0.
Analogously, if ω0 +tδn0 ∈Qrk0 for some t ∈R\{0} , there is a non-zero element

ξ of the domain of Hω0+tδn0
(which coincides with the domain of Hω0 ) such that

Hω0+tδn0
ξ = rk0(ω0)ξ , (3.3)

where (3.1) is used. From (2.1), it is clear that both ξ and ψ satisfy the difference
equation

(τu)(n) = rk0(ω0)u(n)

for all n such that n1 +1 < n < n2−1 and n 	= n0 . So, by (2.4), Wn(ξ ,ψ) is constant
for all n such that n0 � n < n2 . Now, when n2 is finite, both ξ and ψ satisfy the
difference equation (see (2.1))

a(n−1)u(n−1)+ω(n)u(n)= rk0(ω0)u(n) , for n = n2−1 .

This implies that Wn2−2((ξ ,ψ)) = 0, so the constant Wn(ξ ,ψ) , for all n such that
n0 � n < n2−1, is in fact zero. If n2 is infinite, then, from what was said in Section 2
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(see Remark 1) one concludes that Wn(ξ ,ψ) = 0 for all n � n0 . Therefore, in both
cases, n2 finite or infinite, there exists c ∈ C such that ξ (n) = cψ(n) for all n such
that n0 � n < n2−1. This implies that ξ cannot satisfy (3.3) for t 	= 0 when ψ is an
eigenvector with ψ(n0) 	= 0. If ψ(n0) = 0, then one may repeat the reasoning above
for n0 +1, since, in this case, it follows from (2.1) that ψ(n0 +1) 	= 0. Thus we assert
that either

μ
ω0+tδn0
n1+1 ({rk0(ω0)}) = 0 , ∀t ∈ R\ {0} , (3.4)

or
μ
ω0+sδn0+1

n1+1 ({rk0(ω0)}) = 0 , ∀s ∈ R\ {0} , (3.5)

for any ω0 ∈ Qrk0 . Let Q1 be the set of ω0 ∈ Qrk0 such that (3.4) holds, and Q2 =
Qrk0 \Q1 . Thus we have the partition Qrk0 = Q1 ∪Q2 . Notice that, if ψ(n0) = 0,
then ψ is an eigenvector of Hω0+tδn0

for all t ∈ R . Thus, for any ω0 ∈ Q2 ,

μ
ω0+tδn0
n1+1 ({rk0(ω0)}) > 0 ∀t ∈ R . (3.6)

Let us denote by χA the characteristic function of A , that is,

χA (ω) =

{
1 if ω ∈ A

0 if ω 	∈ A .
(3.7)

Since μω
n1+1({r}) is a measurable function of ω ∈ Ω for any fixed r ∈ R (see [3,

Sec. 5.3]), we know that μ
ω+tδn0+sδn0+1

n1+1 ({r}) is a measurable function of (t,s) ∈ R2

(see [13, Thm. 7.5]) for any fixed ω ∈Ω . Therefore, using (3.1), one establishes that

χ−1
Q

rk0
({1}) = {(t,s) ∈ R2 : μ

ω+tδn0+sδn0+1

n1+1 ({rk0(ω)}) > 0}

is measurable. Hence
(t,s) → χ

Q
rk0 (ω+ tδn0 + sδn0+1)

is a measurable function for any fixed ω ∈Ω . Thus, by Fubini∫
R2
χ

Q
rk0 (ω + tδn0 + sδn0+1)d(pn0 × pn0+1)(t,s)

=
∫

R

[∫
R
χ

Q
rk0 (ω+ tδn0 + sδn0+1)dpn0(t)

]
dpn0+1(s) .

The following equality holds∫
R
χ

Q
rk0 (ω + tδn0 + sδn0+1)dpn0(t) = χQ2(ω+ sδn0+1) . (3.8)

When ω + sδn0+1 ∈ Qrk0 , (3.8) is verified using (3.4), (3.6), pn0(R) = 1 and the con-
tinuity of pn0 . If ω + sδn0+1 	∈ Qrk0 , then either ω + tδn0 + sδn0+1 	∈ Qrk0 for every
t ∈ R and (3.8) follows, or there exists t0 ∈ R such that ω + t0δn0 + sδn0+1 ∈ Qrk0 .
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If ω + t0δn0 + sδn0+1 ∈ Q1 , (3.8) follows from (3.4) and continuity of pn0 . The case
ω+ t0δn0 + sδn0+1 ∈ Q2 is not possible since (3.6) would imply ω+ sδn0+1 ∈ Qrk0 .

Notice that Q2 does not need to be measurable and nevertheless the equality (3.8)
shows that χQ2(ω+ sδn0+1) is a measurable function of s . Hence∫

R2
χ

Q
rk0 (ω + tδn0 + sδn0+1)d(pn0 × pn0+1)(t,s) =

∫
R
χQ2(ω+ sδn0+1)dpn0+1(s) = 0

since the support of χQ2(ω + sδn0+1) is only one point as a consequence of (3.5). So
we arrive at the conclusion that, for any fixed ω ∈Ω ,

μ
ω+tδn0+sδn0+1

n1+1 ({rk0(ω)}) = 0

for pn0 × pn0+1 -a. e. (t,s) . Note that, since

∑
k

μω
n1+1({rk(ω)}) � μω

n1+1(∪krk(ω)) ,

we actually have that

μ
ω+tδn0+sδn0+1

n1+1 (∪krk(ω)) = 0 (3.9)

for any fixed ω ∈Ω , for pn0 × pn0+1 -a. e. (t,s) .
Now, let Q := {ω ∈ Ω : μω

n1+1(∪krk(ω)) > 0} and assume that it is measurable.
Then

P(Q) =
∫
Ω
χQ(ω)dP(ω)

=
∫

RI\{n0,n0+1}

[∫
R2
χQ(ω̃ + tδn0 + sδn0+1)d(pn0 × pn0+1)(t,s)

]
×

n∈I\{n0,n0+1}
dpn(ω̃) ,

where ω = ω̃ + tδn0 + sδn0+1 and we have used Fubini’s theorem. From (3.9) and the
definition of Q , we have

χQ(ω̃ + tδn0 + sδn0+1) = 0

for pn0 × pn0+1 a. e. (t,s) . Therefore P(Q) = 0.
Thus we have proven (3.2) with φ = δn1+1 . To prove it for an arbitrary φ ∈ l2(I,C)

observe that μω
φ ≺ μω

n1+1 [1, Sec. 70 Thm. 1].
B) The numbers n1,n2 are infinite.
It follows from [1, Sec. 72] and (2.13) (cf. [15, Eq. 2.141]) that r is an eigenvalue

of Hω if and only if (μω
m +μω

m+1)({r}) > 0 for any fixed m ∈ Z . Thus, one can repeat
the proof for A) with μω

m + μω
m+1 instead of μω

n1+1 . Hence one proves that either

(μω
m + μω

m+1)(∪krk(ω)) = 0

for P a. e. ω , or the set of ω where the equality above holds is not measurable. The
proof is then completed by recalling that, for all φ ∈ l2(Z,C) , μω

φ ≺ μω
m + μω

m+1 (this
follows as in the first part of the proof of [1, Sec. 70 Thm. 1] using [1, Sec. 72]). �
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THEOREM 3.2. Let {rk}k be a finite or infinite sequence of measurable functions
(rk :Ω→ R). The function h : Ω→ R given by

h(ω) := μω
φ (∪krk(ω))

is measurable.

Proof. Consider a simple function s(ω) = ∑N
j=1α jχAj(ω) , where χAj(ω) is the

characteristic function of Aj (see (3.7)). Note that Aj = s−1({α j}) and the sets {Aj}N
j=1

form a partition of Ω .
Let V ⊂ R be an open set. The set

A := {ω ∈Ω : 〈φ ,EHω ({s(ω)})φ〉 ∈V}

is measurable. Indeed,

A = ∪N
j=1

[
Aj ∩{ω ∈Ω :

〈
φ ,EHω ({α j})φ

〉 ∈V}]
and each {ω ∈ Ω :

〈
φ ,EHω ({α j})φ

〉 ∈ V} is measurable (cf. the commentary after
[3, Prop.V.3.1]). Thus, the function μω

φ (s(ω)) is measurable. We approximate the
measurable function r1(ω) by simple functions to obtain the assertion of the theorem
for r1(ω) .

Now, suppose that

hm(ω) := μω
φ (∪m

k=1rk(ω))

is a measurable function. Clearly,

hm+1(ω) =

{
hm(ω) rm+1(ω) ∈ ∪m

k=1rk(ω)
hm(ω)+ μω

φ (rm+1(ω)) otherwise.

So from the measurability of hm(ω) and μω
φ (rm+1(ω)) , the measurability of hm+1(ω)

follows. By induction we prove the assertion of the theorem for any finite sequence
of measurable functions {rk}k . The case of an infinite sequence is proven by taking a
pointwise limit w.r.t. ω ∈Ω of hm(ω) when m tends to ∞ . �

Let σp(Hω ) denote the set of eigenvalues of the operator Hω .

COROLLARY 3.1. If Hω is measurable [3, Def. V.3.1], then h(ω) := μω
φ (σp(Hω))

is a measurable function.

Proof. Since the operator Hω is measurable, we can apply a result of [8] and give
a measurable enumeration of the points in σp(Hω) . Then the assertion follows from
Theorem 3.2. �
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4. Applications to spectral theory

We begin this section by stating an elementary result.

LEMMA 4.1. Let μ be a measure on X and let

γ(Δ) :=
∫
Δ

f (λ )dμ(λ ) ,

where f is a non-negative measurable function. Then

γ ∼ μ ⇐⇒ μ({λ ∈ X : f (λ ) = 0}) = 0 .

Proof. (⇐) γ is absolutely continuous w.r.t μ by definition. Now, assume γ(Δ) =
0, then f (λ ) = 0 for μ -a. e. λ on Δ and

μ(Δ) = μ(Δ\ {λ ∈ X : f (λ ) = 0})+ μ({λ ∈ X : f (λ ) = 0}) = 0 .

(⇒) If μ({λ ∈ X : f (λ ) = 0}) > 0, then γ({λ ∈ X : f (λ ) = 0}) = 0, so the measures
are not equivalent. �

THEOREM 4.1. Assume that at least one of the numbers n1,n2 is finite, I contains
at least three integers, and the measures of the sequence {pn}n∈I are continuous. For
any fixed n,m ∈ I and P-a. e. ω ,

μω
n ∼ μω

m .

Proof. Let n1 > −∞ . Under this assumption we proceed stepwise. Firstly, we
show that μω

n ∼ μω
n1+1 for n1 < n < n2−1. Secondly, it is proven that μω

n2−2 ∼ μω
n2−1

when n2 is finite.
In view of the first equation in (2.11), μω

n ∼ μω
n1+1 if and only if (see Lemma 4.1)

μω
n1+1({λ : sn1+1(λ ,n) = 0}) = 0 ,

for P-a. e. ω . Due to the initial conditions (2.6) and (2.7), it is straightforward
to verify that the polynomial sn1+1(λ ,n) is completely determined by the sequences
{a(k)}n−1

k=n1+1 and {ω(k)}n−1
k=n1+1 . Now, the finite sequence {λk(ω)}k of zeros of

sn1+1(λ ,n) satisfies the conditions imposed on the sequence {rk(ω)}k in the state-
ment of Theorem 3.1 when n0 � n . By applying Theorem 3.1 and 3.2, one completes
the first step. Now, suppose that n2 is finite, and use the second equation in (2.11) to ex-
press μω

n2−2 . The polynomial involved here, cn2(λ ,n2 − 2) , is completely determined
by a(n2−2) and ω(n2 −1) . The only root of this polynomial, satisfies the conditions
imposed on the sequence {rk(ω)}k in Theorem 3.1 taking n0 < n2−2.

The statement of the theorem is completely proven after noticing that, when n1

is not finite, one repeats the reasoning above, with n1 , n2 , sn1+1(λ ,n) , cn2(λ ,n2 −2)
replaced by n2 , n1 , cn2(λ ,n) , sn1+1(λ ,n1 +2) , respectively. �
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REMARK 4. Theorem 4.1 is proven in [9] for the case of absolutely continuous
probability distributions in a more general setting. Our approach is different. In partic-
ular we do not need Poltoratskii’s theorem used in [9].

REMARK 5. When I is unbounded and n1 > −∞ (n2 < +∞), the assertion of
Theorem 4.1 remains true if we require only that there is n∗ ∈ I such that pn is con-
tinuous for n > n∗ (n < n∗ ). If I is bounded, it is sufficient to require that three
consecutive measures in the finite sequence {pn}n∈I are continuous. This refinement
of Theorem 4.1 follows directly from its proof.

REMARK 6. One may construct self-adjoint Jacobi operators for which μω
n1+1 	∼

μω
n1+2n for all n ∈ N and fixed ω . Indeed, as mentioned in [5, Example 1] for n1

finite and n2 infinite, there are self-adjoint Jacobi matrices such that μω
n1+1({0}) 	= 0

and sn1+1(0,n1 + 2n) = 0. On the other hand, there exist Jacobi operators for which
μω

n ∼ μω
m when n and m are sufficiently big. This is the case of the self-adjoint Jacobi

operator studied in [11] (see the proof of Corollary 5.2 in [11]).

We now turn to the case, when neither of the numbers n1,n2 is finite. Observe that by
inserting (2.13) into (2.12) one has

μω
n (Δ) =

∫
Δ
g(m,n)(λ )d(μω

m + μω
m+1)(λ ) , (4.1)

where

g(m,n)(λ ) :=
〈

RRRRm(λ )
(

cm+1(λ ,n)
sm+1(λ ,n)

)
,

(
cm+1(λ ,n)
sm+1(λ ,n)

)〉
C2

(4.2)

THEOREM 4.2. Assume that neither of the numbers n1,n2 is finite and there is
n∗ ∈ I such that pn is continuous for every n either greater or less than n∗ . For any
fixed k, l,m,n ∈ Z and P-a. e. ω ,

μω
k + μω

l ∼ μω
m + μω

n .

Proof. It follows from (4.1) that

(μω
m + μω

n )(Δ) =
∫
Δ

(
g(m,m)(λ )+g(m,n)(λ )

)
d(μω

m + μω
m+1)(λ ) . (4.3)

Let us show that μω
m + μω

n ∼ μω
m + μω

m+1 for P-a. e. ω . Due to (4.3) and Lemma 4.1,
this will be done if one proves that

(μω
m + μω

m+1)(B) = 0 for P-a.e.ω ,

where B := {λ : g(m,m)(λ ) = g(m,n)(λ ) = 0} .
Observing that g(m,n)(λ ) = 0 implies

RRRRm(λ )
(

cm+1(λ ,n)
sm+1(λ ,n)

)
= 0 ,
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we obtain
bm(λ )cm+1(λ ,n)sm+1(λ ,n) = −am(λ )c2

m+1(λ ,n) (4.4)

for any n,m ∈ Z . On the other hand, (4.2) and (2.6), (2.7) imply g(m,m)(λ ) = am(λ ) .
From (4.2) and (4.4), it follows that

g(m,n)(λ ) = s2
m+1(λ ,n)−am(λ )(s2

m+1

(
λ ,n)+ c2

m+1(λ ,n)
)

.

So, assuming that g(m,m)(λ ) = g(m,n)(λ ) = 0 one obtains g(m,n)(λ ) = s2
m+1(λ ,n) . This

implies that the set B is finite and its elements satisfy the conditions imposed on the el-
ements of the sequence {rk(ω)}k used in Theorem 3.1. Theorems 3.1 and 3.2 yield that
μω

m + μω
n ∼ μω

m + μω
m+1 . Now, the claim of the theorem follows from Remark 3. �

REMARK 7. In the case of absolutely continuous distributions, it is proven in [9]
the stronger statement μω

m ∼ μω
n for P-a. e. ω and any m,n ∈ Z .

THEOREM 4.3. Consider an interval Ĩ such that Ĩ ⊂ I \ {m,m+1} , where n1 +
1 � m � n2 − 2 . Assume that pm, pm+1 are continuous measures. Let Hω be the
operator in l2(I,C) defined in Section 2 and H̃ω the operator defined analogously in
l2(Ĩ,C) . Then,

P({ω ∈Ω : σp(Hω )∩σp(H̃ω) 	= /0}) = 0 . (4.5)

Proof. Observe that σp(H̃ω ) does not depend on ω(m),ω(m+ 1) . Thus, it fol-
lows from Theorems 3.1, 3.2 and Corollary 3.1 that

μω
φ (σp(H̃ω )) = 0 (4.6)

for P-a. e. ω .
If n1 (or n2 ) is finite, take φ = δn1+1 (φ = δn2−1 ), and, taking into account that

λ ∈ σp(Hω) if and only if μω
n1+1({λ}) > 0 (μω

n2−1({λ}) > 0), the theorem follows
from (4.6).

Now, assume that both n1 , n2 are infinite and choose consecutively φ = δ0 and
φ = δ1 . Then

(μω
0 + μω

1 )(σp(H̃ω)) = 0

for P-a. e. ω . Since

σp(Hω ) = {λ ∈ R : (μω
0 + μω

1 )({λ}) > 0}

(see [15, Eq. 2.141]), the result follows. �

COROLLARY 4.1. Take an arbitrary interval Ĩ � I and assume that at least one
of the numbers n1,n2 is infinite. Whenever the set I \ Ĩ has at least two elements,
additionally require that pn is continuous for two consecutive values of n ∈ I \ Ĩ . Then
(4.5) holds.
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Proof. Assume for example that n2 = +∞ and n1 finite. Choose Ĩ = I \{n1 +1} .
It is known that σp(Hω)∩σp(H̃ω ) = /0 for every ω [6]. If we take any other Ĩ � I ,
Theorems 3.1 and 3.2 can be applied. The other cases are handled analogously. �

REMARK 8. A more general situation could be considered along the same lines.
Indeed, assume the same conditions as in Theorem 4.3 and let rk(H̃ω) be a measurable
real valued function of ω determined by H̃ω . Then

P({ω ∈Ω : σp(Hω)∩∪krk(H̃ω ) 	= /0}) = 0 .

For example each rk could be a matrix entry, a moment or any other quantity associated
to H̃ω .
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