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SVEP AND BISHOP’S PROPERTY FOR k∗–PARANORMAL OPERATORS

N. L. BRAHA AND K. TANAHASHI

Abstract. A bounded linear operator T on a complex Hilbert space H is said to be k∗ -
paranormal if ‖T ∗x‖k � ‖Tkx‖ for every unit vector x ∈ H where k is a natural number with
2 � k . This class of operators is an extension of hyponormal operators and have many interesting
properties. We show that k∗ -paranormal operators have Bishop’s property (β ), i.e., if fn(λ) is
an analytic function on some open set D ⊂ C such that (T − z) fn(z) → 0 uniformly on every
compact subset K ⊂ D , then fn(z) → 0 uniformly on K . In case of k = 2 , this means that
∗ -paranormal operators have Bishop’s property (β ).
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